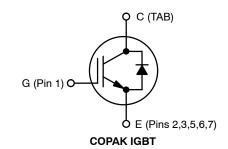


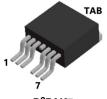
IGBT – Power, Co-PAK N-Channel, Field Stop IV (FS4), High Speed, D2PAK-7L-LV

650 V, 1.54 V, 70 A

AFGBG70T65SQDC

Using the novel field stop 4th generation IGBT technology and generation 1.5 SiC Schottky Diode technology, AFGBG70T65SQDC offers the optimum performance with both low conduction and switching losses for high efficiency operations in various applications.


Features


- Maximum Junction Temperature: $T_J = 175^{\circ}C$
- Positive Temperature Coefficient for Easy Parallel Operation
- High Current Capability
- Low Saturation Voltage: $V_{CE(Sat)} = 1.54 \text{ V (Typ.)}$ @ $I_C = 70 \text{ A}$
- 100% of the Parts are Tested for I_{LM} (Note 1)
- Fast Switching
- Tight Parameter Distribution
- No Reverse Recovery, No Forward Recovery
- AECQ101 Qualified and PPAP Capable

Applications

- Automotive HEVEV Onboard Chargers
- Automotive HEVEV DCDC Converters
- Totem Pole Bridgeless PFC

BV _{CES}	V _{CE(SAT)}	Ic
650 V	1.54 V	70 A

D²PAK7 CASE 221BP

MARKING DIAGRAM

AFGB70 65SQDC AYWWZZ

AFGB7065SQDC = Specific Device Code

A = Assembly Location

Y = Year WW = Work Week ZZ = Lot Traceability

ORDERING INFORMATION

Device	Package	Shipping [†]
AFGBG70T65SQDC	D ² PAK7 (Pb-Free)	800 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Value	Unit	
Collector-to-Emitter Voltage	V _{CES}	650	V	
Gate-to-Emitter Voltage		V _{GES}	±20	V
Transient Gate-to-Emitter Voltage	V _{GES}	±30	V	
Collector Current $T_C = 25^{\circ}C$		I _C	75	Α
	T _C = 100°C	1	70	1
Power Dissipation	T _C = 25°C	P _D	617	W
	T _C = 100°C		309	1
Pulsed Collector Current	$T_C = 25^{\circ}C, t_p = 10 \mu s$	I _{CM}	280	Α
Diode Forward Current	T _C = 25°C	I _F	35	Α
	T _C = 100°C		20	1
Pulsed Diode Maximum Forward Current	$T_C = 25^{\circ}C, t_p = 10 \ \mu s$	I _{FM}	80	Α
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to +175	°C
Lead Temperature for Soldering Purposes		TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. $V_{CC} = 400 \text{ V}$, $V_{GE} = 15 \text{ V}$, $I_{C} = 315 \text{ A}$, Inductive Load, 100% of the Parts are Tested

2. Single pulse, limited by max junction temperature

THERMAL CHARACTERISTICS

Parameter	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case for IGBT	$R_{ heta JC}$	0.32	°C/W
Thermal Resistance, Junction-to-Case for Diode	$R_{ heta JC}$	1.01	
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	40	

ELECTRICAL CHARACTERISTICS OF IGBT (T_{.1} = 25°C unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector-to-Emitter Breakdown Voltage	BV _{CES}		650			V
Collector-to-Emitter Breakdown Voltage Temperature Coefficient	$\Delta BV_{CES}/\Delta T_{J}$	$V_{GE} = 0 \text{ V}, I_{C} = 1 \text{ mA}$		0.6		V/°C
Zero Gate Voltage Collector Current	I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES}			250	μΑ
Gate-to-Emitter Leakage Current	I _{GES}	V _{GE} = 20 V, V _{CE} = 0 V			±400	nA
ON CHARACTERISTICS						
Gate Threshold Voltage	V _{GE(TH)}	$V_{GE} = V_{CE}$, $I_C = 70 \text{ mA}$	3.40	4.59	6.40	V
Collector-to-Emitter Saturation Voltage	V _{CE(SAT)}	V _{GE} = 15 V, I _C = 70 A, T _J = 25°C		1.54	2.10	
		V _{GE} = 15 V, I _C = 70 A, T _J = 175°C		1.89		
DYNAMIC CHARACTERISTICS						
Input Capacitance	C _{IES}			4490		pF
Output Capacitance	C _{OES}	$V_{GE} = 0 \text{ V}, V_{CE} = 30 \text{ V}, f = 1 \text{ MHz}$		284		
Reverse Transfer Capacitance	C _{RES}			13.2		
Total Gate Charge	Q_{G}			146.7		nC
Gate-to-Emitter Charge	Q_{GE}	$V_{CE} = 400 \text{ V}, V_{GE} = 15 \text{ V}, I_{C} = 70 \text{ A}$		28.4		
Gate-to-Collector Charge	Q _{GC}			37.7		

$\textbf{ELECTRICAL CHARACTERISTICS OF IGBT} \ (T_J = 25^{\circ}\text{C unless otherwise noted}) \ (continued)$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS	•	•	•	•		
Turn-On Delay Time	t _{d(on)}			20		ns
Turn-Off Delay Time	t _{d(off)}	1		133.2		
Rise Time	t _r	1		10.4		
Fall Time	t _f	$V_{CE} = 400 \text{ V}, V_{GE} = 0/15 \text{ V},$ $I_{C} = 35 \text{ A}, R_{G} = 4.7 \Omega, T_{J} = 25^{\circ}\text{C}$		7.2		
Turn-On Switching Loss	E _{on}	_ 10 = 5571, 11G = 4.7 52, 11 = 25 5		0.30		mJ
Turn-Off Switching Loss	E _{off}	1		0.22		
Total Switching Loss	E _{ts}	1		0.52		
Turn-On Delay Time	t _{d(on)}			22.4		ns
Turn-Off Delay Time	t _{d(off)}	1		118.8		
Rise Time	t _r	1		22.4		
Fall Time	t _f	$V_{CE} = 400 \text{ V}, V_{GE} = 0/15 \text{ V}, \\ I_{C} = 70 \text{ A}, R_{G} = 4.7 \Omega, T_{J} = 25^{\circ}\text{C}$		18.7		
Turn-On Switching Loss	E _{on}			0.6		mJ
Turn-Off Switching Loss	E _{off}	1		0.6		
Total Switching Loss	E _{ts}	1		1.3		
Turn-On Delay Time	t _{d(on)}			18.4		ns
Turn-Off Delay Time	t _{d(off)}	1		160.5		
Rise Time	t _r	1		13.6		
Fall Time	t _f	$V_{CE} = 400 \text{ V}, V_{GE} = 0/15 \text{ V},$ $I_{C} = 35 \text{ A}, R_{G} = 4.7 \Omega, T_{J} = 175^{\circ}\text{C}$		7.33		
Turn-On Switching Loss	E _{on}			0.32		mJ
Turn-Off Switching Loss	E _{off}	1		0.31		
Total Switching Loss	E _{ts}	1		0.63		
Turn-On Delay Time	t _{d(on)}			20.0		ns
Turn-Off Delay Time	t _{d(off)}	1		136.0		
Rise Time	t _r	1		29.6		
Fall Time	t _f	$V_{CE} = 400 \text{ V}, V_{GE} = 0/15 \text{ V},$ $I_{C} = 70 \text{ A}, R_{G} = 4.7 \Omega, T_{J} = 175^{\circ}\text{C}$		17.6		
Turn-On Switching Loss	E _{on}	_ 10 - 10 10 110 - 4.1 22, 11 - 110 0		0.8		mJ
Turn-Off Switching Loss	E _{off}	1		0.8		
Total Switching Loss	E _{ts}	1		1.6		
DIODE CHARACTERISTICS	•	•	-		-	-
Forward Voltage	V _F	I _F = 20 A, T _J = 25°C		1.41	1.75	V
		I _F = 20 A, T _J = 175°C		1.81		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Typical Characteristics

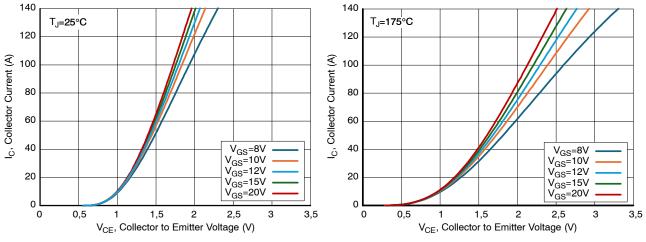


Figure 1. Output Characteristics

Figure 2. Output Characteristics

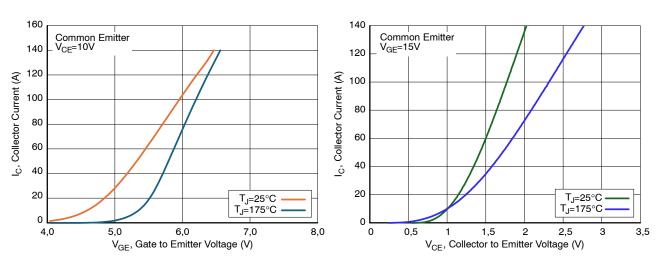


Figure 3. Transfer Characteristics

Figure 4. Saturation Characteristics

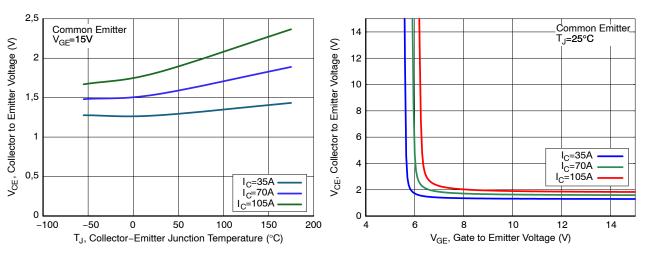
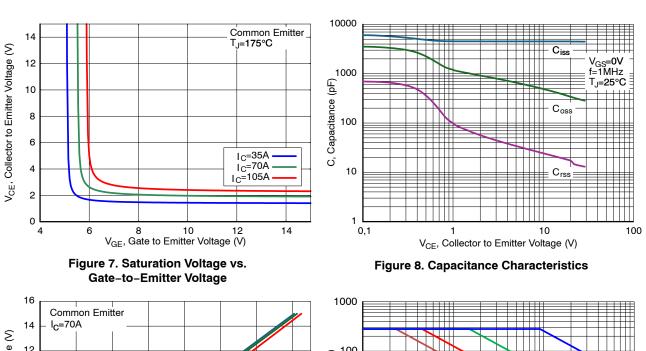



Figure 5. Saturation Voltage vs. Junction Temperature

Figure 6. Saturation Voltage vs. Gate-to-Emitter Voltage

Typical Characteristics

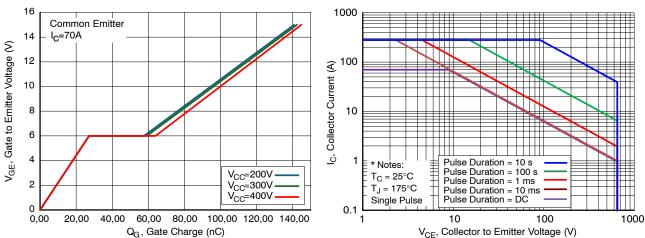


Figure 9. Gate Charge Characteristics

1000 1000 Common Emitter Common Emitter V_{GE}=15V V_{CE}=400V I_C=70A V_{GE}=15V V_{CE}=400V I_C=70A t, Switching Time (ns) Switching Time (ns) 100 td(off) td(on) 10 10 td(on)_25°C td(off)_25°C tr_25°C tf 25°C td(off)_175°C td(on)_175°C tr 175°C tf 175°C 6 6 10 20 4.7 10 20 R_G , Gate Resistance (Ω) R_G , Gate Resistance (Ω)

Figure 11. Turn-On Switching Time vs. Gate Resistance

Figure 12. Turn-Off Switching Time vs. Gate Resistance

Figure 10. SOA Characteristics

Typical Characteristics

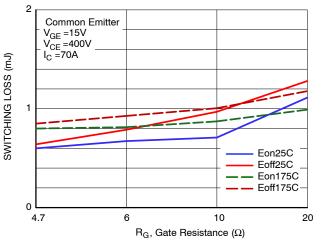


Figure 13. Switching Loss vs. Gate Resistance

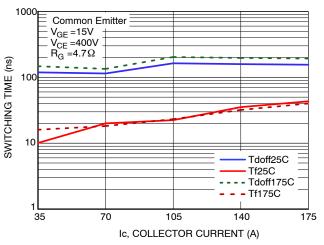


Figure 15. Turn-Off Switching Time vs.
Collector Current

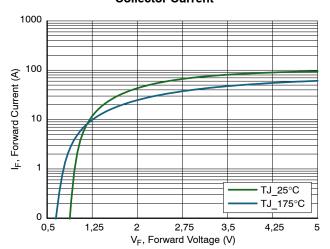


Figure 17. Diode Forward Characteristics

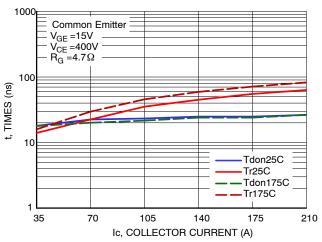


Figure 14. Turn-On Switching Time vs.
Collector Current

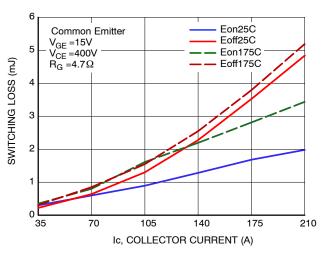


Figure 16. Switching Loss vs. Collector Current

Typical Characteristics

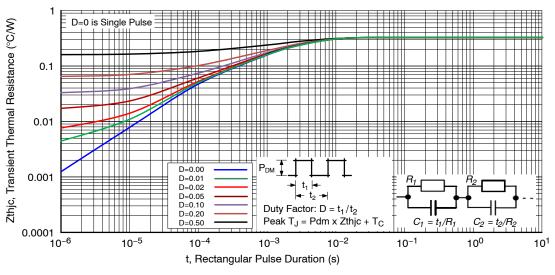


Figure 18. Transient Thermal Impedance of IGBT

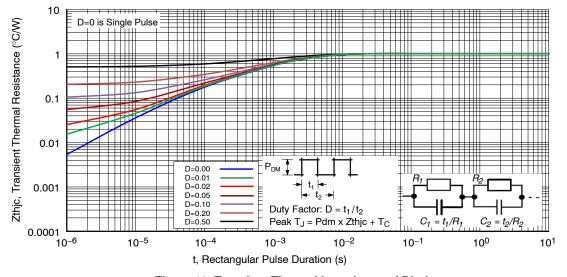
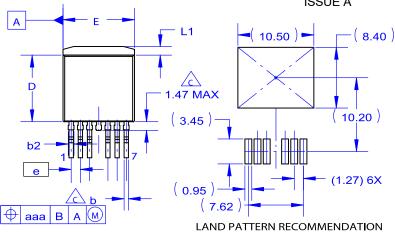
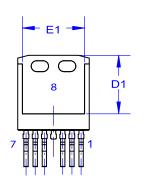



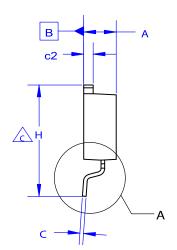
Figure 19. Transient Thermal Impedance of Diode

D2PAK7 (TO-263-7LD) 15.4x9.9x4.5

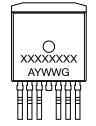
CASE 221BP ISSUE A

NOTES:

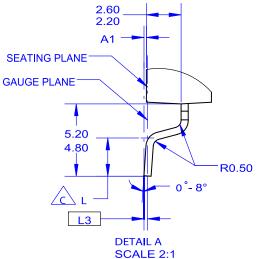

DATE 13 FEB 2020


- A. PACKAGE CONFORMS TO JEDEC TO-263 VARIATION CB EXCEPT WHERE NOTED. B. ALL DIMENSIONS ARE IN MILLIMETERS.
- OUT OF JEDEC STANDARD VALUE.
 D. DIMENSION AND TOLERANCE AS PER ASME
- Y14.5-2009.

 E. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS.


 F. LAND PATTERN RECOMMENDATION PER IPC. TO127P1524X465-8N.

DIM	MIL	MILLIMETERS			
DIM	MIN	NOM	MAX		
Α	4.30	4.50	4.70		
A1	0.00	0.10	0.20		
b2	0.60	0.70	0.80		
b	0.50	0.60	0.70		
С	0.40	0.50	0.60		
c2	1.20	1.30	1.40		
D	9.00	9.20	9.40		
D1	7.30	7.80	8.20		
Е	9.70	9.90	10.20		
E1	7.15	8.05	8.55		
е	~	1.27	~		
Н	15.10	15.40	15.70		
L	2.44	2.64	2.84		
L1	1.00	1.20	1.40		
L3	~	0.25	~		
aaa	~	~	0.25		


GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code = Assembly Location

= Year WW = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON09227H	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	D2PAK7 (TO-263-7LD) 15.4x9.9x4.5		PAGE 1 OF 1	

onsemi and Onsemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries, onsemi reserves brisefin and of 160 m are trademarked so defined values of services and of the confined values and of the values of the confined values and of the values of the confined values and of the values of the special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales