Small Signal MOSFET

60 V, 380 mA, Single, N–Channel, SOT–23

2N7002K, 2V7002K

Features
- ESD Protected
- Low \(R_{DS(on)} \)
- Surface Mount Package
- 2V Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications
- Low Side Load Switch
- Level Shift Circuits
- DC–DC Converter
- Portable Applications i.e. DSC, PDA, Cell Phone, etc.

MAXIMUM RATINGS (\(T_J = 25^\circ C \) unless otherwise stated)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain–to–Source Voltage</td>
<td>(V_{DSS})</td>
<td>60</td>
<td>V</td>
</tr>
<tr>
<td>Gate–to–Source Voltage</td>
<td>(V_{GS})</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Drain Current (Note 1)</td>
<td>(I_D)</td>
<td>380</td>
<td>mA</td>
</tr>
<tr>
<td>Steady State 1 sq in Pad</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_A = 25^\circ C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_A = 85^\circ C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain Current (Note 2)</td>
<td>(I_D)</td>
<td>320</td>
<td>mA</td>
</tr>
<tr>
<td>Steady State Minimum Pad</td>
<td></td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>(T_A = 25^\circ C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_A = 85^\circ C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>(P_D)</td>
<td>420</td>
<td>mW</td>
</tr>
<tr>
<td>Steady State 1 sq in Pad</td>
<td></td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Steady State Minimum Pad</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulsed Drain Current ((t_p = 10 \mu s))</td>
<td>(I_{DM})</td>
<td>5.0</td>
<td>A</td>
</tr>
<tr>
<td>Operating Junction and Storage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Range</td>
<td>(T_{J}), (T_{STG})</td>
<td>−55 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Source Current (Body Diode)</td>
<td>(I_S)</td>
<td>300</td>
<td>mA</td>
</tr>
<tr>
<td>Lead Temperature for Soldering</td>
<td></td>
<td>260</td>
<td>°C</td>
</tr>
<tr>
<td>Purposes (1/8” from case for 10 s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate–Source ESD Rating</td>
<td>(ESD)</td>
<td>2000</td>
<td>V</td>
</tr>
<tr>
<td>(HBM, Method 3015)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface–mounted on FR4 board using 1 sq in pad size with 1 oz Cu.
2. Surface–mounted on FR4 board using 0.08 sq in pad size with 1 oz Cu.

MARKING DIAGRAM

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Device</th>
<th>Package</th>
<th>Shipping†</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N7002KT1G, 2V7002KT1G</td>
<td>SOT–23 (Pb–Free)</td>
<td>3000 / Tape & Reel</td>
</tr>
<tr>
<td>2N7002KT7G</td>
<td>SOT–23 (Pb–Free)</td>
<td>3500 / Tape & Reel</td>
</tr>
</tbody>
</table>

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junction-to-Ambient – Steady State (Note 3)</td>
<td></td>
<td>300</td>
<td>°C/W</td>
</tr>
<tr>
<td>Junction-to-Ambient – t ≤ 5 s (Note 3)</td>
<td></td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>Junction-to-Ambient – Steady State (Note 4)</td>
<td></td>
<td>417</td>
<td></td>
</tr>
<tr>
<td>Junction-to-Ambient – t ≤ 5 s (Note 4)</td>
<td></td>
<td>154</td>
<td></td>
</tr>
</tbody>
</table>

3. Surface–mounted on FR4 board using 1 sq in pad size with 1 oz Cu.
4. Surface–mounted on FR4 board using 0.08 sq in pad size with 1 oz Cu.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-to-Source Breakdown Voltage</td>
<td>V_{BR}DSS</td>
<td>V_GS = 0 V, I_D = 250 μA</td>
<td>60</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Drain-to-Source Breakdown Voltage Temperature Coefficient</td>
<td>V_{BR}DSS/T_J</td>
<td></td>
<td>71</td>
<td>mV/^°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current</td>
<td>I_DSS</td>
<td>V_GS = 0 V, T_J = 25°C</td>
<td>1</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_GS = 60 V, T_J = 125°C</td>
<td>10</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_GS = 0 V, T_J = 25°C</td>
<td>100</td>
<td>nA</td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_DS = 50 V</td>
<td></td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>Gate-to-Source Leakage Current</td>
<td>I_GSS</td>
<td>V_DS = 0 V, V_GS = ±20 V</td>
<td>±10</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_DS = 0 V, V_GS = ±10 V</td>
<td>450</td>
<td>nA</td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_DS = 0 V, V_GS = ±5.0 V</td>
<td>150</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
</tbody>
</table>

ON CHARACTERISTICS (Note 5)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate Threshold Voltage</td>
<td>V_GS(TH)</td>
<td>V_GS = V_DS, I_D = 250 μA</td>
<td>1.0</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Negative Threshold Temperature Coefficient</td>
<td>V_GS(TH)/T_J</td>
<td></td>
<td>4.0</td>
<td>mV/^°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain-to-Source On Resistance</td>
<td>R_DS(on)</td>
<td>V_GS = 10 V, I_D = 500 mA</td>
<td>1.19</td>
<td>1.6</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_GS = 4.5 V, I_D = 200 mA</td>
<td>1.33</td>
<td>2.5</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>Forward Transconductance</td>
<td>g_FS</td>
<td>V_DS = 5 V, I_D = 200 mA</td>
<td>530</td>
<td></td>
<td></td>
<td>mS</td>
</tr>
</tbody>
</table>

CHARGES AND CAPACITANCES

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>V_GS = 0 V, f = 1 MHz, V_DS = 20 V</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Capacitance</td>
<td>C_{ISS}</td>
<td>24.5</td>
<td></td>
<td>45</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Output Capacitance</td>
<td>C_{OSS}</td>
<td>4.2</td>
<td></td>
<td>8.0</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Reverse Transfer Capacitance</td>
<td>C_{RSS}</td>
<td>2.2</td>
<td></td>
<td>5.0</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Total Gate Charge</td>
<td>Q_{G(TOT)}</td>
<td>V_GS = 4.5 V, V_DS = 10 V, I_D = 200 mA</td>
<td>0.7</td>
<td></td>
<td></td>
<td>nC</td>
</tr>
<tr>
<td>Threshold Gate Charge</td>
<td>Q_{G(TH)}</td>
<td>V_GS = 0 V, I_D = 250 μA</td>
<td></td>
<td>0.1</td>
<td></td>
<td>nC</td>
</tr>
<tr>
<td>Gate-to-Source Charge</td>
<td>Q_{GS}</td>
<td>V_GS = 0 V, I_D = 200 mA</td>
<td></td>
<td>0.3</td>
<td></td>
<td>nC</td>
</tr>
<tr>
<td>Gate-to-Drain Charge</td>
<td>Q_{GD}</td>
<td>V_GS = 0 V, I_D = 200 mA</td>
<td></td>
<td>0.1</td>
<td></td>
<td>nC</td>
</tr>
</tbody>
</table>

SWITCHING CHARACTERISTICS, V_GS = V (Note 6)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>V_GS = 10 V, V_DD = 25 V, I_D = 500 mA, R_G = 25 Ω</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn-On Delay Time</td>
<td>t_{ON}</td>
<td>12.2</td>
<td></td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Rise Time</td>
<td>τ</td>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Turn-Off Delay Time</td>
<td>t_{OFF}</td>
<td>55.8</td>
<td></td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Fall Time</td>
<td>τ</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

DRAIN–SOURCE DIODE CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>V_GS = 0 V, I_S = 200 mA</th>
<th>T_J = 25°C</th>
<th>T_J = 85°C</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Diode Voltage</td>
<td>V_SD</td>
<td></td>
<td>0.8</td>
<td>1.2</td>
<td>V</td>
</tr>
</tbody>
</table>

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
5. Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%
6. Switching characteristics are independent of operating junction temperatures.
TYPICAL CHARACTERISTICS

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

Figure 3. On-Resistance vs. Drain Current and Temperature

Figure 4. On-Resistance vs. Drain Current and Temperature

Figure 5. On-Resistance vs. Gate-to-Source Voltage

Figure 6. On-Resistance Variation with Temperature

www.onsemi.com
TYPICAL CHARACTERISTICS

Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

Figure 9. Diode Forward Voltage vs. Current

Figure 10. Threshold Voltage with Temperature
2N7002K, 2V7002K

TYPICAL CHARACTERISTICS

Figure 11. Thermal Response – 1 sq in pad

Figure 12. Thermal Response – minimum pad
MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

SOT-23 (TO-236)
CASE 318
ISSUE AT

DATE 01 MAR 2023

NOTES:
2. CONTROLLING DIMENSION MILLIMETERS
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

<table>
<thead>
<tr>
<th>DIM</th>
<th>MILLIMETERS</th>
<th>INCHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.89</td>
<td>0.035</td>
</tr>
<tr>
<td>A1</td>
<td>0.01</td>
<td>0.000</td>
</tr>
<tr>
<td>b</td>
<td>0.37</td>
<td>0.015</td>
</tr>
<tr>
<td>c</td>
<td>0.08</td>
<td>0.003</td>
</tr>
<tr>
<td>D</td>
<td>2.90</td>
<td>0.110</td>
</tr>
<tr>
<td>E</td>
<td>1.20</td>
<td>0.047</td>
</tr>
<tr>
<td>e</td>
<td>1.78</td>
<td>0.070</td>
</tr>
<tr>
<td>L</td>
<td>0.30</td>
<td>0.012</td>
</tr>
<tr>
<td>L1</td>
<td>0.35</td>
<td>0.014</td>
</tr>
<tr>
<td>H1</td>
<td>2.10</td>
<td>0.083</td>
</tr>
<tr>
<td>T</td>
<td>0°</td>
<td>10°</td>
</tr>
</tbody>
</table>

XXXM = Specific Device Code
M = Date Code
* = Pb-Free Package

This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, “G” or microdot “”, may or may not be present. Some products may not follow the Generic Marking.

Generic Marking Diagram*

RECOMMENDED MOUNTING FOOTPRINT

For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLJ3BM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER: 98ASB42226B
DESCRIPTION: SOT-23 (TO-236)
MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

SOT–23 (TO–236)

CASE 318

ISSUE AT

DATE 01 MAR 2023

<table>
<thead>
<tr>
<th>STYLE 1 THRU 5:</th>
<th>STYLE 6:</th>
<th>STYLE 7:</th>
<th>STYLE 8:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANCELLED</td>
<td>PIN 1:</td>
<td>PIN 1:</td>
<td>PIN 1:</td>
</tr>
<tr>
<td></td>
<td>BASE</td>
<td>EMITTER</td>
<td>ANODE</td>
</tr>
<tr>
<td></td>
<td>2.</td>
<td>2.</td>
<td>2.</td>
</tr>
<tr>
<td></td>
<td>COLLECTOR</td>
<td>COLLECTOR</td>
<td>NO CONNECTION</td>
</tr>
<tr>
<td></td>
<td>3.</td>
<td>3.</td>
<td>3.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STYLE 9:</th>
<th>STYLE 10:</th>
<th>STYLE 11:</th>
<th>STYLE 12:</th>
<th>STYLE 13:</th>
<th>STYLE 14:</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIN 1:</td>
<td>PIN 1:</td>
<td>PIN 1:</td>
<td>PIN 1:</td>
<td>PIN 1:</td>
<td>PIN 1:</td>
</tr>
<tr>
<td>ANODE</td>
<td>DRAIN</td>
<td>ANODE</td>
<td>CATHODE</td>
<td>CATHODE</td>
<td>CATHODE</td>
</tr>
<tr>
<td>2.</td>
<td>2.</td>
<td>2.</td>
<td>2.</td>
<td>2.</td>
<td>2.</td>
</tr>
<tr>
<td>ANODE</td>
<td>SOURCE</td>
<td>CATHODE</td>
<td>CATHODE</td>
<td>ANODE</td>
<td>GATE</td>
</tr>
<tr>
<td>3.</td>
<td>3.</td>
<td>3.</td>
<td>3.</td>
<td>3.</td>
<td>3.</td>
</tr>
<tr>
<td>CATHODE</td>
<td>GATE</td>
<td>CATHODE–ANODE</td>
<td>ANODE</td>
<td>GATE</td>
<td>ANODE</td>
</tr>
<tr>
<td>3.</td>
<td>3.</td>
<td>3.</td>
<td>3.</td>
<td>3.</td>
<td>3.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STYLE 15:</th>
<th>STYLE 16:</th>
<th>STYLE 17:</th>
<th>STYLE 18:</th>
<th>STYLE 19:</th>
<th>STYLE 20:</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIN 1:</td>
<td>PIN 1:</td>
<td>PIN 1:</td>
<td>PIN 1:</td>
<td>PIN 1:</td>
<td>PIN 1:</td>
</tr>
<tr>
<td>GATE</td>
<td>ANODE</td>
<td>NO CONNECTION</td>
<td>NO CONNECTION</td>
<td>CATHODE</td>
<td>CATHODE</td>
</tr>
<tr>
<td>2.</td>
<td>2.</td>
<td>2.</td>
<td>2.</td>
<td>2.</td>
<td>2.</td>
</tr>
<tr>
<td>CATHODE</td>
<td>CATHODE</td>
<td>CATHODE</td>
<td>ANODE</td>
<td>ANODE</td>
<td>ANODE</td>
</tr>
<tr>
<td>3.</td>
<td>3.</td>
<td>3.</td>
<td>3.</td>
<td>3.</td>
<td>3.</td>
</tr>
<tr>
<td>ANODE</td>
<td>CATHODE–ANODE</td>
<td>CATHODE</td>
<td>ANODE</td>
<td>GATE</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>3.</td>
<td>3.</td>
<td>3.</td>
<td>3.</td>
<td>3.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PIN 1:</td>
<td>PIN 1:</td>
<td>PIN 1:</td>
<td>PIN 1:</td>
<td>PIN 1:</td>
<td>PIN 1:</td>
</tr>
<tr>
<td>GATE</td>
<td>RETURN</td>
<td>ANODE</td>
<td>GATE</td>
<td>ANODE</td>
<td>CATHODE</td>
</tr>
<tr>
<td>2.</td>
<td>2.</td>
<td>2.</td>
<td>2.</td>
<td>2.</td>
<td>2.</td>
</tr>
<tr>
<td>SOURCE</td>
<td>OUTPUT</td>
<td>ANODE</td>
<td>DRAIN</td>
<td>CATHODE</td>
<td>CATHODE</td>
</tr>
<tr>
<td>3.</td>
<td>3.</td>
<td>3.</td>
<td>3.</td>
<td>3.</td>
<td>3.</td>
</tr>
<tr>
<td>DRAIN</td>
<td>INPUT</td>
<td>CATHODE</td>
<td>SOURCE</td>
<td>GATE</td>
<td>NO CONNECTION</td>
</tr>
<tr>
<td>3.</td>
<td>3.</td>
<td>3.</td>
<td>3.</td>
<td>3.</td>
<td>3.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STYLE 27:</th>
<th>STYLE 28:</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIN 1:</td>
<td>PIN 1:</td>
</tr>
<tr>
<td>CATHODE</td>
<td>ANODE</td>
</tr>
<tr>
<td>2.</td>
<td>2.</td>
</tr>
<tr>
<td>CATHODE</td>
<td>ANODE</td>
</tr>
<tr>
<td>3.</td>
<td>3.</td>
</tr>
</tbody>
</table>

DOCUMENT NUMBER: 98ASB42226B

DESCRIPTION: SOT–23 (TO–236)

Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.

© Semiconductor Components Industries, LLC, 2019

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

www.onsemi.com