Field Stop Trench IGBT with Soft Fast Recovery Diode
120 A, 650 V

AFGY120T65SPD

AFGY120T65SPD which is AEC Q101 qualified offers very low conduction and switch losses for a high efficiency operation in various applications, rugged transient reliability and low EMI. Meanwhile, this part also offers an advantage of outstanding parallel operation performance with balance current sharing.

Features
- AEC–Q101 Qualified
- Very Low Saturation Voltage: \(V_{\text{CESat}} = 1.6 \text{ V (Typ.) @ } I_C = 120 \text{ A} \)
- Maximum Junction Temperature: \(T_J = 175^\circ \text{C} \)
- Positive Temperature Co–efficient for Easy Parallel Operating
- Tight Parameter Distribution
- High Input Impedance
- 100% of the Parts are Tested for \(I_{\text{LM}} \)
- Short Circuit Ruggedness
- Co–packed with Soft Fast Recovery Diode

Typical Applications
- Traction Inverter for HEV/EV
- Auxiliary DC/AC Converters
- Motor Drives
- Other Power–Train Applications Requiring High Power Switch

MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector–to–Emitter Voltage</td>
<td>(V_{\text{CES}})</td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Gate–to–Emitter Voltage</td>
<td>(V_{G\text{E}})</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Transient Gate–to–Emitter Voltage</td>
<td></td>
<td>±30</td>
<td></td>
</tr>
<tr>
<td>Collector Current (Note 1)</td>
<td>(I_C)</td>
<td>160</td>
<td>A</td>
</tr>
<tr>
<td>@ (T_C = 25^\circ \text{C})</td>
<td></td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>@ (T_C = 100^\circ \text{C})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulsed Collector Current</td>
<td>(I_{\text{LM}})</td>
<td>360</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed Collector Current</td>
<td>(I_{\text{CM}})</td>
<td>360</td>
<td>A</td>
</tr>
<tr>
<td>Diode Forward Current (Note 1)</td>
<td>(I_F)</td>
<td>160</td>
<td>A</td>
</tr>
<tr>
<td>@ (T_C = 25^\circ \text{C})</td>
<td></td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>@ (T_C = 100^\circ \text{C})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Power Dissipation</td>
<td>(P_D)</td>
<td>714</td>
<td>W</td>
</tr>
<tr>
<td>@ (T_C = 25^\circ \text{C})</td>
<td></td>
<td>357</td>
<td></td>
</tr>
<tr>
<td>@ (T_C = 100^\circ \text{C})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short Circuit Withstand Time @ (T_C = 25^\circ \text{C})</td>
<td>(SCWT)</td>
<td>6</td>
<td>(\mu \text{s})</td>
</tr>
<tr>
<td>Voltage Transient Ruggedness (Note 2)</td>
<td>(dV/dt)</td>
<td>10</td>
<td>V/\text{ns}</td>
</tr>
<tr>
<td>Operating Junction / Storage Temperature Range</td>
<td>(T_{J, T_{\text{TSG}}})</td>
<td>-55 to +175</td>
<td>°C</td>
</tr>
<tr>
<td>Maximum Lead Temp. for Soldering Purposes, 1/8” from case for 5 seconds</td>
<td>(T_L)</td>
<td>265</td>
<td>°C</td>
</tr>
</tbody>
</table>

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Value limit by bond wire
2. \(V_{CC} = 400 \text{ V, } V_{\text{GE}} = 15 \text{ V, } I_C = 360 \text{ A, Inductive Load} \)

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package</th>
<th>Shipping</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFGY120T65SPD</td>
<td>TO–247–3LD</td>
<td>30 Units / Tube</td>
</tr>
</tbody>
</table>
THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal resistance junction-to-case, for IGBT</td>
<td>R_{JUC}</td>
<td>0.21</td>
<td>°C/W</td>
</tr>
<tr>
<td>Thermal resistance junction-to-case, for Diode</td>
<td>R_{JUC}</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>Thermal resistance junction-to-ambient</td>
<td>R_{JUA}</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector–emitter breakdown voltage, gate–emitter short–circuited</td>
<td>$V_{GE} = 0 \text{ V}, I_C = 1 \text{ mA}$</td>
<td>$BVCES$</td>
<td>650</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Temperature Coefficient of Breakdown Voltage</td>
<td>$V_{GE} = 0 \text{ V}, I_C = 1 \text{ mA}$</td>
<td>$\Delta BVCES / \Delta T_J$</td>
<td>–</td>
<td>0.6</td>
<td></td>
<td>V/°C</td>
</tr>
<tr>
<td>Collector–emitter cut–off current, gate–emitter short–circuited</td>
<td>$V_{GE} = 0 \text{ V}, V_{CE} = 650 \text{ V}$</td>
<td>I_{CES}</td>
<td>–</td>
<td>–</td>
<td>40</td>
<td>μA</td>
</tr>
<tr>
<td>Gate leakage current, collector–emitter short–circuited</td>
<td>$V_{GE} = 20 \text{ V}, V_{CE} = 0 \text{ V}$</td>
<td>I_{GES}</td>
<td>–</td>
<td>–</td>
<td>±250</td>
<td>nA</td>
</tr>
<tr>
<td>ON CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate–emitter threshold voltage</td>
<td>$V_{GE} = V_{CE}, I_C = 120 \text{ mA}$</td>
<td>$V_{GE(\text{th})}$</td>
<td>4.3</td>
<td>5.3</td>
<td>6.3</td>
<td>V</td>
</tr>
<tr>
<td>Collector–emitter saturation voltage</td>
<td>$V_{GE} = 15 \text{ V}, I_C = 120 \text{ A}$</td>
<td>$V_{CE(\text{sat})}$</td>
<td>–</td>
<td>1.6</td>
<td>2.05</td>
<td>V</td>
</tr>
<tr>
<td>DYNAMIC CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input capacitance</td>
<td>$V_{GE} = 30 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$</td>
<td>C_{ies}</td>
<td>–</td>
<td>4930</td>
<td>–</td>
<td>pF</td>
</tr>
<tr>
<td>Output capacitance</td>
<td></td>
<td>C_{oes}</td>
<td>–</td>
<td>375</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td></td>
<td>C_{res}</td>
<td>–</td>
<td>42</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Internal Gate Resistance</td>
<td>$f = 1 \text{ MHz}$</td>
<td>R_G</td>
<td>–</td>
<td>3</td>
<td>–</td>
<td>Ω</td>
</tr>
<tr>
<td>Gate charge total</td>
<td>$V_{CE} = 400 \text{ V}, I_C = 120 \text{ A}, V_{GE} = 15 \text{ V}$</td>
<td>Q_g</td>
<td>–</td>
<td>125</td>
<td>187</td>
<td>nC</td>
</tr>
<tr>
<td>Gate–to–emitter charge</td>
<td>$V_{GE} = 15 \text{ V}$</td>
<td>Q_{ge}</td>
<td>–</td>
<td>38</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Gate–to–collector charge</td>
<td></td>
<td>Q_{gc}</td>
<td>–</td>
<td>40</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>SWITCHING CHARACTERISTICS, INDUCTIVE LOAD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn–on delay time</td>
<td>$T_J = 25^\circ \text{C}$, $V_{CC} = 400 \text{ V}$</td>
<td>$t_{(on)}$</td>
<td>–</td>
<td>40</td>
<td>–</td>
<td>ns</td>
</tr>
<tr>
<td>Rise time</td>
<td></td>
<td>t_r</td>
<td>–</td>
<td>104</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Turn–off delay time</td>
<td></td>
<td>$t_{(off)}$</td>
<td>–</td>
<td>80</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Fall time</td>
<td></td>
<td>t_f</td>
<td>–</td>
<td>116</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Turn–on switching loss</td>
<td></td>
<td>E_{on}</td>
<td>–</td>
<td>6.6</td>
<td>–</td>
<td>mJ</td>
</tr>
<tr>
<td>Total switching loss</td>
<td></td>
<td>E_{ls}</td>
<td>–</td>
<td>10.4</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Turn–off delay time</td>
<td>$T_J = 175^\circ \text{C}$, $V_{CC} = 400 \text{ V}$</td>
<td>$t_{(on)}$</td>
<td>–</td>
<td>36</td>
<td>–</td>
<td>ns</td>
</tr>
<tr>
<td>Rise time</td>
<td></td>
<td>t_r</td>
<td>–</td>
<td>112</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Turn–off delay time</td>
<td></td>
<td>$t_{(off)}$</td>
<td>–</td>
<td>92</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Fall time</td>
<td></td>
<td>t_f</td>
<td>–</td>
<td>160</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Turn–on switching loss</td>
<td></td>
<td>E_{on}</td>
<td>–</td>
<td>10.5</td>
<td>–</td>
<td>mJ</td>
</tr>
<tr>
<td>Total switching loss</td>
<td></td>
<td>E_{ls}</td>
<td>–</td>
<td>15.4</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS

(\(T_J = 25^\circ C\) unless otherwise noted) (Continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode Forward Voltage</td>
<td>(I_F = 120\ A, T_J = 25^\circ C)</td>
<td>(V_{FM})</td>
<td>–</td>
<td>1.4</td>
<td>1.7</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>(I_F = 120\ A, T_J = 175^\circ C)</td>
<td>–</td>
<td>1.35</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Reverse Recovery Energy</td>
<td>(I_F = 120\ A, \frac{dl_F}{dt} = 1000\ A/\mu s, V_{CE} = 400\ V, T_J = 25^\circ C)</td>
<td>(E_{rec})</td>
<td>–</td>
<td>428</td>
<td>–</td>
<td>(\mu)J</td>
</tr>
<tr>
<td></td>
<td>(I_F = 120\ A, \frac{dl_F}{dt} = 1000\ A/\mu s, V_{CE} = 400\ V, T_J = 175^\circ C)</td>
<td>–</td>
<td>2026</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Diode Reverse Recovery Time</td>
<td>(I_F = 120\ A, \frac{dl_F}{dt} = 1000\ A/\mu s, V_{CE} = 400\ V, T_J = 25^\circ C)</td>
<td>(T_{rr})</td>
<td>–</td>
<td>107</td>
<td>–</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>(I_F = 120\ A, \frac{dl_F}{dt} = 1000\ A/\mu s, V_{CE} = 400\ V, T_J = 175^\circ C)</td>
<td>–</td>
<td>203</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Diode Reverse Recovery Charge</td>
<td>(I_F = 120\ A, \frac{dl_F}{dt} = 1000\ A/\mu s, V_{CE} = 400\ V, T_J = 25^\circ C)</td>
<td>(Q_{rr})</td>
<td>–</td>
<td>2237</td>
<td>–</td>
<td>nC</td>
</tr>
<tr>
<td></td>
<td>(I_F = 120\ A, \frac{dl_F}{dt} = 1000\ A/\mu s, V_{CE} = 400\ V, T_J = 175^\circ C)</td>
<td>–</td>
<td>8155</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
TYPICAL CHARACTERISTICS

Figure 1. Typical Output Characteristics

Figure 2. Typical Output Characteristics

Figure 3. Typical Saturation Voltage

Figure 4. Transfer Characteristics

Figure 5. Saturation Voltage vs. Case Temperature

Figure 6. Saturation Voltage vs. V_{GE}
TYPICAL CHARACTERISTICS

Figure 7. Saturation Voltage vs. V_{CE}

Figure 8. Saturation Voltage vs. V_{CE}

Figure 9. Capacitance Characteristics

Figure 10. Gate Charge Characteristics

Figure 11. SOA Characteristics

Figure 12. Turn-On Characteristics vs. Gate Resistance
TYPICAL CHARACTERISTICS

Figure 13. Turn−Off Characteristics vs. Gate Resistance

Figure 14. Turn−On Characteristics vs. Collector Current

Figure 15. Turn−Off Characteristics vs. Collector Current

Figure 16. Switching Loss vs. Gate Resistance

Figure 17. Switching Loss vs. Collector Current

Figure 18. Forward Characteristics
TYPICAL CHARACTERISTICS

Figure 19. Reverse Current

Figure 20. Stored Charge

Figure 21. Reverse Recovery Time

Figure 22. Collector–to–Emitter Breakdown Voltage vs. Junction Temperature
Figure 23. Transient Thermal Impedance of IGBT

Figure 24. Transient Thermal Impedance of Diode
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS

TO-247-3LD
CASE 340CU
ISSUE B

DATE 28 OCT 2021

NOTES:
A. NO INDUSTRY STANDARDS APPLIES TO THIS PACKAGE.
B. ALL DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS.
D. DRAWING CONFORMS TO ASME Y14.5-2009.

GENERIC MARKING DIAGRAM*

A

E

E2

L1

b2

b4

A1

A2

D1

D2

Q

L

E

b

0.130

XXX = Specific Device Code
A = Assembly Site Code
Y = Year
WW = Work Week
ZZ = Assembly Lot Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, “G” or microdot “/C0071”, may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER: 98AON13773G
DESCRIPTION: TO-247-3LD

Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.

© Semiconductor Components Industries, LLC, 2018 www.onsemi.com

onsemi and ON Semiconductor are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.