

Ultra-Low Capacitance ESD Protection Diodes

Micro-Packaged Diodes for ESD Protection

ESDL3552/ESDL3552A

The ESDL3552 and ESDL3552A are designed to protect voltage sensitive components that require ultra-low capacitance from ESD and transient voltage events. Excellent clamping capability, low capacitance, high breakdown voltage, high linearity, low leakage, and fast response time make these parts ideal for ESD protection on designs where board space is at a premium. It has industry leading capacitance linearity over voltage making it ideal for high-speed data line protection applications.

Features

• Industry Leading Capacitance Linearity Over Voltage

• Ultra-Low Capacitance: 0.25 pF • Insertion Loss: 0.26 dB @ 5 GHz

• 0201 Isolated DSN Package: 0.62 mm x 0.32 mm

• Stand-off Voltage: 5.0 V • Low Leakage: < 50 nA

• Low Dynamic Resistance: $< 1.0 \Omega$

• These Devices are Pb-Free, Halogen-Free/BFR-Free and are RoHS Compliant

Typical Applications

High Speed Data Line Protection

USB 2.0, USB 3.0, USB 3.1

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

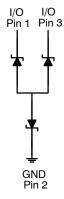
Rating	Symbol	Value	Unit
IEC 61000-4-2 Level 4 (Contact) (Note 1) IEC 61000-4-2 Level 4 (Air) (Note 1)	ESD	±20 ±20	kV
Maximum Peak Pulse Current IEC 61000-4-5 8/20 μs (Lightning) (Note 2)	I _{PP}	2.0	Α
Total Power Dissipation (Note 3) @ T _A = 25°C Thermal Resistance, Junction–to–Ambient	$P_{D} R_{ heta JA}$	300 400	mW °C/W
Junction and Storage Temperature Range	T _J , T _{stg}	–55 to +150	°C
Lead Solder Temperature – Maximum (10 Second Duration)	TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Non-repetitive current pulse at T_A = 25°C, per IEC61000-4-2 waveform.
 Non-repetitive current pulse at T_A = 25°C, per IEC61000-4-5 waveform.

1

3. Mounted with recommended minimum pad size, DC board FR-4


X4DFN3 CASE 718AB

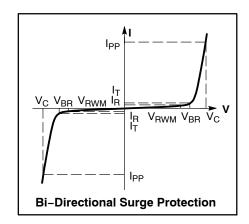
MARKING DIAGRAM

A = Specific Device Code

ESDL3552 and ESDL3552A have the same marking

ORDERING INFORMATION

Device	Package	Shipping [†]
ESDL3552PFCT5G ESDL3552APFCT5G	X4DFN3 (Pb-Free/ Halide Free)	10000 / Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS

(T_A = 25°C unless otherwise noted)

Symbol	Parameter		
I _{PP}	Maximum Reverse Peak Pulse Current		
V _C	Clamping Voltage @ IPP		
V _{RWM}	Working Peak Reverse Voltage		
I _R	Maximum Reverse Leakage Current @ V _{RWM}		
V_{BR}	Breakdown Voltage @ I _T		
Ι _Τ	Test Current		

^{*}See Application Note <u>AND8308/D</u> for detailed explanations of datasheet parameters.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Reverse Working Voltage	V_{RWM}	Between any two pins (-40°C to +85°C)			5.0	V
Breakdown Voltage	V_{BR}	I _T = 10 mA, Between any two pins (-40°C to +85°C)	6.5	10.2	11.5	V
		I _T = 1 mA, Between any two pins	7.0	9.3	11	
Reverse Leakage Current	I _R	V _{RWM} = 5.0 V, T _A = 25°C		0.001	0.05	μΑ
		V _{RWM} = 5.0 V, T _A = 85°C		0.001	0.25	μΑ
Clamping Voltage TLP	V _C	I _{PP} = 4 A IEC 61000-4-2 Level 1 equivalent (±2 kV Contact, ±4 kV Air) Pin 1 to Pin 2, Pin 3 to Pin 2		14.5		V
		I _{PP} = 16 A		21.5		V
Reverse Peak Pulse Current	I _{PP}	IEC61000-4-5 (8x20 μs), Between any two pins	2.0	3.0		Α
Clamping Voltage (8x20 μs)	V _C	I _{PP} = 2 A		14	18	V
Dynamic Resistance	R_{DYN}	100 ns TLP, Pin 1 to Pin 2, Pin 3 to Pin 2		0.58		Ω
Junction Capacitance	CJ	V _R = 0 V, f = 1 MHz, Between any two pins		0.25	0.30	pF
Capacitance Linearity	C_Δ	V _R = 0 V to 5 V, f = 1 MHz		0.03		pF
Insertion Loss	ΙL	f = 2.5 GHz f = 5.0 GHz f = 10.0 GHz		0.16 0.26 0.41		dB

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

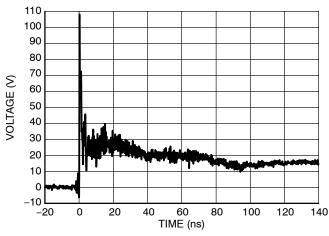


Figure 1. ESD Clamping Voltage Screenshot Positive 8 kV Contact per IEC61000-4-2

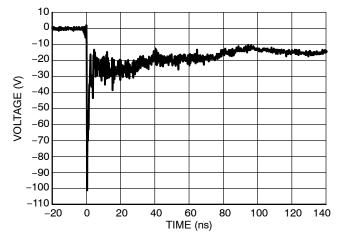


Figure 2. ESD Clamping Voltage Screenshot Negative 8 kV Contact per IEC61000-4-2

TYPICAL CHARACTERISTICS

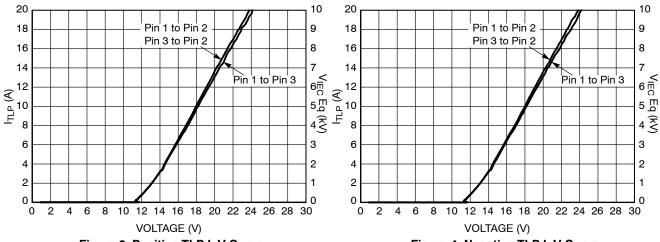


Figure 3. Positive TLP I-V Curve

Figure 4. Negative TLP I-V Curve

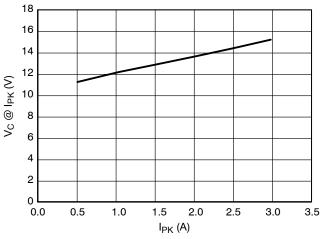


Figure 5. Positive Clamping Voltage vs. Peak Pulse Current (t_p = 8/20 μ s)

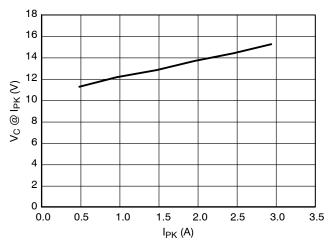


Figure 6. Negative Clamping Voltage vs. Peak Pulse Current ($t_p = 8/20 \mu s$)

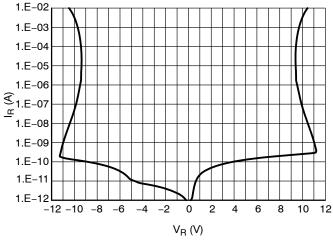


Figure 7. Breakdown Voltage

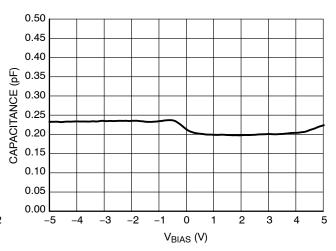
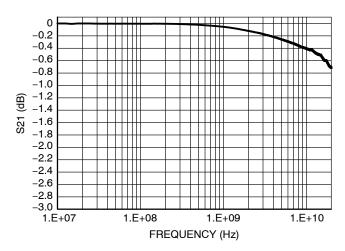
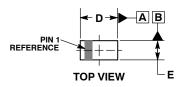
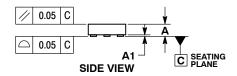
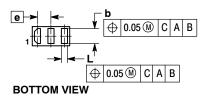


Figure 8. Line Capacitance, f = 1 MHz

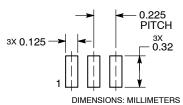
TYPICAL CHARACTERISTICS


Figure 9. Insertion Loss

PACKAGE DIMENSIONS

X4DFN3 0.62x0.32, 0.225PCASE 718AB
ISSUE A



NOTES:

- 1. DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS.

	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	0.175	0.20	0.225	
A1	0.000	0.015	0.030	
b	0.23	0.25	0.27	
D	0.595	0.620	0.645	
E	0.295	0.320	0.345	
е	0.225 BSC			
L	0.08	0.10	0.12	

RECOMMENDED MOUNTING FOOTPRINT*

See Application Note AND8398/D for more mounting details

*For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, <u>SOLDERRM/D</u>.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized tor use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Sho

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales