Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.
74VHC595
8-Bit Shift Register with Output Latches

Features
- High Speed: \(t_{PD} = 5.4\,\text{ns} \) (Typ.) at \(V_{CC} = 5\,\text{V} \)
- Low power dissipation: \(I_{CC} = 4\mu\text{A} \) (Max.) at \(T_A = 25^\circ\text{C} \)
- High noise immunity: \(V_{NIH} = V_{NIL} = 28\% \, V_{CC} \) (Min.)
- Power down protection is provided on all inputs
- Low noise: \(V_{OLP} = 0.9\,\text{V} \) (Typ.)
- Pin and function compatible with 74HC595

General Description
The VHC595 is an advanced high-speed CMOS Shift Register fabricated with silicon gate CMOS technology. It achieves the high-speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation.

This device contains an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. The storage register has eight 3-STATE outputs. Separate clocks are provided for both the shift register and the storage register. The shift register has a direct-overriding clear, serial input, and serial output (standard) pins for cascading. Both the shift register and storage register use positive-edge triggered clocks. If both clocks are connected together, the shift register state will always be one clock pulse ahead of the storage register.

An input protection circuit insures that 0V to 7V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5V to 3V systems and two supply systems such as battery backup. This circuit prevents device destruction due to mismatched supply and input voltages.

Ordering Information

<table>
<thead>
<tr>
<th>Order Number</th>
<th>Package Number</th>
<th>Package Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>74VHC595M</td>
<td>M16A</td>
<td>16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow</td>
</tr>
<tr>
<td>74VHC595SJ</td>
<td>M16D</td>
<td>16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide</td>
</tr>
<tr>
<td>74VHC595MTC</td>
<td>MTC16</td>
<td>16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide</td>
</tr>
</tbody>
</table>

Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering number.
Connection Diagram

Logic Symbol

Pin Description

<table>
<thead>
<tr>
<th>Pin Names</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SER</td>
<td>Serial Data Input</td>
</tr>
<tr>
<td>SCK</td>
<td>Shift Register Clock Input (Active rising edge)</td>
</tr>
<tr>
<td>RCK</td>
<td>Storage Register Clock Input (Active rising edge)</td>
</tr>
<tr>
<td>SCLR</td>
<td>Reset Input</td>
</tr>
<tr>
<td>G</td>
<td>3-STATE Output Enable Input (Active LOW)</td>
</tr>
<tr>
<td>QA - QH</td>
<td>Parallel Data Outputs</td>
</tr>
<tr>
<td>Q' H</td>
<td>Serial Data Output</td>
</tr>
</tbody>
</table>

Truth Table

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>SER</td>
<td>RCK</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>L</td>
<td>X</td>
</tr>
<tr>
<td>H</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>↑</td>
</tr>
</tbody>
</table>
Timing Diagram

SCK
SER
SCLR
RCK
G
Oₐ
Oₐ
Oₐ
Oₐ
Oₐ
Qₐ
Qₐ
Qₐ
Qₐ
Qₐ
Qₐ

NOTE: ⬧⬧ implies that the output is in 3-STATE mode.
Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{CC})</td>
<td>Supply Voltage</td>
<td>(-0.5V) to (+7.0V)</td>
</tr>
<tr>
<td>(V_{IN})</td>
<td>DC Input Voltage</td>
<td>(-0.5V) to (+7.0V)</td>
</tr>
<tr>
<td>(V_{OUT})</td>
<td>DC Output Voltage</td>
<td>(-0.5V) to (V_{CC} + 0.5V)</td>
</tr>
<tr>
<td>(I_{\text{IK}})</td>
<td>Input Diode Current</td>
<td>(-20mA)</td>
</tr>
<tr>
<td>(I_{\text{OK}})</td>
<td>Output Diode Current</td>
<td>(\pm 20mA)</td>
</tr>
<tr>
<td>(I_{\text{OUT}})</td>
<td>DC Output Current</td>
<td>(\pm 25mA)</td>
</tr>
<tr>
<td>(I_{\text{CC}})</td>
<td>DC (V_{CC}) / GND Current</td>
<td>(\pm 75mA)</td>
</tr>
<tr>
<td>(T_{\text{STG}})</td>
<td>Storage Temperature</td>
<td>(-65^\circ C) to (+150^\circ C)</td>
</tr>
<tr>
<td>(T_L)</td>
<td>Lead Temperature (Soldering, 10 seconds)</td>
<td>(260^\circ C)</td>
</tr>
</tbody>
</table>

Recommended Operating Conditions\(^{(1)}\)

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{CC})</td>
<td>Supply Voltage</td>
<td>(2.0V) to (+5.5V)</td>
</tr>
<tr>
<td>(V_{IN})</td>
<td>Input Voltage</td>
<td>(0V) to (+5.5V)</td>
</tr>
<tr>
<td>(V_{OUT})</td>
<td>Output Voltage</td>
<td>(0V) to (V_{CC})</td>
</tr>
<tr>
<td>(T_{\text{OPR}})</td>
<td>Operating Temperature</td>
<td>(-40^\circ C) to (+85^\circ C)</td>
</tr>
<tr>
<td>(t_r, t_f)</td>
<td>Input Rise and Fall Time</td>
<td>(V_{CC} = 3.3V) ±0.3V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 5.0V) ±0.5V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0) to (100ns/V)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0) to (20ns/V)</td>
</tr>
</tbody>
</table>

Note:
1. Unused inputs must be held HIGH or LOW. They may not float.
DC Electrical Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>V_{CC} (V)</th>
<th>Conditions</th>
<th>$T_A = 25^\circ C$</th>
<th>$T_A = -40^\circ C$ to $+85^\circ C$</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IH}</td>
<td>HIGH Level Input Voltage</td>
<td>2.0</td>
<td></td>
<td></td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.0 – 5.5</td>
<td></td>
<td></td>
<td>0.7 x V_{CC}</td>
<td>0.7 x V_{CC}</td>
</tr>
<tr>
<td>V_{IL}</td>
<td>LOW Level Input Voltage</td>
<td>2.0</td>
<td></td>
<td></td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.0 – 5.5</td>
<td></td>
<td></td>
<td>0.3 x V_{CC}</td>
<td>0.3 x V_{CC}</td>
</tr>
<tr>
<td>V_{OH}</td>
<td>HIGH Level Output Voltage</td>
<td>2.0</td>
<td>$V_{IN} = V_{IH}$ or V_{IL}</td>
<td>1.9 2.0 1.9</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.0</td>
<td></td>
<td>2.9 3.0 2.9</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.5</td>
<td></td>
<td>4.4 4.5 4.4</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.0</td>
<td>$I_{OH} = -4mA$</td>
<td>2.58 2.48</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.5</td>
<td>$I_{OH} = -8mA$</td>
<td>3.94 3.80</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{OL}</td>
<td>LOW Level Output Voltage</td>
<td>2.0</td>
<td>$V_{IN} = V_{IH}$ or V_{IL}</td>
<td>0.0 0.1 0.1</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.0</td>
<td></td>
<td>0.0 0.1 0.1</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.5</td>
<td></td>
<td>0.0 0.1 0.1</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.0</td>
<td>$I_{OL} = 4mA$</td>
<td>0.36 0.44</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.5</td>
<td>$I_{OL} = 8mA$</td>
<td>0.36 0.44</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{OZ}</td>
<td>3-STATE Output Off-State Current</td>
<td>5.5</td>
<td></td>
<td>± 0.25</td>
<td>± 2.5</td>
<td>μA</td>
</tr>
<tr>
<td>I_{IN}</td>
<td>Input Leakage Current</td>
<td>0 – 5.5</td>
<td>$V_{IN} = 5.5V$ or GND</td>
<td>± 0.1</td>
<td>± 1.0</td>
<td>μA</td>
</tr>
<tr>
<td>I_{CC}</td>
<td>Quiescent Supply Current</td>
<td>5.5</td>
<td></td>
<td>4.0 40.0</td>
<td>μA</td>
<td></td>
</tr>
</tbody>
</table>

Noise Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>V_{CC} (V)</th>
<th>Conditions</th>
<th>$T_A = 25^\circ C$</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{OLP}^{(2)}$</td>
<td>Quiet Output Maximum Dynamic V_{OL}</td>
<td>5.0</td>
<td>$C_L = 50pF$</td>
<td>0.9 1.2</td>
<td>V</td>
</tr>
<tr>
<td>$V_{OLV}^{(2)}$</td>
<td>Quiet Output Minimum Dynamic V_{OL}</td>
<td>5.0</td>
<td>$C_L = 50pF$</td>
<td>-0.9 -1.2</td>
<td>V</td>
</tr>
<tr>
<td>$V_{IH}D^{(2)}$</td>
<td>Minimum HIGH Level Dynamic Input Voltage</td>
<td>5.0</td>
<td>$C_L = 50pF$</td>
<td>3.5</td>
<td>V</td>
</tr>
<tr>
<td>$V_{ILD}^{(2)}$</td>
<td>Maximum LOW Level Dynamic Input Voltage</td>
<td>5.0</td>
<td>$C_L = 50pF$</td>
<td>1.5</td>
<td>V</td>
</tr>
</tbody>
</table>

Note:

2. Parameter guaranteed by design.
AC Electrical Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>V_{CC} (V)</th>
<th>Conditions</th>
<th>$T_A = +25^\circ C$</th>
<th>$T_A = -40^\circ C$ to $+85^\circ C$</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{PLH}, t_{PHL}</td>
<td>Propagation Delay Time, RCK to Q_A–Q_H</td>
<td>3.3 ± 0.3</td>
<td>$C_L = 15pF$</td>
<td>7.7 11.9 1.0 13.5 ns</td>
<td>$C_L = 50pF$</td>
<td>10.2 15.4 1.0 17.0 ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.0 ± 0.5</td>
<td>$C_L = 15pF$</td>
<td>5.4 7.4 1.0 8.5 ns</td>
<td>$C_L = 50pF$</td>
<td>6.9 9.4 1.0 10.5 ns</td>
</tr>
<tr>
<td>t_{PLH}, t_{PHL}</td>
<td>Propagation Delay Time, SCK–Q'H</td>
<td>3.3 ± 0.3</td>
<td>$C_L = 15pF$</td>
<td>8.8 13.0 1.0 15.0 ns</td>
<td>$C_L = 50pF$</td>
<td>11.3 16.5 1.0 18.5 ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.0 ± 0.5</td>
<td>$C_L = 15pF$</td>
<td>6.2 8.2 1.0 9.4 ns</td>
<td>$C_L = 50pF$</td>
<td>7.7 10.2 1.0 11.4 ns</td>
</tr>
<tr>
<td>t_{PHL}</td>
<td>Propagation Delay Time, $SCLR$–Q'H</td>
<td>3.3 ± 0.3</td>
<td>$C_L = 15pF$</td>
<td>8.4 12.8 1.0 13.7 ns</td>
<td>$C_L = 50pF$</td>
<td>10.9 16.3 1.0 17.2 ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.0 ± 0.5</td>
<td>$C_L = 15pF$</td>
<td>5.9 8.0 1.0 9.1 ns</td>
<td>$C_L = 50pF$</td>
<td>7.4 10.2 1.0 11.1 ns</td>
</tr>
<tr>
<td>t_{PLZ}, t_{PHZ}</td>
<td>Output Enable Time, G to Q_A–Q_H</td>
<td>3.3 ± 0.3</td>
<td>$R_L = 1k\Omega$</td>
<td>7.5 11.5 1.0 13.5 ns</td>
<td>$C_L = 50pF$</td>
<td>9.0 15.0 1.0 17.0 ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.0 ± 0.5</td>
<td>$C_L = 15pF$</td>
<td>4.8 8.6 1.0 10.0 ns</td>
<td>$C_L = 50pF$</td>
<td>8.3 10.6 1.0 12.0 ns</td>
</tr>
<tr>
<td>t_{PLZ}, t_{PHZ}</td>
<td>Output Disable Time, G to Q_A–Q_H</td>
<td>3.3 ± 0.3</td>
<td>$R_L = 1k\Omega$</td>
<td>12.1 15.7 1.0 16.2 ns</td>
<td>$C_L = 50pF$</td>
<td>12.1 15.7 1.0 16.2 ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.0 ± 0.5</td>
<td>$C_L = 50pF$</td>
<td>7.6 10.3 1.0 11.0 ns</td>
<td>$C_L = 50pF$</td>
<td>7.6 10.3 1.0 11.0 ns</td>
</tr>
<tr>
<td>f_{MAX}</td>
<td>Maximum Clock Frequency</td>
<td>3.3 ± 0.3</td>
<td>$C_L = 15pF$</td>
<td>80 150 70 MHz</td>
<td>$C_L = 50pF$</td>
<td>55 130 50 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.0 ± 0.5</td>
<td>$C_L = 15pF$</td>
<td>135 185 115 MHz</td>
<td>$C_L = 50pF$</td>
<td>95 155 85 MHz</td>
</tr>
<tr>
<td>t_{OSLH}, t_{OSHL}</td>
<td>Output to Output Skew</td>
<td>3.3 ± 0.3</td>
<td>$C_L = 50pF$</td>
<td>(3)</td>
<td>1.5 1.5 ns</td>
<td>$C_L = 50pF$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.0 ± 0.5</td>
<td>$C_L = 50pF$</td>
<td></td>
<td>1.0</td>
<td>$C_L = 50pF$</td>
</tr>
<tr>
<td>C_{IN}</td>
<td>Input Capacitance</td>
<td>V_{CC} = Open</td>
<td>5.0</td>
<td>10</td>
<td>10 pF</td>
<td></td>
</tr>
<tr>
<td>C_{OUT}</td>
<td>Output Capacitance</td>
<td>V_{CC} = 5.0V</td>
<td>6.0</td>
<td></td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>C_{PD}</td>
<td>Power Dissipation Capacitance</td>
<td>(4)</td>
<td>87</td>
<td></td>
<td>pF</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

3. Parameter guaranteed by design. $t_{OSLH} = |t_{PLH_{max}} - t_{PLH_{min}}|$; $t_{OSHL} = |t_{PHL_{max}} - t_{PHL_{min}}$ |

4. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC} (Opr.) = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}$
AC Operating Requirements

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>V_{CC} (V)</th>
<th>$T_A = 25°C$</th>
<th>$T_A = -40°C$ to $+85°C$</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_S</td>
<td>Minimum Setup Time (SER–SCK)</td>
<td>3.3 ± 0.3</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.0 ± 0.5</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>t_S</td>
<td>Minimum Setup Time (SCK–RCK)</td>
<td>3.3 ± 0.3</td>
<td>8.0</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.0 ± 0.5</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>t_S</td>
<td>Minimum Setup Time (SCLR–RCK)</td>
<td>3.3 ± 0.3</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.0 ± 0.5</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>t_H</td>
<td>Minimum Hold Time (SER–SCK)</td>
<td>3.3 ± 0.3</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.0 ± 0.5</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>t_H</td>
<td>Minimum Hold Time (SCK–RCK)</td>
<td>3.3 ± 0.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.0 ± 0.5</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>t_H</td>
<td>Minimum Hold Time (SCLR–RCK)</td>
<td>3.3 ± 0.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.0 ± 0.5</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>$t_{W(L)}$</td>
<td>Minimum Pulse Width (SCLR)</td>
<td>3.3 ± 0.3</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.0 ± 0.5</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>$t_{W(L)}$, $t_{W(H)}$</td>
<td>Minimum Pulse Width (SCK)</td>
<td>3.3 ± 0.3</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.0 ± 0.5</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>$t_{W(L)}$, $t_{W(H)}$</td>
<td>Minimum Pulse Width (RCK)</td>
<td>3.3 ± 0.3</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.0 ± 0.5</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>t_{rem}</td>
<td>Minimum Removal Time (SCLR–SCK)</td>
<td>3.3 ± 0.3</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.0 ± 0.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Physical Dimensions

Dimensions are in millimeters unless otherwise noted.

Figure 1. 16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
Package Number M16A
Physical Dimensions (Continued)

Dimensions are in millimeters unless otherwise noted.

Figure 2. 16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
Package Number M16D

M16DREVC
Physical Dimensions (Continued)
Dimensions are in millimeters unless otherwise noted.

NOTES:
A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION A8.
B. DIMENSIONS ARE IN MILLIMETERS
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS
D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1994
E. DRAWING FILE NAME: MTC16rev4
F. LAND PATTERN RECOMMENDATION PER IPC7351 - DM
TSOP8P40X110-18N

MTC16rev4

Figure 3. 16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC16
TRADemarks

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

- **ACEx®**
- **Across the board. Around the world.™**
- **ActiveArray™**
- **Bottomless™**
- **Build it Now™**
- **CoolFET™**
- **CorePLUS™**
- **CROSSVOLT™**
- **CTL™**
- **Current Transfer Logic™**
- **DOME™**
- **E'CMOS™**
- **EcoSPARK®**
- **EnSigna™**
- **FACT Quiet Series™**
- **FACT™**
- **FAST™**
- **FASTr™**
- **FPS™**
- **FRFET®**
- **GlobalOptoisolator™**
- **GTO™**
- **HiSeC™**
- **i-Lo™**
- **ImpliedDisconnect™**
- **IntelliMAX™**
- **ISOPLANAR™**
- **MICROCOUPLER™**
- **MicroPak™**
- **MICROWIRE™**
- **Motion-SPM™**
- **MSX™**
- **MSXPro™**
- **OPTOLOGIC®**
- **OPTOPLANAR®**
- **PACMAN™**
- **PDP-SPM™**
- **POD™**
- **Power220®**
- **Power247®**
- **PowerEdge™**
- **PowerSaver™**
- **Power-SPM™**
- **PowerTrench®**
- **Programmable Active Droop™**
- **QFET®**
- **QS™**
- **QT Optoelectronics™**
- **Quiet Series™**
- **RapidConfigure™**
- **RapidConnect™**
- **ScalarPump™**
- **SMART START™**
- **SPM™**
- **STEALTH™**
- **SuperFET™**
- **SuperSOT™-3**
- **SuperSOT™-6**
- **SuperSOT™-8**
- **SyncFET™**
- **TCM™**
- **The Power Franchise®**
- **TinyBuck™**
- **TinyLogic®**
- **TINYOPTO™**
- **TinyPower™**
- **TinyWire™**
- **μSerDes™**
- **UHC®**
- **UniFET™**
- **VCM™**
- **Wire™**

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative or In Design</td>
<td>This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.</td>
</tr>
</tbody>
</table>