

ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at
www.onsemi.com

onsemi and onsemi® and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

2N2222A

Small Signal Switching Transistor

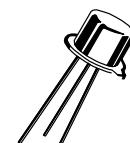
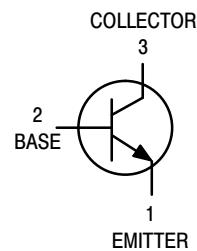
NPN Silicon

ON Semiconductor®

<http://onsemi.com>

Features

- MIL-PRF-19500/255 Qualified
- Available as JAN, JANTX, and JANTXV



MAXIMUM RATINGS ($T_A = 25^\circ\text{C}$ unless otherwise noted)

Characteristic	Symbol	Value	Unit
Collector-Emitter Voltage	V_{CEO}	50	Vdc
Collector-Base Voltage	V_{CBO}	75	Vdc
Emitter-Base Voltage	V_{EBO}	6.0	Vdc
Collector Current – Continuous	I_C	800	mAdc
Total Device Dissipation @ $T_A = 25^\circ\text{C}$	P_T	500	mW
Total Device Dissipation @ $T_C = 25^\circ\text{C}$	P_T	1.0	W
Operating and Storage Junction Temperature Range	T_J, T_{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	325	°C/W
Thermal Resistance, Junction to Case	$R_{\theta JC}$	150	°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

TO-18
CASE 206AA
STYLE 1

ORDERING INFORMATION

Device	Package	Shipping
JAN2N2222A		
JANTX2N2222A	TO-18	Bulk
JANTXV2N2222A		

2N222A

ELECTRICAL CHARACTERISTICS ($T_A = 25^\circ\text{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage ($I_C = 10 \text{ mA}_\text{dc}$)	$V_{(\text{BR})\text{CEO}}$	50	—	Vdc
Collector-Base Cutoff Current ($V_{CB} = 75 \text{ Vdc}$) ($V_{CB} = 60 \text{ Vdc}$)	I_{CBO}	— —	10 10	μA_dc nA_dc
Emitter-Base Cutoff Current ($V_{EB} = 6.0 \text{ Vdc}$) ($V_{EB} = 4.0 \text{ Vdc}$)	I_{EBO}	— —	10 10	μA_dc nA_dc
Collector-Emitter Cutoff Current ($V_{CE} = 50 \text{ Vdc}$)	I_{CES}	—	50	nA_dc
ON CHARACTERISTICS (Note 1)				
DC Current Gain ($I_C = 0.1 \text{ mA}_\text{dc}, V_{CE} = 10 \text{ Vdc}$) ($I_C = 1.0 \text{ mA}_\text{dc}, V_{CE} = 10 \text{ Vdc}$) ($I_C = 10 \text{ mA}_\text{dc}, V_{CE} = 10 \text{ Vdc}$) ($I_C = 150 \text{ mA}_\text{dc}, V_{CE} = 10 \text{ Vdc}$) ($I_C = 500 \text{ mA}_\text{dc}, V_{CE} = 10 \text{ Vdc}$)	h_{FE}	50 75 100 100 30	— 325 — 300 —	—
Collector-Emitter Saturation Voltage ($I_C = 150 \text{ mA}_\text{dc}, I_B = 15 \text{ mA}_\text{dc}$) ($I_C = 500 \text{ mA}_\text{dc}, I_B = 50 \text{ mA}_\text{dc}$)	$V_{CE(\text{sat})}$	— —	0.3 1.0	Vdc
Base-Emitter Saturation Voltage ($I_C = 150 \text{ mA}_\text{dc}, I_B = 15 \text{ mA}_\text{dc}$) ($I_C = 500 \text{ mA}_\text{dc}, I_B = 50 \text{ mA}_\text{dc}$)	$V_{BE(\text{sat})}$	0.6 —	1.2 2.0	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Magnitude of Small-Signal Current Gain ($I_C = 20 \text{ mA}_\text{dc}, V_{CE} = 20 \text{ Vdc}, f = 100 \text{ MHz}$)	$ \text{h}_{\text{fe}} $	2.5	—	—
Small-Signal Current Gain ($I_C = 1.0 \text{ mA}_\text{dc}, V_{CE} = 10 \text{ Vdc}, f = 1 \text{ kHz}$)	h_{fe}	50	—	—
Input Capacitance ($V_{EB} = 0.5 \text{ Vdc}, I_C = 0, 100 \text{ kHz} \leq f \leq 1.0 \text{ MHz}$)	C_{ibo}	—	25	pF
Output Capacitance ($V_{CB} = 10 \text{ Vdc}, I_E = 0, 100 \text{ kHz} \leq f \leq 1.0 \text{ MHz}$)	C_{obo}	—	8.0	pF
SWITCHING (SATURATED) CHARACTERISTICS				
Turn-On Time (Reference Figure in MIL-PRF-19500/255)	t_{on}	—	35	ns
Turn-Off Time (Reference Figure in MIL-PRF-19500/255)	t_{off}	—	300	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. Pulse Test: Pulse Width = 300 μs , Duty Cycle $\leq 2.0\%$.

2N2222A

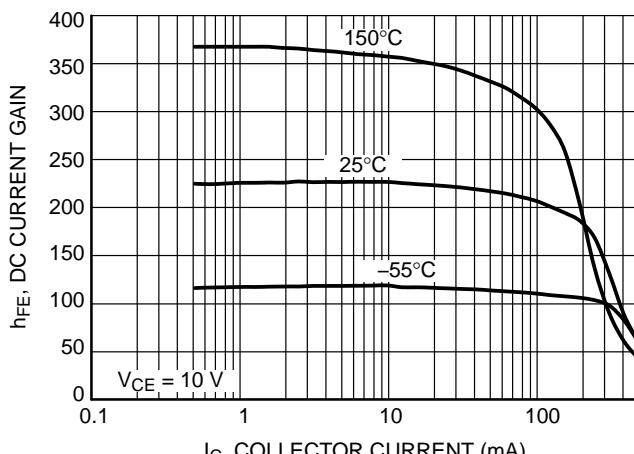


Figure 1. DC Current Gain

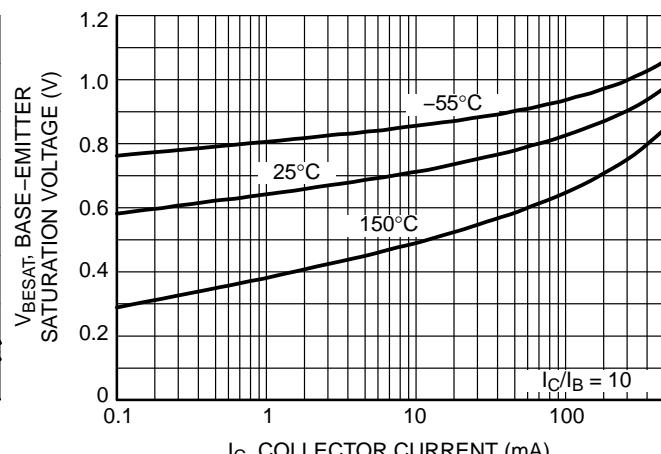


Figure 2. Base-Emitter Saturation Voltage

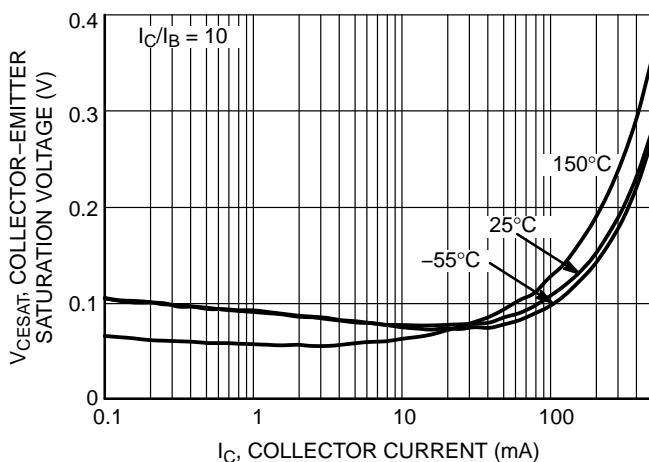


Figure 3. Collector-Emitter Saturation Voltage

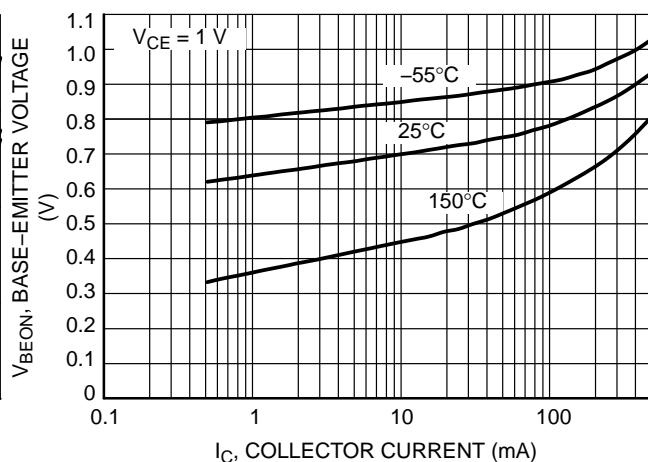


Figure 4. Base-Emitter Voltage

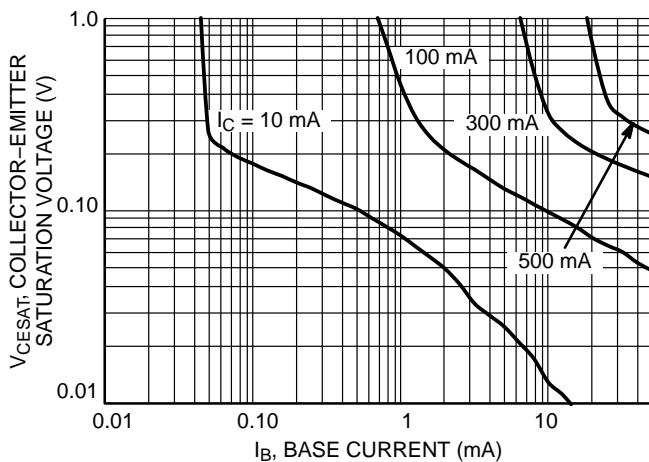


Figure 5. Collector Saturation Region

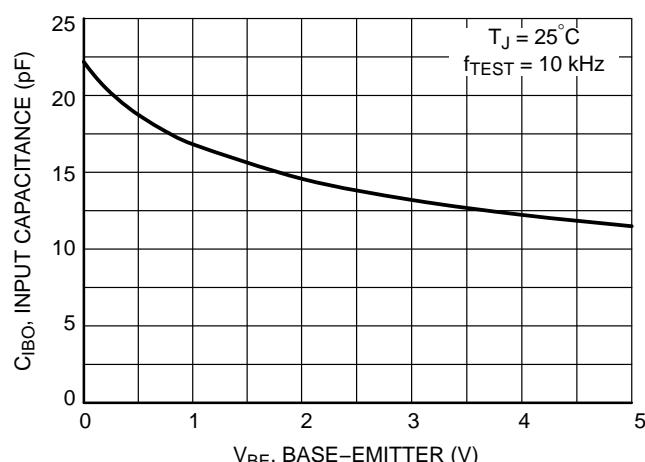


Figure 6. Input Capacitance

2N2222A

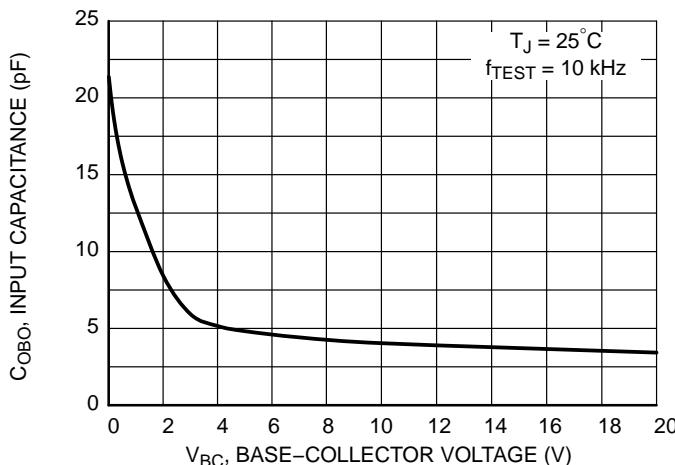


Figure 7. Output Capacitance

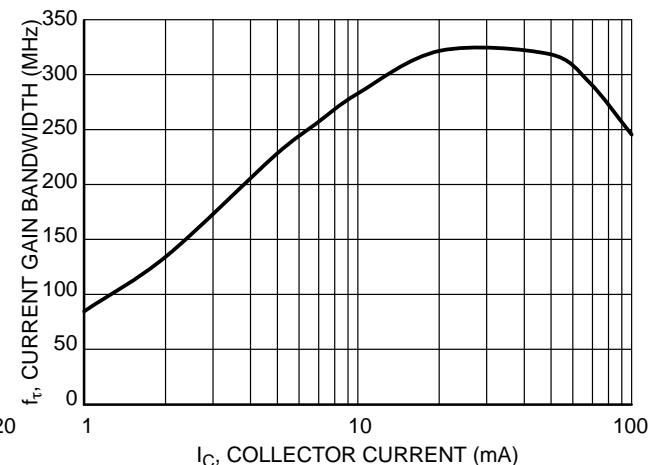


Figure 8. Current Gain Bandwidth Product

PACKAGE DIMENSIONS

TO-18 3
CASE 206AA
ISSUE A

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: INCHES.
3. DIMENSION J MEASURED FROM DIAMETER A TO EDGE.
4. LEAD TRUE POSITION TO BE DETERMINED AT THE GAUGE PLANE DEFINED BY DIMENSION R.
5. DIMENSION F APPLIES BETWEEN DIMENSION P AND L.
6. DIMENSION D APPLIES BETWEEN DIMENSION L AND K.
7. BODY CONTOUR OPTIONAL WITHIN ZONE DEFINED BY DIMENSIONS A, B, AND T.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	5.31	5.84	0.209	0.230
B	4.52	4.95	0.178	0.195
C	4.32	5.33	0.170	0.210
D	0.41	0.53	0.016	0.021
E	---	0.76	---	0.030
F	0.41	0.48	0.016	0.019
H	0.91	1.17	0.036	0.046
J	0.71	1.22	0.028	0.048
K	12.70	19.05	0.500	0.750
L	6.35	---	0.250	---
M	45° BSC	45° BSC	---	---
N	2.54	BSC	0.100	BSC
P	---	1.27	---	0.050
R	1.37	BSC	0.054	BSC
T	---	0.76	---	0.030
U	2.54	---	0.100	---

STYLE 1:
PIN 1. Emitter
2. Base
3. Collector

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free
USA/Canada

Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: <http://www.onsemi.com/orderlit>

For additional information, please contact your local
Sales Representative