Onsemi

74LCX245

The LCX245 contains eight non-inverting bidirectional buffers with 3-STATE outputs and is intended for bus oriented applications. The device is designed for low voltage (2.5 V and 3.3 V) V_{CC} applications with capability of interfacing to a 5 V signal environment. The T/\overline{R} input determines the direction of data flow through the device. The \overline{OE} input disables both the A and B ports by placing them in a high impedance state.

The LCX245 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

- 5 V Tolerant Inputs and Outputs
- 1.65 V to 5.5 V V_{CC} Specifications Provided
- 7.0 ns t_{PD} Max. (V_{CC} = 3.3 V), 10 mA I_{CC} Max
- Power Down High Impedance Inputs and Outputs
- Supports Live Insertion/Withdrawal (Note 1)
- ± 24 mA Output Drive (V_{CC} = 3.0 V)
- Implements Proprietary Noise/EMI Reduction Circuitry
- Latch-up Performance Exceeds 100 mA
- ESD Performance:
 - ♦ Human Body Model > 2000 V
- Leadless DQFN Package
- This is a Pb-Free Device

NOTE:

1. To ensure the high-impedance state during power up or down, OE should be tied to V_{CC} through a pull-up resistor: the minimum value or the resistor is determined by the current-sourcing capability of the driver.

- = Wafer Lot Y. YY = Year
 - = Work Week

W, WW

G or •

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

MARKING

Figure 1. Connection Diagram (Pin Assignment for SOIC, SOP, SSOP, and TSSSOP)

PIN DESCRIPTION

Pin Names	Description	
ŌE	Output Enable Input	
T/R	Transmit/Receive Input	
A ₀ -A ₇	Side A Inputs or 3–STATE Outputs	
B ₀ -B ₇	Side B Inputs or 3-STATE Outputs	
DAP	No Connect	

NOTE: DAP (Die Attach Pad)

TRUTH TABLE

INPUTS			
ŌE	T/R	Outputs	
L	L	Bus $B_0 - B_7$ Data to Bus $A_0 - A_7$	
L	Н	Bus $A_0 - A_7$ Data to Bus $B_0 - B_7$	
Н	х	HIGH Z State on $A_0 - A_7$, $B_0 - B_7$ (Note 2)	

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial

Z = High Impedance

NOTE:

2. Unused bus terminals during HIGH Z State must be held HIGH or LOW.

Figure 2. Connection Diagram (Pin Assignment for DQFN)

Figure 3. Logic Symbol

Figure 4. Logic Diagram

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Condition	Value	Unit
V _{CC}	DC Supply Voltage		-0.5 to +6.5	V
VI	DC Input Voltage (Note 1)		-0.5 to +6.5	V
Vo	DC Output Voltage (Note 1)	Active-Mode (High or Low State)	–0.5 to V _{CC} + 0.5	V
		Tri-State Mode	-0.5 to +6.5	
		Power–Down Mode (V _{CC} = 0 V)	-0.5 to +6.5	
I _{IK}	DC Input Diode Current	V _{IN} < GND	-50	mA
I _{OK}	DC Output Diode Current	V _{OUT} < GND	-50	mA
Ι _Ο	DC Output Source/Sink Current		±50	mA
I _{CC} or I _{GND}	DC Supply Current per Supply Pin or Ground Pin		±100	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
ΤL	Lead Temperature, 1 mm from Case for 10 secs		260	°C
TJ	Junction Temperature under Bias		+150	°C
θ_{JA}	Thermal Resistance (Note 2)	WQFN20	99	°C/W
		TSSOP-20	150	
PD	Power Dissipation in Still Air	WQFN20	1256	mW
		TSSOP-20	833	
MSL	Moisture Sensitivity		Level 1	-
F _R	Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	-
V_{ESD}	ESD Withstand Voltage (Note 3)	Human Body Model	2000	V
		Charged Device Model	N/A	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

I_O absolute maximum rating must be observed.
Measured with minimum pad spacing on an FR4 board, using 76 mm-by-114 mm, 2-ounce copper trace no air flow per JESD51-7.

3. HBM tested to EIA / JESD22-A114-A. CDM tested to JESD22-C101-A.

RECOMMENDED OPERATING CONDITIONS (Note 4)

Symbol	Parameter			Max	Unit
V _{CC}	Supply Voltage Operating		1.65	5.5	V
		Data Retention Only	1.5	5.5	
VI	Digital Input Voltage		0	5.5	V
Vo	Output Voltage	Active-Mode (High or Low State)	0	V _{CC}	V
		Tri-State Mode	0	5.5	
		Power–Down Mode ($V_{CC} = 0 V$)	0	5.5	
T _A	Operating Free-Air Temperature		-40	+125	°C
t _r , t _f	Input Rise or Fall Rate	V _{CC} = 1.65 V to 1.95 V	0	20	ns/V
		V_{CC} = 2.3 V to 2.7 V	0	20	
		V_{IN} from 0.8 V to 2.0 V, V_{CC} = 3.0 V	0	10	
		V_{CC} = 4.5 V to 5.5 V	0	5	

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

4. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

DC ELECTRICAL CHARACTERISTICS

				$T_A = -40^\circ$	C to +85°C	$T_{A} = -40^{\circ}C$	C to +125°C	
Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Min	Max	Unit
VIH	High-Level Input		1.65 to 1.95	$0.65 \times V_{CC}$		$0.65 imes V_{CC}$		V
	Voltage		2.3 to 2.7	1.7		1.7		1
			2.7 to 3.6	2.0		2.0		1
			4.5 to 5.5	$0.7 \times V_{CC}$		$0.7 \times V_{CC}$		-
VIL	Low-Level Input		1.65 to 1.95		$0.35 imes V_{CC}$		$0.35 imes V_{CC}$	V
	Voltage		2.3 to 2.7		0.7		0.7	-
			2.7 to 3.6		0.8		0.8	1
			4.5 to 5.5		$0.3 \times V_{CC}$		$0.3 imes V_{CC}$	
V _{OH}	High-Level Output Voltage	V _I = V _{IH} or V _{IL} I _{OH} = -100 μA	1.65 to 5.5	V _{CC} – 0.1		V _{CC} – 0.1		V
	1 3	$I_{OH} = -4 \text{ mA}$	1.65	1.2	_	1.2	_	
		$I_{OH} = -8 \text{ mA}$	2.3	1.8	_	1.8	_	
		I _{OH} = -12 mA	2.7	2.2	_	2.2	-	
		I _{OH} = -16 mA	3.0	2.4	-	2.4	-	
		I _{OH} = -24 mA	3.0	2.2	_	2.2	-	
		I _{OH} = -32 mA	4.5	3.8	-	3.8	-	
V _{OL}	Low-Level	$V_{I} = V_{IH} \text{ or } V_{IL}$						V
	Output Voltage	I _{OL} = 100 μA	1.65 to 5.5	-	0.1	-	0.1	
		I _{OL} = 4 mA	1.65	-	0.45	-	0.45	
		I _{OL} = 8 mA	2.3	_	0.6	-	0.6	
		I _{OL} = 12 mA	2.7	_	0.4	-	0.4	
		I _{OL} = 16 mA	3.0	_	0.4	-	0.4	
		I _{OL} = 24 mA	3.0	_	0.55	-	0.55	
		I _{OL} = 32 mA	4.5	_	0.6	-	0.6	
lı	Input Leakage Current	V _I = 0 to 5.5 V	1.65 to 5.5	-	±5.0	-	±5.0	μΑ
I _{OZ}	3-State Output Leakage Current	$V_{I} = V_{IH} \text{ or } V_{IL},$ $V_{O} = 0 \text{ V to } 5.5 \text{ V}$	1.65 to 5.5	-	±5.0	-	±5.0	μΑ
I _{OFF}	Power Off Leakage Current	V _I = 5.5 V or V _O = 5.5 V	0	-	10	_	10	μΑ
I _{CC}	Quiescent Supply Current	V _I = 5.5 V or GND	1.65 to 5.5	-	10	_	10	μA
ΔI_{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6 V$	2.3 to 3.6	-	500	_	500	μΑ

AC ELECTRICAL CHARACTERISTICS

			T _A = -40°C to +85°C		°C to +85°C	$T_A = -40^\circ$	C to +125°C	
Symbol	Parameter	Test Conditions	V _{CC} (V)	Min	Max	Min	Мах	Unit
t _{PLH} , t _{PHL}	Propagation	See Figures 5 and 6	1.65 to 1.95	_	10.3	-	10.3	ns
	Delay, D to O		2.3 to 2.7	_	8.4	-	8.4	
			2.7	_	8.0	-	8.0	
			3.0 to 3.6	_	7.0	-	7.0	
			4.5 to 5.5	_	5.0	-	5.0	
t _{PZH} , t _{PZL}	Output Enable	See Figures 5 and 6	1.65 to 1.95	-	13.0	-	13.0	ns
	Time, OE to O		2.3 to 2.7	-	10.5	-	10.5	
			2.7	-	9.5	-	9.5	
			3.0 to 3.6	-	8.5	-	8.5	
			4.5 to 5.5	-	7.0	-	7.0	
t _{PHZ} , t _{PLZ}	Output Disable	See Figures 5 and 6	1.65 to 1.95	-	11.0	-	11.0	ns
	Time, OE to O		2.3 to 2.7	-	9.0	-	9.0	
			2.7	-	8.5	-	8.5	
			3.0 to 3.6	-	7.5	-	7.5	
			4.5 to 5.5	-	6.0	-	6.0	
t _{OSHL} ,	Output to Output		1.65 to 1.95	_	-	-	-	ns
toslh	t _{OSLH} Skew (Note 5)		2.3 to 2.7	-	-	-	-	
			2.7	_	-	-	-	
			3.0 to 3.6	-	1.0	-	1.0	7
			5.0	-	-	-	-	

 5. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}); parameter guaranteed by design.

DYNAMIC SWITCHING CHARACTERISTICS

				T _A = 25°C	
Symbol	Parameter	V _{CC} (V)	Condition	Тур	Unit
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	3.3	C_L = 50 pF, V_{IH} = 3.3 V, V_{IL} = 0 V	0.8	V
		2.5	$C_L = 30 \text{ pF}, \text{ V}_{IH} = 2.5 \text{ V}, \text{ V}_{IL} = 0 \text{ V}$	0.6	
V _{OLV}	Quiet Output Dynamic Peak V _{OL}	3.3	C_L = 50 pF, V_{IH} = 3.3 V, V_{IL} = 0 V	-0.8	V
		2.5	C _L = 30 pF, V _{IH} = 2.5 V, V _{IL} = 0 V	-0.6	

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
C _{IN}	Input Capacitance	V_{CC} = Open, V_{I} = 0 V or V_{CC}	7.0	pF
C _{OUT}	Output Capacitance	V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	8.0	pF
C _{PD}	Power Dissipation Capacitance	V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC},f = 10 MHz	25.0	pF

 C_L includes probe and jig capacitance R_T is Z_{OUT} of pulse generator (typically 50 $\Omega)$ f = 1 MHz

Test	Switch Position
t _{PLH} / t _{PHL}	Open
t _{PLZ} / t _{PZL}	V _{LOAD}
t _{PHZ} / t _{PZH}	GND

Figure 5. Test Circuit

V _{CC} , V	R_L, Ω	C _L , pF	V _{LOAD}	V _{mi} , V	V _{mo} , V	V _Y , V
1.65 to 1.95	500	30	$2 \times V_{CC}$	V _{CC} /2	V _{CC} /2	0.15
2.3 to 2.7	500	30	$2 \times V_{CC}$	V _{CC} /2	V _{CC} /2	0.15
2.7	500	50	6 V	1.5	V _{CC} /2	0.3
3.0 to 3.6	500	50	6 V	1.5	V _{CC} /2	0.3
4.5 to 4.5	500	50	$2 \times V_{CC}$	V _{CC} /2	V _{CC} /2	0.3

Figure 6. Switching Waveforms

ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
74LCX245MTC	LCX 245	TSSOP-20	75 Units / Rail
74LCX245MTCX	LCX 245	TSSOP-20	2500 / Tape & Reel
74LCX245BQX	LCX245	WQFN20, 2.5x4.5	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>. *–Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP

Capable.

WQFN20 4.5x2.5, 0.5P CASE 510CD ISSUE O

DATE 31 AUG 2016

DOCUMENT NUMBER:	98AON13645G	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	WQFN20 4.5X2.5, 0.5P		PAGE 1 OF 1			

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

TSSOP20, 4.4x6.5 CASE 948AQ ISSUE A

DATE 19 MAR 2009

SYMBOL	MIN	NOM	MAX
STMBOL			
А			1.20
A1	0.05		0.15
A2	0.80		1.05
b	0.19		0.30
С	0.09		0.20
D	6.40	6.50	6.60
Е	6.30	6.40	6.50
E1	4.30	4.40	4.50
е		0.65 BSC	
L	0.45	0.60	0.75
L1		1.00 REF	
θ	0°		8°

Notes:

All dimensions are in millimeters. Angles in degrees.
Complies with JEDEC MO-153.

DOCUMENT NUMBER:	98AON34453E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSSOP20, 4.4X6.5		PAGE 1 OF 1	
onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.				

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>