ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

AN-6609 Selecting the Best JFET for Your Application

Introduction

This application note contains design curves for all of Fairchild Semiconductor discrete JFET processes. JFET process characteristics provide complete information on all processes, including all parts manufactured from a particular process. This can greatly aid device selection or substitution. In all cases, temperature and $V_{GS}(off)$ distribution data is provided to facilitate worst-case design. In addition, a complete list of all device types supplied from this process is included to aid in cross reference searches and the selection of preferred device types. Preferred parts are shown with gray overprinting. The curves in this section should be considered typical of the process supplied by Fairchild Semiconductor. Every effort is made to keep the process in tolerance with the published graphs, but the exact distribution of any specific lot of material is not guaranteed.

How to use the Application Note

The following suggested procedure will help you find the device you need.

Part Number Known: Go to the Fairchild web site and type in the part number. If alternate type is required, refer to the online cross reference guide.

Specification Known: Refer to Figure 2, "JFET Process Family Tree" on page 4 of this application note to find the most compatible process. Then turn to Figure 3, "JFET Process Comparison Curves", on page 6 to compare the specifications of each process type. Finally, turn to page 16 for a detailed listing of process characteristics and specific

device type numbers available in that process. Take special note of preferred part types. Full data sheets are available on line.

Application Known: Turn to "Choose the Proper FET" and Figure 2, "JFET Process Tree" on page 4. Also Table 2, "Advantages of Using JFET by Application on page 3. Finally, refer to 0, "Applications and Their Parameters in Approximate Order of Importance" on page 2 as needed.

None of the Above: Contact local representative or regional office for assistance.

JFET Application Guide

Fairchild Semiconductor manufactures a broad line of silicon junction field effect transistors (JFETs). Fairchild's JFETs provide excellent performance in many application areas such as RF amplifiers, analog switching low input current amplifiers, ultra low noise amplifiers and outstanding matched duals for operational amplifiers input applications.

Table 1 is a guide to enable the user to determine what parameters are important in each application. This followed by a listing of JFET Parameter Relationships in Figure 1. Table 2 lists many application advantages of JFETs by application.

Table of Contents

LOW FREQUENCY AMPLIFIER	SOURCE FOLLOWER	ELECTROMETER AMPLIFIERS	LOW DRIFT AMPLIFIER	LOW NOISE AMPLIFIER	HIGH FREQUENCY AMPLIFIER	OSCILLATOR	DIFFERENTIAL AMPLIFIER	ANALOG AND DIGITAL SWITCHING
Y _{fs} IDSS	Y _{fs} IG	IG Y _{fs}	IDZ Y _{fs} @IDZ	^e n IG, in	Re(Y _{fs}) Re(Y _{is})	Y _{fs} IDSS	$\frac{ V_{GS1} - V_{GS2} }{\frac{\Delta V_{GS1} - V_{GS2} }{\Delta T}}$	rDS(ON) ID(OFF)
VGS(OFF) C _{iss} C _{rss} ^e n BV _{GSS}	Crss Ciss IDSS VGS(OFF) BVGSS	IDZ ^e n ^g os	VGS ^{@ I} DZ IG BVGSS	Y _{fs} IDSS VGS(OFF)	NF C _{rss} Re(Y _{OS}) IDSS VGS(OFF)	Crss Ciss VGS(OFF) BVGSS	IIG1-IG2 IG. Yfs Yfs1/Yfs2 IYos1-Yos2 CMRR VGS(OFF)	Ciss Crss VGS(OFF) BVGSS

$I_{D} = I_{DSS} \left(1 - \frac{V_{GS}}{V_{GS(OFF)}} \right)^{2}$	Variation of drain cur- rent with gate bias. Square low transfer characteristic.	$g_{fs} = g_{fso} \sqrt{I_D/I_DSS}$	Variation in transcon- ductance with drain current.
$V_{GS(OFF)} = \frac{2 I_{DSS}}{g_{fso}}$	Gate-source cutoff vol- tage in terms of IDSS and g _{fso} .	$r_{DS} \approx \frac{1}{g_{fs}}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
$V_{GS}=V_{GS}(OFF)\left(1-\left(\frac{I_D}{I_{DSS}}\right)^{1/2}\right)$	Gate-source voltage in terms of operating cur- rent I _D , I _{DSS} , and VGS(OFF)-	$r_{DS} \approx \frac{r_{DS}(0)}{1 - \frac{V_{GS}}{V_{GS}(OFF)}}$	Variation of drain resis- tance with gate bias in terms zero bias resis- tance (rDSO) and VGS(OFF).
$g_{fso} = K \frac{I_{DSS}}{V_{GS(OFF)}}$	Transconductance at zero gate voltage in terms of I_{DSS} and $V_{GS(off)}$. K = 1.1 to 2.5. Typically 2 for N-channel JFETs.	$r_{DS} \approx \frac{K V_{GS(OFF)}^2}{I_{DSS}(V_{GS(OFF)} - V_{GS})}$ $K = 0.5 - 0.9$	Variation of drain re- sistance in terms of VGS, and VGS(OFF) IDSS-
$g_{fs} = g_{fso} \left(1 - \frac{V_{GS}}{V_{GS}(OFF)}\right)$	Variation in transcon- ductance with gate bias.	rDST ≈ rDS @ 25°C (1 + 0.007 (ΔT))	Variation of ON resis- tance as a function of temperature.

Table 2. Advantages of JFET by Application

APPLICATION	ADVANTAGES	FINAL ASSEMBLY WHERE USED
DC Amplifiers	High Z _{in} Low drift duals Low noise	Transducers, military guidance systems, control systems, temp indicators, multimeters
Low frequency amplifiers	Small coupling capacitors Low noise, distortion High input impedance	Sound detection, microphones, inductive transducers, hearing aids, high impedance transducers
Operational amplifiers	Summing point essentially zero. Low device noise. Less loading of transducers	Control systems, potted op amps, test equipment, medical electronics
Medium and high frequency amplifiers	Low cross modulation Low device noise Simplified circuitry	FM tuners, communication received scope inputs, most instrumentation equipment, high impedance inputs
Mixers – 100 MHz and up	Low mixing noise Low cross modulation	FM tuners, communication receivers
Oscillators	Low drift	Transmitters, receivers, organ
Logic gates	Virtually infinite fan in Simplified circuitry Zero storage time Symmetrical	Guidance controls, computer market mini military teaching aids, traffic control, telemetry
Choppers	Zero offset Low leakage currents Simplified circuitry Eliminates input transformers	Op amp modules guidance controls instrumentation equipment
AD Converters Multiplex switching (arrays) and sample hold	Improved isolation of input and output. Zero offset. Symmetrical. Low resistance Simplified circuitry	Control system, DVM's and any read- out equipment, medical electronics
Relay contact replacement	Solid state reliability Zero offset, High isolation Symmetrical No inductive spring No contact bounce High repetition rate	Test equipment, airborne equipment instrumentation market
Voltage variable resistor	Symmetrical Solid state reliability Functions as variable resistor. Low noise. High isolation Improved resolution	Organ, tone controls, control ckts to input operational amplifiers
Current limiters Sources	Two lead simplicity Wide selection range Low voltage operation	Hybrid circuits, amplifiers, power supply protection, timing ckts, voltage regulators

Choose the Proper JFET

Fairchild Semiconductor utilizes 17 different JFET geometries to cover, without compromise, the full spectrum of applications. Specific part number characteristics are summarized into application areas further on within this app note. In addition, this app note includes process comparison charts which graphically indicate the typical values of a given parameter for all geometries under identical test conditions. Detailed data on each process, along with a list of all part numbers manufactured from each process, is also supplied.

Figure 2, gives a look at the characteristics for each process type to help the designer select the process that best meets his requirements. Table 3 shows which application the process was designed to best serve. After narrowing down the process types, it is suggested that the process sheets and specific part number characteristics be consulted.

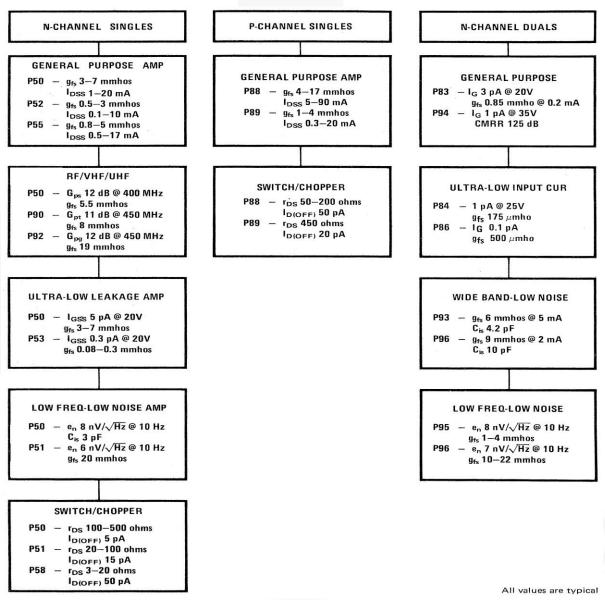
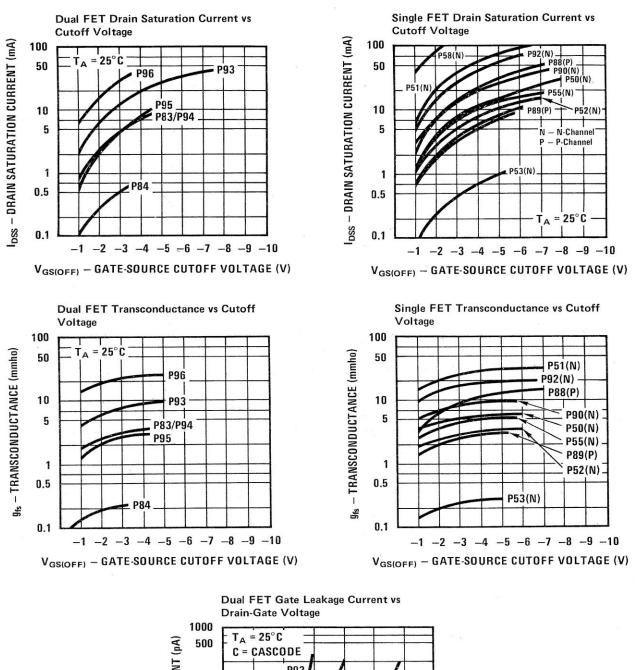



Figure 2. The JFET Process Family Tree

Table 3. Part Number and Process Application Recommendations

POPULAR PRODUCT TYPES	2N4416, 2N5485, 6 PN4416, PN4302-4	2N4856-61, 2N4391-3 PN4856-61, PN4391-3	2N4338-41, 2N3684-7	2N4117-9, 2N3452-4 2N4117A-19A	2N3821-2, 2N4221-2 2N5457-9	2N5432-4	2N5196—9, 2N5545—7 2N3954—8	2N5902-9	U421U426	2N5018–21, P1086–7E 2N5114–6	2N2608-9, 2N5460-62	2N5397, J300	U308-10, J308-10	2N5911-12	NDF940110	2N5515-24, 2N6483-5	2N5564-6	2N5561-63
PROCESS DESIGNATION	50	51	52	53	55	58	83	84	86	88	89	90.	92	93	94	95	96	98
Low Current Amplifier			S	Р	S		Р	Ρ	Р		Р				Р	Р		Р
Low Freq Ampli \leq 100 Hz			S		S		Р			S	S			5.4	P	Р		Р
High Freq Ampli > 100 MHz	Ρ											Р	Р	Р			Ρ	
General Purpose Amplifier	Р		Р		Р						Р							
Low Naise Amp (10 Hz en)	S	S			S	S	Р		e						Р	Р	Р	Р
Low Noise Amp > 50 MHz	Р				S							Р	Р	Р			Р	
High Frequency Mixer	Р											Р	Ρ					
Dual Diff Pair							Р	Р	Р					Р	Р	S	Р	Р
AGC Amplifier	Р				Р									1				
Electrometer Preamp				Р				Р	Р						Р			S
Microvolt Amplifier				P				Р	Р						Р			Р
Low Leakage Diode				Р					×									
Diff/Angle Ended Inp. Stag.							Р	Р	Р					Р	Р		Р	Р
Active Filter	Р		S	10 10	Р						S .							-
Oscillator	Р		S		Р						S	Р	Р					
Voltage Variable Resistor	Р	P	S		P					P	Р							Р
Hybrid Chips	Р	Р		Р	Р		Р	Р	Р	Р	Р				Р			
Analog/Digital Switch		P				Р				Р							S	S
Multiplexing	Р	Р			S	S				Р								
Choppers		Р				Р				P							Р	
Nixie Drivers																		
Reed Relay Replacement						Р												
Sub pA Dual Diff Pair								Р	Р									
Sample-Hold	Р	Р			S				S	Р								P
Buffer Interface to CMOS										Р	Р							
Matched Switch							S							S	S		Р	Р
${\sf HF} \ge 400 \; {\sf MHz} \; {\sf Prime}$												Р	Р					
Current Limiter		Р								Р								
Current Source	1	L	Р	S	P	L	<u> </u>		l	L	S	L	L	L	L		L	

P - Prime Choice S - Secondary (Alternate) Choice

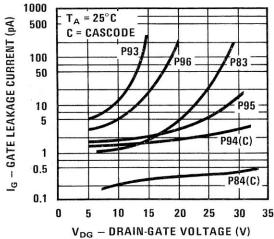
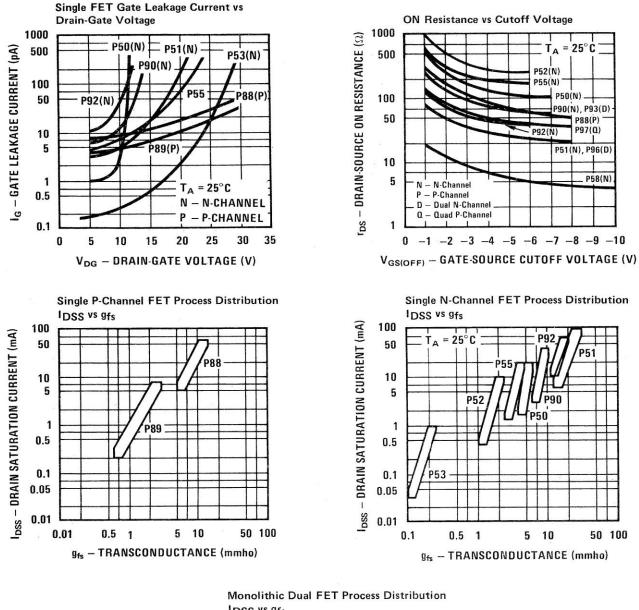
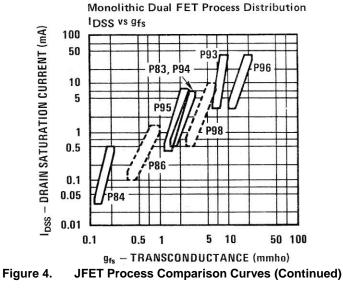




Figure 3. JFET Process Comparison Curves

© 1977 Fairchild Semiconductor Corporation Rev. 1.0 • 7/20/15

JFET Characteristic Selection Guide

Table 4. N-Channel Selection Guide: Switches and Choppers

Туре No.		W _{GSS} V _{GDO} @ I _G (μΑ)	*1D	SS GO PUDG (V)	(nA) Max	ID(off) ® VDS (V)	V _{GS} (V)	(V Min	∨ ′) Max [@]	Vns	ID (nA)	(m Min	IDSS A) Max	VDS (V)	rds((Ω) Max	on) JD (mA)	(pF) Max [@]	C _{iss} VDS (V)	V _{GS} (V)	(pF) _@ Max	C _{rss} V _{DS} (V)	V _{GS} (V)	^t on (ns) Max	^t off (ns) Max	Process No.
2N3824	50	1	0.1	30	0.1	15	-8		8	15	1				250		6	15	0	3	0	-8			55
2N3966	30	1	1	20	0.1	10	-7	4	6	10	10	2		20	220		6	20	0	1.5	0	-7			50
2N3970	40	1	0.25*	20	0.25	20	-12	4	10	20	1	50	150	20	30	1	25	20	0	6	0	-12	20	30	51
2N3971	40	, t :	0.25*	20	0.25	20	12	2	5	20	1	25	75	20	60	1	25	20	0	6	0	-12	30	60	51
2N3972	40	-1	0.25*	20	0.25	20	-12	0.5	3	20	1	5	30	20	100	1	25	20	0	6	0	-12	80	100	51
+2N4091	40	1	0,2*	20	0.2	20	-12	5	10	20	1	30	$\{r \in$	20	30	1	16	20	0	5	0	20	25	40	51
•2N4092	40	1	0.2*	20	0.2	20	-8	2	7	20	1	15		20	50	.1	16	20	0	5	0	20	35	60	51
•2N4093	40	1	0.2*	20	0.2	20	-6	1	5	20	1	8		20	80	1	16	20	0	5	0	-20	60	80	51
2N4391	40	1	0.1	20	0.1	20	-12	4	10	20	1	50	150	20	30	1	14	20	0	3.5	0	-12	20	35	51
2N4392	40	1	0.1	20	0.1	20	-7	2	5	20	1	25	75	20	60	1	14	20	0	3.5	0	-7	20	55	51
2N4393	40	1	0.1	20	0.1	20	-5	0.5	3	20	1	5	30	20	100	1	14	20	0	3.5	0	-5	20	80	51
•2N4856	40	1	0.25	20	0.25	15	-10	4	10	15	.5	50		15	25		18	0	-10	8	0	-10	9	25	51
2N4856A	40	1	0.25	20	0.25	15	-10	4	10	15	.5	50		15	25		10	0	-10	4	0	-10	8	20	51
•2N4857	40	1	0.25	20	0.25	15	-10	2	6	15	.5	20	100	15	40		18	0	-10	8	0	10	10	50	51
2N4857A	40	1	0.25	20	0.25	15	-10	2	6	15	.5	20	100	15	40		10	0	-10	3.5	0	-10	10	40	51
•2N4858	40	1	0.25	20	0.25	15	-10	0.8	4	15	.5	8 .	80	15	60		18	0	-10	8	0	-10	20	100	51
2N4858A	40	1	0.25	20	0.25	15	-10	0.8	4	15	.5	8	80	15	60		10	0	-10	3.5	0	-10	16	80	51
•2N4859	30	1	0.25	15	0.25	15	-10	4	10	15	.5	50		15	25		18	0	-10	8	0	-10	9	25	51
2N4859A	30	1	0.25	15	0.25	15	-10	4	10	15	.5	50		15	25		10	0	-10	4	0	-10	8	20	51
•2N4860	30	1	0.25	15	0.25	15	-10	2	6	15	.5	20	100	15	40		18	0	-10	8	0	-10	10	50	51
2N4860A	30	1	0.25	15	0.25	15	-10	2	6	15	.5	20	100	15	40		10	0	-10	3.5	0	-10	10	40	51
•2N4861	30	1	0.25	15	0.25	15	-10	0.8	4	15	.5	8	80	15	60		18	0	-10	8	0	-10	20	100	51
2N4861A	30	1	0.25	15	0.25	15	-10	0.8	4	15	.5	8	80	15	60		10	0	-10	3.5	0	-10	16	80	51
2N5432	25	1	0.2	15	0.2	5	-10	4	10	5	3	150		15	5	10	30	0	-10	15	0	10	5	36	58
2N5433	25	1	0.2	15	0.2	5	-10	3	9	5	3	100		15	7	10	30	0	-10	15	0	-10	5	36	58
2N5434	25	1	0.2	15	0.2	5	-10	1	4	5	3	30		15	10	10	30	0	-10	15	0	-10	5	36	58
2N5555	25	10	1	15	10	12	-10	and the second second second	(10)	Contract of the	and a second	15		15 .	150	and the second	5	15	0	1.2	0	-10	10	25	50

Note. JAN qualified per app	licable MIL-S-19500 specification.
-----------------------------	------------------------------------

Type No.	BVG BVG (V) @ Min	DO	*1	GSS DGO @ V _{DG} (V)		ID(off) @ ^V DG (V)	V _{GS} (V)	(\ Min	1	Vp ⊚ ^V DS ∽ (V)	I _D (nA)	(n Min	IDSS nA) Max [@]	V _{DS} (V)	^r ds((Ω) @ Max		(pF) Max	C _{iss} V _{DS} (V)	V _{GS} (V)	(pF) @ Max	C _{rss} V _{DS} (V)	V _{GS} (V)	t _{on} (ns) Max	^t off (ns) Max	Process No.
2N5638	30	10	T	15	1	15	12		(12)			50		20	30	1	10	0	-12	4	0	-12			51
2N5639	30	10	1	15	1	.15	-8		(8)			25		20	60	1	10	0	-12	4	0	-8			51
2N5640	30	10	1	15	1	15	6		(6)			5		20	100	1	10	0	-12	4	0	-6	(eline)	Sec.	51
2N5653	30	10	1	15	: 1	15	-12		(12)			40		20	50	1	10	0	-12	3.5	0	-12	9	15	51
2N5654	25	10	1	15	10	15	-8		(8)			15		20	100	1	10	0	-12	3.5	0	-8	14	30	51
J108	25	1	3	15	3	5	-10	3	10	5	1000	80		15	8	10	t30	0	-10	t15	0	-10	t5	:t36	58
J109	25	1	3	15	3	5	-10	2	6	5	1000	40		15	- 12	10	t30	0	-10	t15	0	-10	t5	t36	58
J110	25	1	3	15	3	5	-10	.5	4	5	1000	10		15	18	10	130	0	-10	t15	0	10	t5	t36	58
J111	35	1	1	15	1	5	-10	3	10	5	1000	20		15	30	1	t10	0	-10	t5	0	-10	t13	t35	51
J112	35	1	1	15	1	5	-10	1	5	5	1000	5	6. a. ()	15	50	1	t10	0	-10	t5	0	-10	113	t35	51
J113	35	1	1	15	1	5	10	.5	3	Б	1000	2		15	100	1	t10	0	-10	t5	0	-10	t13	t35	51
J114	25	1	1	15	1	5	10	3	10	5	1000	15		15	150	1	t4	0	-10	t2	0	-10	t6	t20	90
PN4091	40	1	1*	20	1	20	-12	5	10	20	1	30		20	30	. ÷	16	20	0	5	20	0	25	40	51
PN4092	40	1	1*	20	1	20	-8	2	7	20	1	15		20	50		16	20	0	5	20	0	35	60	51
PN4093	40	1	1*	20	1.1	20	⊷6	1	5	20	1	8		20	80		16	20	0	5	20	0	60	80	51
PN4391	40	1	1	20	1	20	-12	4	10	20	1	50	150	20	30		14	20	0	3.5	0	-12	20	35	51
PN4392	40	1	1	20	1	20	-7	2	6	20	1	25	76	20	60		14	20	0	3.5	0	-7	40	80	51
PN4393	40	1	1	20	1	20	-5	0,5	3	20	1	6	30	20	100		14	20	0	3.5	0	-5	55	130	51
PN4856	40	1	1	20	1	15	-10	4	10	15	.5	50		15	25		18	0	-10	8	0	-10	9	25	51
PN4857	40	1	1	20	1	15	-10	2	6	15	.5	20	100	15	40		18	0	-10	8	0	-10	10	50	51
PN4858	40	1	1	20	1	15	-10	8,0	4	15	.6	8	80	16	60		18	0	-10	8	0	-10	20	100	51
PN4859	30	1	1	15	1	15	-10	4	10	15	.5	50	241 WILLIAM (1997)	15	25	-	18	0	-10	8	0	-10	9	25	51
PN4860	30	1	1	15	1	15	-10	2	6	15	.5	20	100	15	40		18	0	-10	8	0	-10	10	50	,51
PN4861	30	1	1.	15	1	15	-10	0.8	4	15	.5	8	80	15	60		18	0	-10	8	0	-10	20	100	51
TIS73	30	1	2	15	2	15	-10	4	10	15	4	50		15	25		18	0	~10	8	0	-10	9	25	51
TIS74	30	1	2	15	2	15	-10	2	6	15	4	20	100	15	40		18	0	-10	8	0	-10	10	50	51
TIS75	30	1	2	15	2	15	-10	0.8	4	15	4	8	80	15	60		18	0	-10	8	0	-10	20	100	51
U1897E	40	1	0.2*	20				5	10	20	1	30		20	30	1	16	20	0	5	0	-20	25	40	51
U1898E	- 40	1	0.2*	20	1			2	7	20	1	15		20	50	1	16	20	0	5	0	-20	35	60	51
U1899E	40	1	0.2*	20	*:			1	5	20	1	8		20	80	1	16	20	0	5	0	-20	60	80	51

AN-6609

Table 5. N-Channel Selection Guide: RF, VHF, UHF Amplifier	Table 5.	N-Channel Selection	Guide: RF, V	/HF, UHF	Amplifiers
--	----------	----------------------------	--------------	----------	------------

Type No.		VGSS /GDO @ IG (µA)	1	GSS DGO @ VDG (V)	Min		Vp @ VDS (V)	I _D (nA)	(n Min	I _{DSS} nA) Max	@ V _{DS} (V)	R _e l (mmho) Min		R _e (µmho) Max	(Y _{os}) @ f (MHz)	(pF) (Max	C _{iss} ©VDS (V)	V _{GS} (V)	(pF)@ Max	C _{rss} V _{DS} (V)	V _{GS} (V)	i mana wa 201	IF R _G = 1k Freq (MHz)	Proces No.
2N3819	25	1	2	15		8	15	2	2	20	15	1.6	100			8	15	0	4	15	0			50
2N3823	30	- 1.	0.5	20		8	15	.5	4	20	15	3.2	200	200	200	6	15	0	2	15	0	2.5	100	50
2N4223	30	10	0.25	20	0.1	8	15	.25	3	18	15	2.7	200	200	200	6	15	0	2	15	0	5	200	50
2N4224	30	10	0.5	20	0.1	8	15	.5	2	20	15	1.7	200	200	200	6	15	0	2	15	0			50
2N4416	30	1	0.1	20		6	15	1	5	15	15	4	400	100	400	4	15	0	0.8	15	0	4	400	50
•2N4416A	35	1.	0.1	20	2.5	6	15	1	5	15	15	4	400	100	400	4	15	0	0.8	15	0	4	400	50
2N5078	30	1	0.25	20	0.5	8	15		4	25	15	4	200	150	200	6	15	0	2	15	0	3	200	50
2N5245	30	1	1	20	1	6	15	10	5	15	15	4	400	100	400	4.5	15	0	1	15	0	4	400	90
2N5246	30	1	1	20	0.5	4	15	- 10	1.5	7	15	2.5	400	100	400	4,5	15	0	1	15	0			90
2N5247	30	1	1	20	1.5	8	15	10	8	24	15	4	400	150	400	4.5	15	0	1	15	0		al, de tan	90
2N5248	30	. 1	5	20	1	8	15	10	4	20	15	3	200	200	200	6	15	0	2	15	0	0		50
2N5397	25	1	0.1	15	1	6	10	1	10	30	10	5.5	450	200	450	5	10	10m	1.2	10	10m	3.5	450	90
2N5398	25	1	0.1	15	-1	6	10	1	5	40	10	5.0	450	400	450	5.5	10	0 -	1.3	10	0	3.2	450	90
2N5484	25	1	1	20	0.3	3	15	10	1	5	15	2.5	100	75	100	5	15	0	1	15	0	3	100	50
2N5485	25	1	1	20	1	4	15	10	4	10	15	3	400	100	400	5	15	0	1.	15	0	4	400	50
2N5486	25	1	1	20	2	6	15	10	8	20	15	3.5	400	100	400	5	15	0	1	15	0	4	400	50
2N5668	25	10	2	15	0.2	4	15	10	1	5	15	1	100	50	100	7	15	0	3	15	0	2.5	100	50
2N5669	25	10	2	15	1	6	15	10	4	10	15	1.6	100	100	100	7	15	0	3	15	0	2.5	100	50
2N5670	25	10	2	15	2	8	15	10	8	20.	15	2.5	100	150	100	7	15	0	3	15	0	2.5	100	50
2N5949	30	1	1	15	3	7	15	100	12	18	15	3.0	100	75	100	6	15	0	2	15	0	5	100	50
2N5950	30	1	1	15	2.5	6	15	100	10	15	15	3.0	100	75	100	6	15	0	2	15	0	5	100	50
2N5951	30	1	1 -	15	2	5	15	100	7	13	15	3.0	100	75	100	6	15	0	2	15	0	5	100	50
2N5952	30	1	1	15	1.3	3.5	15	100	4	8	15	1.0	100	75	100	6	15	0	2	15	0	5	100	50
2N5953	30	1	1	15	.8	3	15	100	2.5	5	15	1,0	100	50	100	6	15	0	2	15	0	5	100	50
J300	25	1	0,5	15	1	6	10	1	6	30	10	4,5	.001	200	,001	5,5	10	5m	1,7	10	5m	t2	100	90
J304	30	1	0.1	20	2	6	15	1	5	15	15	t4.2	400	t80	100	t3	15	0	t,8	15	0	t4	400	50
J305	30	1	0.1	20	.5	3	15	1	1	8	15	t3.0	400	t80	100	t3	15	0	t.8	15	0	t4	400	50
J308	25	1	1	15	1	6,5	10	1	12	60	10	8	.001	200	.001	7.5	0	-10	2.5	0	-10	t1.5	100	92
J309	25	1	1	15	1	4.0	10	1	12	30	10	10	.001	200	.001	7.5	0	-10	2.5	0	-10	t1.5	100	92
J310	25	1	1	15	2	6.5	10	1	24	60	10	8	.001	200	.001	7.5	0	-10	2.5	0	-10	t1.5	100	92

Note. JAN qualified per applicable MIL-S-19500 specification.

Type No.	BV(BV((V) @ Min	DO	1	GSS DGO @ V _{DG} (V)	Min		V _p @ V _{DS} (V)	I _D (nA)	(m Min	IDSS A) Max	@ V _{DS} (V)	R _e (mMho) Min	Y _{fs} @ Freq (MHz)	R _e l (µMho) Max	(Y _{os}) @ f (MHz)		iss ^{@ V} DS (V)	V _{GS} (V)	C _r (pF) @ Max		V _{GS} (V)		IF Rg = 1k Freq (MHz)	Process No.
MPF 102	25	1	2	15		8	15	2	2	20	15	1.6	100	100	200	7	15	0	3	15	0			50
MPF106	25	1	1	20	0.5	4	15	.5	4	10	15	2.5	0.001			5	15	0	2	15	0	4	400	50
MPF107	25	1	1	20	2	6	15	.5	8	20	15	4	0.001			5	15	0	1.2	15	0	4	400	50
MPF108	25	10	1	15	0.5	8	15	10µ	1.5	24	15	1.6	100	200	100	6.5	15	.0	2.5	15	0	3	100	50
PN4223	30	1	0.25	20	0.1	8	15	1	3	18	15	2.7	200	200	200	6	15	0	2	15	.0	5	200	50
PN4224	30	1	0.25	20	0.1	8	15	5	2	20	15	1.7	200	200	200	6	15	0	2	15	0			50
PN4416	30	1	0.1	20		6	15	1	5	15	15	4	400	100	400	4	15	0	0.8	15	0	4	400	50
U308	25	1	0.15	15	1	6	10	1	12	60	10	10	0.001	150	100	5	0	10m	2.5	0	10mA	t3	450	92
U309	25	1	0.15	15	1	4	10	1	12	30	10	10	0.001	150	100	5	0	10m	2.5	0	10mA	t3	450	92
U310	25	1	0.15	15	2.5	6	10	1	24	60	10	10	0.001	150	100	5	10	10m	2,5	10	10mA	t3	450	92
U312	25	1	0.1	15	1	6	10	1	10	30	10	6	0.001			3.8	10	10m	1.2	10	10mA	t3.5	450	90
U320	20	1	3	15	2	10	5	1m	100	500	15	75	0.001			30	0	10	15	0	10	t2.5	30	58
U321	25	1	3	15	1	4	5	1m	80	250	15	75	0.001			30	0	10	15	0	10	t2.5	30	58
U322	25	1	3	15	3	10	5	1m	200	700	15	75	0.001			30	0	10	15	0	10	t2.5	30	58

Table 6. N-Channel Selection Guide: Low Frequency – Low Noise Amplifiers

Type No.	BV (V) (Min	GSS ම I _G (µA)	I _G (nA) @ Max	SS VDG (V)	(' Min		6(OFF) @ V _{DS} (V)	I _D (nA)	(n Min	IDSS nA) Max	@ V _{DS} (V)	1 1 2 3 1	_{fs} (Rel¥ mho) Max	′fs ⁾ V _{DS} (V)	f (MHz)	G _o (μmho) Max	v _{DS} (v)		iss PVDS (V)	V _{GS} (V)	C _{rss} (pF)@V _{DS} Max (V)	e nV/√Hz Max	n @ f (Hz)	Process No.
2N4393	40	1.0	0.1	20	0.5	3.0	20	1.0	5.0	30	20	t12		20	0.001			14	20	0	3.5 5.0(GS)	t8.0	10	51
2N5556	30	10	0.1	15	0.2	4.0	15	1.0	0.5	2.5	15	1.5	6.5	15	0.001	20	15	6.0	15	0	3.0 15	35	10	50
2N5557	30	10	0.1	15	0.8	5.0	15	1.0	2.0	5.0	15	1.5	6.5	15	0.001	20	15	6.0	15	0	3.0 15	35	10	50
2N5558	30	10	0.1	15	1.5	6.0	15	1.0	4.0	10	15	1.5	6.5	15	0.001	20	15	6.0	15	0	3.0 15	35	10	50
NF5101	40	1	0.2	15	0.5	1.1	15	1.0	1.0	12	15	3.5		15	0,001	25	15	t12	16	0	t4 15	3.5	1k	51
NF5102	40	1	0.2	15	0.7	1.6	15	1,0	4.0	20	15	7.5		15	0.001	25	15	t12	15	0	t4 15	3.5	1k	51
NF5103	40	1	0.2	15	1.2	2.7	15	1.0	10	40	15	7.5		15	0.001	25	15	t12	15	0	t4 15	3.5	1k	51
PF5101	40	1	0.2	15	0.5	1.1	15	1.0	1.0	12	15	3.5		15	0.001	25	15	112	15	0	, t4 15	3.5	1k	51
PF5102	40	1	0.2	15	0,7	1.6	15	1.0	4.0	20	15	7.5		15	0.001	25	15	t12	15	0	t4 15	3.5	1k	51
PF5103	40	1	0.2	15	1.2	2.7	_15	1.0	10	40	15	7.5	(2.):	15	0.001	25	15	t12	15	0	t4 15	3.5	1k	51
PN4393	40	1.0	0.1	20	0.5	3.0	20	1.0	5.0	30	20	t12		20	0.001			14	20	0	3.5 5.0(GS)	t8.0	10	51

 Table 7.
 N-Channel Selection Guide: Ultra Low Current Amplifiers

Transistor Type		V _{GSS} V _{GDO} @ I _G (µA)	(pA)	GSS DGO @ V _{DG} (V)	(' Min		V _p @ V _{DS} (V)	I _D (nA)	() Min	IDSS 1A) Max	@ V _{DS} (V)	(μ n Min	G _{fs} nho) (Max	(۷) ^ش	G _C (µmho) Max			iss ^{@ V} DS (V)	V _{GS} (V)	(pF) @ Max	vrss DDS (V)	V _{GS} (V)	$\begin{pmatrix} \underline{NV} \\ \sqrt{Hz} \end{pmatrix} \begin{tabular}{l} e_n \\ \hline \\ \sqrt{Hz} \\ Max \\ \hline \\ (Hz) \end{tabular}$	Process No.
2N4117	40	1	10	20	0.6	1.8	10	1	30	90	10	20	210	10	3	10	3	10	0	1.5	10	0		53
2N4117A	40	1	1-	20	0.6	1.8	10	1	30	90	10	70	210	10	3	10	3	10	0	1.5	10	0		53
2N4118	40	1	10	20	1	3	10	1	80	240	10	80	250	10	5	10	3	10	0	1,5	10	0		53
2N4118A	40	1	1	20	1	3	10	1	80	240	10	80	250	10	5	10	3	10	0	1.5	10	0		53
2N4119	• 40	1	10	20	2	6	10	1	200	600	10	100	330	10	10	10	3	10	Ó.	1.5	10	0		53
2N4119A	40	1	1	20	2	6	10	1	200.	600	10	100	330	10	10	10	3	10	0	1,5	10	0		53

Table 8. N-Channel Selection Guide: General Purpose Amplifiers

 $\bullet \mathbf{I}_D = \mathbf{1} \text{ mA} \quad ^{\dagger} \mathbf{I}_D = \mathbf{500} \mu \mathbf{A} \quad \P \mathbf{I}_D = \mathbf{250} \mu \mathbf{A} \quad \delta \mathbf{I}_D = \mathbf{100} \mu \mathbf{A} \quad ^{**} \mathbf{I}_D = \mathbf{100} \mu \mathbf{A} \quad ^{\dagger\dagger} \mathbf{I}_D = \mathbf{40} \mu \mathbf{A}$

Transistor Type	B\ *B\ (V) Min	/GSS /GDO @ I _G (μA)	IG: IDC (nA) @ Max	60	(\ Min	V _p V) @ Max		ID (nA)	(n Min	IDSS nA) Max	@ VDS (V)	(mn Min	G _{fs} nho) Max	@ V _{DS} (V)	G (µmho)€ Max	oss PVDS (V)	C _{is} (pF) @ Max		V _{GS} (V)	C _{rs} (pF) @ Max	v _{DS} (V)	V _{GS} (V)		³ n @ Freq (Hz)	Process No.
2N3069	*50	1	1	30		9.5	30	1000	2	10	30	1	2.5	30	80	30	15	0	-12	1.5	30	0	125	1000	52
2N3070	*50	1	1	30		4.5	30	1000	0.5	2.5	30	0.75	2.5	30	30	30	15	0	-8	1.5	30	0	125	1000	52
2N3368	*40	1	5	30		11.5	20	1000	2	12	30	1	4	30	80	30	20	8	0	3	30	0			52
2N3369	*40	1	5	30		6.5	20	1000	0.5	2,5	30	0.6	2.5	30	30	30	20	8	0	3	30	0			52
2N3370	*40	1	5	30		3.2	20	1000	0.1	0.6	30	0.3	2.5	30	15	30	20	8	0	3	30	0	- 20		52
2N3436	*50	1	0.5	30		9.8	20	1000	3	15	20	2.5	10	20	35	30	18	0	-10	6	30	0	100	1000	55
2N3437	*50	1	0.5	30		4.8	20	1000	0.8	4	20	1.5 .	6	20	20	30	18	0	-6	6	30	0	100	1000	55
2N3438	*50	1	0,5	30		2.3	20	1000	0.2	1	20	0.8	4.5	20	5	30	18	0	4	6	30	0	100	1000	55
2N3458	*50	1	0.25	30	201 1 - 301	7.8	20	1000	3.	15	20	2,5	10	20	35	30	18	0	-10	5	30	0	225	20	52
2N3459	*50	1	0.25	30		3.4	20	1000	0.8	4	20	1,5	6	20	20	30	18	0	-6	5	30	0	155	20	52
2N3460	*50	1	0.25	30	8	1.8	20	1000	0.2	1	20	0.8	4.5	20	5	30	18	0	-4	5	30	0	155	20	52
2N3684	50	1	0.1	30	2	5	20	1	2.5	7.5	20	2	3	20	50	20	4	20	0	1.2	20	0	150	100	. 52
2N3685	50	1.	0.1	30	1_	3.5	20	1	1	3,	20	1,5	2.5	20	25	20	4	20	0	1.2	20	0	150	100	52
2N3686	50	1	0,1	30	0.6	2	20	1	0.4	1,2	20	1	2	20	10	20	4	20	0	1.2	20	0	150	100	52
2N3687	50	1	0.1	30	0.3	1.2	20	1	0.1	0.5	20	0.5	1.5	20	5	20	4	20	0	1.2	20	0	150	100	52
2N3821	50	1	0.1	30		4	15	.5	0.5	2.5	15	1.5	4.5	15	10	15	6	15	0	3	15	0	200	10	55
2N3822	50	1	0.1	30		6	15	.5	2	10	15	3	6.5	15	20	15	6	15	0	3	15	0	200	10	55
2N3967	30	1	0.1	20	2	5	20	1	2.5	10	20	2.5		20	35	20¶	5	20	1	1.3	20		84	100	50
2N3967A	30	1	0.1	20	2	5	20	1	2,5	10	20	2.5		20	35	201	5	20	1	1.3	20		160	10	50
2N3968	30	1	0.1	20		3	20	1	1	5	20	2		20	15	20**	5	20	**	1.3	20	t	84	100	50
2N3968A	30	1	0.1	20		3	20	1	1	5	20	2		20	15	20**	5	20	**	1.3	20	t	160	10	50
2N3969	30	1	0.1	20		1.7	20	1	0.4	2	20	1.3		20	5	2011	5	20	tt	1.3	20	1	84	100	50
2N3969A	30	1	0.1	20		1.7	20	1	0.4	2	20	1.3		20	5	2011	5	20	tt	1.3	20	٩	160	10	50

Transistor Type		VGSS VGDO @ IG (μΑ)	ID	GSS IGO @ VDG (V)	(Min	V _I V) @ Max		ID (nA)	(m Min	IDSS nA) (Max	● VDS (V)	(mr Min	G _{fs} nho) @ Max	^{⊚ V} DS (V)	G (µmho)@ Max	oss PVDS (V)	(pF) @ Max	C _{iss} V _{DS} (V)	V _{GS} (V)	(pF) @ Max	C _{rss} V _{DS} (V)	V _{GS} (V)		^e n @ Freq (Hz)	Proce No.
2N4220	30	10	0.1	15		4	15	.1	0.5	3	15	1	4	15	10	15	6	15	0	2	15	0			55
2N4220A	30	10	0.1	15		4	15	.1	0.5	3	15	1	4	15	10	15	6	15	0	2	15	0	115	100	55
2N4221	30	10	0.1	15	10	6	15	.1	2	6	15	2	5	15	20	15	6	15	0	2	15	0			55
2N4221A	30	10	0.1	15		6	15	.1	2	6	15	2	5	15	20	15	6	15	0	2	15	0	115	100	55
2N4222	30	10	0.1	15		8	15	.1	5	15	15	2.5	6	15	40	15	6	15	0	2	15	0			55
2N4222A	30	10	0.1	15		8	15	.1	5	15	15	2.5	6	15	40	15	6	15	0	2	15	0	115	100	55
2N4338	50	1	0.1	30	0.3	1	15	100	0.2	0.6	15	0.6	1.8	15	5	15	7	15	0	3	15	0	68	1000	52
2N4339	50	1	0,1	30	0.6	1.8	15	100	0.5	1.5	15	0.8	2.4	15	15	15	7	15	0	3	15	0	68	1000	52
2N4340	50	1	0.1	30	1	3	15	100	1.2	3.6_	15	1.3	3	15	30	15	7	15	0	3	15	0	68	1000	52
2N4341	50	1	0,1	30	2	6	15	100	3	9	15	2	4	15	60	15	7	15	0	3	15	0	68	1000	55
2N5103	25	10	0.1	15	0.5	4	15	1	1	8	15	2	8	15	100	15	5	15	0	1	15	0	100	10	50
2N5104	25	1	0.1	15	0.5	4	15	1	2	6	15	3.5	7.5	15	100	15	5	15	0	1	15	0	50	10	50
2N5105	25	1	0.1	15	0.5	4	15	1	5	15	15	5	10	15	100	15	5	15	0	1	15	0			50
2N5358	40	s-10-1	0,1	20	0.5	3	15	100	0.5	1	15	1	3	15	10	15	6	15	0	2	15	0	115	100	55
2N5359	40	1	0,1	20	0.8	4	15	100	0,6	1.6	15	1.2	3.6	15	10	15	6	15	0	2	15	0	115	100	55
2N5360	40	1.	0.1	20	0.8	4	15	100	0,5	2,5	15	1,4	4.2	15	20	15	6	15	0	2	15	0	115	100	55
2N5361	40	1	0.1	20	1	6	15	100	2.5	5	15	1.5	4.5	15	20	15	6	15	0	2	15	0	115	100	55
2N5362	40	1	0.1	20	2	7	15	100	4	8	15	2	5.5	15	40	15	6	15	0	2	15	0	115	100	55
2N5363	40	1	0,1	20	2.5	8	15	100	7	14	15	2.5	6	15	40	15	6	15	0	2	15	0	115	100	55
2N5364	40	1	0.1	20	2.5	8	15	100	9	18	15	2.7.	6.5	15	60	15	6	15	0	2	15	0	115	100	55
2N5457	25	1	1	15	0,5	6	15	10	1	5	15	2	5	15	50	15	7	15	0	3	15	0			55
2N5458	25	1	1	15	1	7	15	10	2	9	15	1.5	5.5	15	50	15	7	15	0	3	15	0			55
2N5459	25	1	1	15	2	8	15	10	4	16	15	2	6	15	50	15	7	15	0	3	15	0	(all and		55
2N5556	30	1	0.1	15	0.2	4	15	1	0.5	2.5	15	1.5	6.5	15	20	15	6	15	0	3	15	0	35	10	50
2N5557	30	1	0.1	15	0.8	5	15	1	2.0	5.0	15	1.5	6.5	15	20	15	6	15	0	3	15	0	35	10	50
2N5558	30	1	0.1	15	1.5	6	15	1	4	10	15	1.5	6.5	15	20	15	6	15	0	3	15	0	35	10	50
J201	40	1	0.1	20	0.3	1.5	20	10	0.2	1.0	20	0.5		20	t1.	20	t5	20	0	t2	20	0	t10	1k	52
J202	40	1	0.1	20	0.8	4.0	20	10	0.9	4.5	20	1.0		20	t3.5	20	t5	20	0	t2	20	0	t10	1k	52
J203	40	1	0.1	20	2.0	10.0	20	10	4.0	20	20	1,5		20	110	20	t5	20	0	t2	20	0	110	1k	52
J210	25	1	0.1	15	1	3	15	1	2	15	15	4.0	12.0	15	150	15	t5	15	0	t1.5	15	0	t10	1k	90
J211	25	1	0.1	15	2.5	4.5	15	1	7	20	15	7.0	12.0	15	200	15	t5	15	0	t1.5	15	0	t10	1k	90
J212	25	1	0.1	15	4	6	15	1	15	40	15	7.0	12.0	15	200	15	t5	15	0	t1.5	15	0	t10	1k	90
MPF103	25	1	1	15		6	15	1	1	5	15	1	5	15	50	15	7	15	0	3	15	0			55
MPF104	25	1	1	15		7	15	1	2	9	15	1.5	5.5	15	50	15	7	15	0	3	15	0			55
MPF105	25	1	1	15		8	15	1	4	16	15	2	6	15	50	15	7	15	0	3	15	0			55
MPF109	25	10	1	15	0.2	8	15	10	0.5	24	15	0.8	6	15	75	15	7	15	0	3	15	0	115	1000	55

Table 8. N-Channel Selection Guide: General Purpose Amplifiers (Continued)
--

Transistor Type	BV(BV((V) (Min		10	GSS DGO @ V _{DG} (V)	(Min		Vp @VDS (V)	I _D (nA)	(n Min	IDSS 1A) Max	@ VDS (V)	(mn Min	G _{fs} nho) Max	@ V _{DS} (V)		oss VDS (V)	(pF) @ Max	C _{iss} V _{DS} (V)	V _{GS} (V)	(pF) @ Max	C _{rss} V _{DS} (V)	V _{GS} (V)	$\begin{pmatrix} \underline{NV} \\ \sqrt{Hz} \end{pmatrix}^{e}_{e}$ Max	n 9 Freq (Hz)	Proces No.
MPF111	20	10	100	10	0.5	10	10	1000	0,5	20	10	0.5		10	200	10									50
MPF112	25	10	100	10	0.5	10	10	1000	1	25	10	1	7.5	10											55
PN3684	50	1	1	30	2	5	20	1	2.5	7.5	20	2	3	20	50	20	4	20	0	1.2	20	0	150	20	52
PN3685	50	1	1	30	1	3.5	20	1	1	3	20	1.5	2.5	20	25	20	4	20	0	1.2	20	0	150	20	52
PN3686	50	1	1	30	0.6	2	20	1	0.4	1.2	20	1	2	20	10	20	4	20	0	1.2	20	0	150	20	52
PN3687	50	1	1	30	0.3	1.2	20	1	0.1	-0.5	20	0.5	1.5	20	5	20	4	20	0	1.2	20	0	150	20	52
PN4220	30	10	1	15		4	15	1	0.5	3	15	1	4	15	10	15	6	15	0	2	15	0			55
PN4221	30	10	1	15		6	15	1	2	6	15	2	5	15	20	15	6	15	0	2	15	0			55
PN4222	30	10	1	15		8	15	1	5	15	15	2.5	6	15	40	15	6	15	0	2	15	0		1	55
PN4302	30	1	1	10	8	4	20	10	0.5	5	20	1		20	50	20	6	20	0	3	20	0	100	1000	52
PN4303	30	1	1	10		6	20	10	4	10	20	2		20	50	20	6	20	0	3	20	0	100	1000	52
PN4304	30	1	1	10		10	20	10	0.5	15	20	1		20	50	20	6	20	0	3	20	0	125	1000	52
PN5163	25	1	10	15	0.4	8	15	1000	1	40	15	2	9	15	200	15	12	15	0	3	15	0	50	1000	50
TIS58	25	1	4	15	0.5	5	15	20	2.5	8	15	1.3	4	15			6	15	2 mA	3	15	2 mA			50
TIS59	25	1	4	15	1	9	15	20	6	25	15	1.3		15	8		6	15	2 mA	3	15	2 mA			50

Table 9. N-Channel Selection Guide: General Purpose Dual JFETs

T		OF	ERATING	CONDIT	IONS F	OR THE	SE CHA	RACTER	ISTICS			T																
Type No.	VD	CHAR. G ^I D (µA)	WGS1-2 ¹ VOS (mV) Max	DRIFT (µV/°C) ΔVGS Max	I _G (pA) Max	G μmi Min		G _{oss} (µmho) Max	CMRR (dB) Min	V _{gs} (V) Min Max	V (V Min	0	IDSS (mA) Min Max	(m	G _{fs} mho) i Max	G _{oss} (µmho) Max	I _G (pA) _@ Max	SS VDG (V)	C _{iss} (pF) Max	C _{rss} (pF) Max	BV (V) Min	er (nV/√Hz) Max	e f (Hz)	IDSS Match %	G _{fs} Match %	G _{oss} 1-2 (µmho)	^I G1 ^{-I} G2 125°C (nA)	Process No.
2N3921	10	700	5.0	10	250	1500		20				-3.0	1.0 10	1.5	7.5	35	1000		18	6.0	50	100	1.0k		5.0			83
2N3922	10	700	5.0	25	250	1500		20				-3.0	1.0 10	1.5	7.5	35	1000	30	18	6.0	50	100	1.0k		5.0			83
2N3934	10	200	5.0	10	100	300		5.0				See	2N3954-6 a	s an ir	nproved	replaceme	nt											
2N3935	10	200	5.0	25	100	300		5.0		tern have been a support to the Advance			2N3954-6 a	s an ir	- contraction of the	replaceme			and the second	0	-				No Avertainty dates	Contraction and the second	and the second second	and the second second
2N3954A	20	200	5.0	5.0	50	12				0.5 4.0	1.0	4.5	0.5 5.0	1.0	1.	35	100	30	4.0	1.2	50	150	100	5.0	3.0		10	83
2N3954	20	200	5.0	10	50	11200	State.			0.5 4.0	1.0	4.5	0.5 5.0	1.000	3,0	35	100	30	4,0	1.2	50	150	100	5.0	3.0	4.0	10	83
2N3955A	20	200	5,0	15	50					0.5 4.0	1.0	4,5	0.5 5.0	1.0	A mark when the	35	100	30	4.0	1.2	50	150	100	5.0	3,0		10	83
2N3955	20	200	10	25	50					0.5 4.0	1.0	4.5	0.5 5.0	1.0	3.0	35	100	30	4.0	1.2	50	150	100	5.0	5.0		10	83
2N3956	20	200	15	50	50	19-1-21	4849	(and them		0.5 4.0	1.0	4.5	0.5 5.0	1.0	3.0	35	100	30	4.0	1.2	50	150	100	5.0	5.0	Salanda P.	10	83
2N3957	20	200	20	75	50					0.5 4.0	1,0	4.5	0.5 5.0	1,0	3.0	35	100	30	4.0	1.2	50	150	100	10	10		10	83
2N-3958	20	200	25	100	50					0.5 4.0	1,0	4.5	0.5 5.0	1,0	3.0	35	100	30	4.0	1.2	50	160	100	15	15		10	83
2N4082	10	200	15	10	100	300	10004000	10				See	2N3954-6 a	s an ir	nproved	replaceme	nt						1.1					
2N4083	10	200	15	25	100	300		10				See	2N3954-6 a	is an ir	nproved	replaceme	nt											
2N4084	10	700	15	10	250	1500		20		0.5 4.0		3.0	1.0 10	1.5	7.5	35	1000	30	18	6.0	50	100	1.0k		5.0			83
2N4085	10	700	15	25	250	1500		20				3.0	1.0 10	1.5	7.5	35	1000	30	18	6.0	50	100	1.0k		5.0			83
and the subscription	T	0	PERATIN	CONDIT	TIONS F	OR TH	ESE CH	ARACTE	RISTICS	K	1		1	T		1	T		T	T	1	1		T				1
		CHAR.	VGS1-2 VOS	DRIFT	١G		its	Goss	CMRR	3.		/p	DSS		Gfs	Goss		GSS	Ciss	Crss	вv		'n	DSS		Goss 1-2		
Type No.		G ^I D) (μΑ)	(mV) Max	∆VGS Max	(pA) Max	Min	ños Max	(µmho) Max	(dB) Min	(V) Min Max	· · · · · · · · · · · · · · · · · · ·	V) Max	(mA) Min Max		nmho) in Max	(µmho) Max	(pA) Max	@ VDG (V)	(pF) Max		(V) Min	(nV/√Hz Max)@ 1 (Hz)	Matcl %	h Match %	ι (μmho)	125°C (nA)	No.
2N5045	15	200	5.0	67		1					0.5	4.5	0.5 8.0	1.	5 6.0	25	250	30	8.0	4.0	50	200	10	1	5.0	1.0		83
2N5046	15	200	10	133		1					0.5	4.5	0.5 8.0	1.	5 6.0	25	250	30	8.0	4.0	50	200	10	1	10	2.0		83
2N5047	15	200	15	200							0.5	4.5	0.5 8.0	1.	5 6.0	25	250	30	8.0	4.0	50	200	10		20	3.0		83
2N5196	20	200	5.0	5.0	15	700	1500	4.0		0.2 3.8	0.7	4.5	0.7 7.0	1.	0 4.0	50	25	30	6.0	2.0	50	20	1.0k	5.0	3.0	1.0	5.0	83
2N5197	20	200	5.0	10	15	700	1500	4.0		0.2 3.8	0.7	4.5	0.7 7.0	1.	0 4.0	50	25	30	6.0	2.0	60	20	1.0k	5.0	3.0	1.0	5.0	83
2N5198	20	200	10	20	15	700	1500	4,0	1.10	0.2 .3.8	0.7	4.5	0.7 7.0	1.1	0 4.0	50	25	20	6.0	2.0	50	20	1.0k	5.0	5.0	1.0	5.0	83
2N5199	20	200	15	40	15	700	1500	4.0		0.2 3.8	07	4.5	0.7 7.0	1	0 4.0	50	25	- 30	6.0	2.0	50	20	1.0k	5.0	5.0	1,0	5.0	83
2N5452	20	200	5.0	5.0				1.0		0.2 4.2	1.0	4.5	0.5 5.0	1.	0 3.0	3.0	100	30	4.0	1.2	50	20	1.0k	5.0	3.0	0.25		83
2N5453	20	200	10	10		1		1.0		0.2 4.2	1.0	4.5	0.5 5.0	1.	0 3.0	3.0	100	30	4.0	1.2	50	20	1.0k	5.0	3.0	0.25		83
2N5454	20	200	15	25				1.0		0.2 4.2	1.0	4.5	0.5 5.0	1.	0 3.0	3.0	100	30	4.0	1.2	50	20	1.0k	5.0	5.0	0.25		83
2N5545	15	200	5.0	10	50			100			0.5	4.5	0.5 8.0	1.	5 6.0	25	100	30	6.0	2.0	50	180	10	5.0	3.0	1.0	5.0	83
2N5546	15	200	10	20	50	1.10					0.5	4.5	0.5 8.0	1 1	5 6.0	25	100	30	6.0	2.0	50	200	10	10	5.0	2.0	5,0	83
2N5547	15	200	15	40	50	1. 11	2000				0.5	4.5	0.5 8.0	1.	5 6.0	25	100	30	-6.0	2.0	50		1.0.4.3	10	10	3.0	5.0	83
J410	20	200	10	10	250	600	1200	5.0		0.3 4.0	0.5	3.5	0.5 6	1	- 4	20	250	20	4,5	1.2	40	50	100			100 C		98
J411	20	200	25	25	250	600	1200	5.0		0.3 4.0	0,5	3.5	0.5 6	1	4	20	250	20	4.5	1.2	40	50	100					98
J412	20	200	40	80	250	600	1200	5.0		0.3 4.0	0.5	3.5	0.5 6	1	4	20	250	20	4.5	1.2	40	50	100	and h			S. Carl	98
NPD8301	20	200	5	10	100	700	1200	5.0		0.3 4,0	0.5	3.5	0.5 6	1	4	20	100	20	4.5	1.2	40	50	100			100		83
NPD8302	20	200	10	15	100	700	1200	5.0		0.3 4.0	0.5	3,5	0.5 6	1	4	20	100	20	4.5	1.2	40	50	100					83
NPD8303	20	200	16	25	100	700	1200	5.0		0.3 4.0	0.5	3.5	0.5 6	1	4	20	100	20	4.5	1.2	40	50	100					83
U231	20	200	5.0	10	50	600		10		0.3 4.0		Se	e 2N3954 as	an im	proved r	eplacemen	t											83
U232	20	200	10	25	50	600		10		0.3 4.0		Se	e 2N3955 as	an im	proved r	eplacemen	t							1				83
U233	20	200	15	50	50	600		10		0.3 4.0		Se	e 2N3956 as	an im	proved r	eplacemen	t				3							83
	1	000	20	-	-	000		10				121								1 1				1				83
U234	20	200	20	75	50	600		10		0.3 4.0	1	Se	e 2N3957 as	an im	proved r	eplacemen	t				14 U							83

Table 10. N-Channel Selection Guide: Low Frequency – Low Noise Dual JFETs

			OPERATIN	G COND	ITIONS	FOR	HESE C	HARACTE	RISTICS																					
Type No.	0P. (V _{DG} (V)	CHAR. ^I D (µA)	VGS1-2 VOS (mV) Max	DRIFT (µV/°C) ∆VGS Max	I _G (pA) Max	1 1.5	fs nhos Max	G _{oss} (µmho) Max	CMRR (dB) Min		(gs V) Max		p /) Max		NSS NA) Max		fs nho) Max	G _{oss} (µmho) Max		ISS 9 VDG (V)	C _{iss} (pF) Max	C _{rss} (pF) Max	BV (V) Min	e (nV/√Hz) Max		IDSS Match %	G _{fs} Match %	G _{oss} 1-2 (µmho)	^I G1 ^{-I} G2 125°C (nA)	Proces No.
2N5515	20	200	5.0	5.0	100	500	1000	1.0	100	0.2	3.8	0.7	4.0	0.5	7.5	1.0	4.0	10	250	30	+25	+5,0	40	30	10	5.0	3,0	0.1	10	95
2N5516	20	200	5.0	10	100	500	1000	1.0	100	0.2	3.8	0.7	4.0	0.5	7.5	1.0	4.0	10	250	30	+25	+5.0	40		10	5.0	3.0	0.1	10	95
2N5517	20	200	10	20	100	500	1000	1.0	90	0,2	3.8	0.7	4.0	0.5	7.5	1.0	4.0	10	250	30	+25	+5.0	40		10	5.0	5.0	0.1	10	95
2N5518	20	200	15	40	100	500	1000	1.0		0.2	3.8	0.7	4.0	0.5	7.5	1.0	4.0	10	250	30	+25	+5.0	40		10	5.0	5.0	0,1	10	95
2N5519	20	200	15	80	100	500	1000	1.0		0.2	3.8	0.7	4.0	0.5	7.5	1.0	4.0	10	250	30	+25	+5.0	40		10	10	10	0.1	10	95
2N5520	20	200	5.0	5.0	100	500	1000	1.0	:00	0.2	3.8	0.7	4.0	0.5	7.5	1.0	4.0	10	250	30	+25	+5.0	40	15	10	5.0	3,0	0,1	10	95
2N5521	20	200	5.0	10	100	500	1000	1.0	100	0.2	3.8	0.7	4.0	0,5	7,5	1.0	4.0	10	250	30	+25	+5.0	40	1	10	5.0	3.0	0.1	10	95
2N5522	20	200	10	20	100	500	1000	1.0	90	0.2	3.8	0.7	4.0	0.5	7.5	1.0	4.0	10	260	30	+25	+5.0	40		10	5.0	5.0	0.1	10	95
2N5523	20	200	15	40	100	500	1000	1.0		0.2	3.8	0.7	4.0	0.5	7.5	1.0	4.0	10	250	30	+25	+5.0	40		10	5.0	5.0	0,1	10	95
2N5524	20	200	15	80	100	500	1000	1.0		0.2	3.8	0.7	4.0	0.5	7.5	1.0	4.0	10	250	30	+25	+5.0	40	Sector.	10	10	10	0.1	10	95
2N6483	20	200	6.0	5.0	100	500	1500	1.0	100	0.2	3.8	0,7	4.0	0.5	7.5	1.0	4.0	10	200	30	20	3.5	50	10	10	5.0	3.0	0.1	10	95
2N6484	20	200	10	10	100	500	1500	1.0	100	0.2	3.8	0.7	4.0	0.5	7.5	1.0	4.0	10	200	30	20	3.5	50	1	10 -	5.0	3.0	0,1	10	95
2N6485	20	200	15	25	100	500	1500	1,0	90	0.2	- 3.8	0.7	4.0	0.5	7.5	1.0	4.0	10	200	30	20	3.5	50	i	10	5.0	5.0	0.1	10	95

Table 11. N-Channel Selection Guide: Wide Band – Low Noise Dual JFETs

		OP	ERATING	CONDITI	ONS FC	R THES	E CHAR	ACTERIS	STICS																				
Type No.	0P. 0 V _{DG} (V)	HAR. ^I D (μΑ)	WGS1-2 ^I VOS (mV) Max	DRIFT (µV/°C) ∆VGS Max	^I G (pA) Max	G μm Min	fs hos Max	G _{oss} (μmho) Max	CMRR (dB) Min	V _{gs} (V) Min N	lax	V (\ Min	-	ID (m Min		G _{fs} (μmho) Min Max	G _{oss} (µmho) Max	IG (pA) Max	SS VDG ® (V)	C _{iss} (pF) Max	(pF)	BV (V) Min	_en (nV/√Hz) € Max		^I DSS Match %	G _{fs} Match %	G _{oss} 1-2 (µmho)	^I G1 ^{-I} G2 125°C (nA)	Proce No.
2N5564	15	2000	5.0	10		7500		45			1.15	0,5	3.0	5.0	30	1.10		100	20	12	3.0	40	50	10	5.0	5.0			96
2N5565	15	2000	10	25		7500		45				0.5	3.0	5.0	30	A Description	1000 1000	100	20	12	3.0	40	50	10	5.0	10		State of the	96
2N5566	15	2000	20	50		7500		45				0.5	3.0	5.0	30			100	20	12	3.0	40	50	10	5.0	10	and the second		96
2N5911	10	5000	10	20	100	5000	10,000	100		0.3 4	0.0	1.0	5.0	7.0	40		No. P. Derko	100	15	5.0	1.2	25	20	10k	5.0	5.0	20	20	93
2N5912	10	5000	16	40	100	5000	10,000	100		0.3 4	1.0	1.0	5.0	7.0	40	ALC: NO.	CHARGO.	100	15	5.0	1.2	25	20	10k	5.0	5.0	20	20	93
NPD5564	15	2000	5,0	10		7500		45				0.5	3.0	5.0	30			100	20	12	3.0	40	50	10	5,0	5.0			96
NP05565	15	2000	10	25		7500		45				0.5	3.0	5.0	30		here and	100	20	12	3.0	40	50	10	5.0	10		and the second	96
NPD5566	15	2000	20	50	1000	7500		45				0.5	3.0	5.0	30	19 DUME	S. Starter	100	20	12	3.0	40	50	10	5.0	10		Sec.	96
U257	10	5000	100			5000	10,000	150				1.0	5.0	5.0	40			100	15	5.0	1.2	25	30	10k	15	15	20		93
U430	10	10,000				10,000	20,000	150				1.0	4.0	12	30			150	15	100		25	10	100	10	10			92
U431	10	10,000			1.00	10,000	20,000	150				2.0	6.0	24	60	1000		150	16			25	10	100	10	10		5.1683	California -

Table 12. N-Channel Selection Guide: Low Leakage – High CMRR Wide Band Dual JFETs

		O	PERATING	CONDIT	IONS FO	OR TH	ESE CHA	RACTER	ISTICS																				
Туре No.	OP. C V _{DG} (V)		VGS1-2 VOS (mV) Max	DRIFT (µV/ [™] C) ∆VGS Max	I _G (pA) Max		ifs nhos Max	G _{oss} (µmho) Max	CMRR (dB) Min		/ _{gs} V) Max	0.00	Vp V) Max		IDSS (mA) n Max	G _{fs} (µmho) Min Max	G _{oss} (µmho) Max	(nA)	GSS ® ^V DG (V)	C _{iss} (pF) Max	C _{rss} (pF) Max	BV (V) Min	e _r (nV/√Hz) Max		IDSS Match %	G _{fs} Match %	G _{oss1-2} (µmho)	^I G1 ^{-I} G2 125°C (nA)	Process No.
NDF9401	20	200	5.0	5.0	5.0¶	950	2000	0.1	120	0.1	4.0	0.5	4.0	0,5	10	1000		10	30	5.0	0.02	50	30	10	5.0	3.0	01	1,0	94
NDF9402	20	200	5.0	10	5.09	950	2000	0.1	120	0.1	4.0	0.5	4.0	0.5	10			-10	30	5.0	0.02	50	30	10	5,0	3,0	0.1		94
NDF9403	20	200	10	10	5.01	950	2000	0,1	110	0.1	4.0	0.5	4.0	0.5	10			10	30	5.0	0.02	50	30	10	5.0	5,0	0.1	1.0	94
NDF9404	20	200	15	10	5.09	950	2000	0,1	110	0,1	4.0	0,5	4.0	0.5	10	Cash a s		10	30	5.0	0.02	50	30	10	5.0	5.0	0.1	1.0	94
NDF9405	20	200	25	25	5.0¶	950	2000	0.1	100	0.1	4.0	0.5	4.0	0.5	10			10	30	5.0	0.02	50	30	10	10	10	0.1	1.0	94
NDF9406	20	200	5.0	5.0	5.04	950	2000	0.1	120	0.1	4.0	0.5	4.0	0.5	10		1100	10	30	5.0	0.62	50	30	10	5,0	3.0	0.1	1.0	94
NDF9407	20	200	5.0	10	5.0¶	950	2000	0.1	120	0,1	4.0	0.6	4.0	0.5	10		Pice:	10	30	5.0	0.02	50	30	10	5.0	3.0	0.1	1.0	94
NDF9408	20	200	10	10	5.0¶	950	2000	0,1	110	0.1	4.0	0.5	4.0	0.5	10	Series in	Sec.	10	30	5.0	0.02	50	30	10	5.0	5.0	0.1	1.0	94
NDF9409	20	200	15	10	5.0¶	950	2000	0,1	110	0,1	4.0	0.5	4.0	0.5	10	39.30		10	30	5.0	0.02	50	30	10	5.0	5.0	0.1	1.0	94
NDF9410	20	200	25	25	5.09	950	2000	0.1	100	0,1	4.0	0.5	4.0	0,6	10			10	30	5.0	0.02	50	30	10	10	10	0.1	1.0	94

¶ V_{DG} = 35V

Table 13. N-Channel Selection Guide: Ultra Low Leakage Dual JFETs

		OPERA	TING COM	DITIONS	FOR	THESE CHA	ARACTER	ISTICS															
Type No.	Op Col V _{DG} (V)		V _{GS1-2} V _{OS} (mV) Max	ΔV _{GS} DRIFT (μV/°C) Max	I _G (pA) Max	G _{fs} (mMho) Min	G _{oss} (µMho) Max	V _G (V Min			/p V) Max	I _D (m Min	SS A) Max		G _{fs} nho) Max	G _{oss} (μmho) Max	I _{GS} (pA) @ Max		C _{iss} (pF) Max	C _{rss} (pF) Max	BV _{GSS} (V) Min	^I G1 ^{-I} G2 @ 125°C (nA) Max	Process No.
2N5902	10	30	5	5	3	50µ	1		4	0.6	4.5	30µ	0.5	70µ	0.25	5	5	20	3	1.5	40	2	84
2N5903	10	30	5	10	3	50µ	1		4	0.6	4.5	30µ	0.5	70µ	0.25	5	5	20	3	1.5	40	2	84
2N5904	10	30	10	20	3	50µ	1		4	0.6	4.5	30µ	0.5	70µ	0.25	5	5	20	3	1.5	40	2	84
2N5905	10	30	15	40	3	50µ	1		4	0.6	4.5	30µ	0.5	70µ	0.25	5	5	20	3	1.5	40	2	84
2N5906	10	30	5	5	1	50µ	1		4	0.6	4.5	30µ	0,5	70µ	0.25	Б	2	20	3	1.5	40	0.2	84
2N5907	10	30	5	10	1	50µ	1		4	0,6	4,5	30µ	0.5	70µ	0.25	5	2	20	3	1.5	40	0.2	84
2N5908	10	30	10	20	1	50µ	1		4	0.6	4.5	30µ	0.5	70ju	0.25	6	2	20	3	1.5	40	0,2	84
2N5909	10	30	16	40	1	504	1		4	0.6	4.5	30µ	0.5	70µ	0.25	5	2	20	3	1.5	40	0.2	84

Table 14.	P-Channel	Selection	Guide:	Switches
-----------	-----------	-----------	--------	----------

Transistor Type	BV	GSS GDO @ IG (μΑ)	10	GSS DGO @ V _{DG} (V)	(nA) (Max	ID(off) VDS (V)	V _{GS} (V)	(' Min		Vp @VDS (V)	Ι _D (μΑ)	(Min	I _{DSS} mA) @ Max	V _{DS} (V)		^r ds @ I _D (mA)	(pF) @ Max	C _{iss} VDS (V)	V _{GS} (V)	(pF) Max	C _{rss} @ V _{DS} (V)	V _{GS} (V)	t _{on} (ns) Max	^t off (ns) Max	Process No.
2N3382	30	1	15	30	2	-5	6	1	5	-5	1	3	30	10	300										88
2N3384	30	1	15	30	2	-5	6	4	5	-5	1	15	30	10	180										88
2N3386	30	1	15	30	2.5	-5	10	4	9.5	-5	1	15	50	10	150										88
2N3993	25	1	1.2*	15	1.2	-10	10	4	9.5	-10	1	10		10	150		16	-10	0	4.5	0	10			88
2N3993A	25	1	1.2*	15	1.2	-10	10	4	9.5	-10	1	10		10	150		12	-10	0	3	0	10			88
2N3994	25	1	1.2*	15	1.2	-10	6	1	5.5	-10	1	2		10	300		16	-10	0	4.5	0	10			88
2N3994A	25	1	1.2*	15	1.2	-10	6	1	5.5	-10	1	2		10	300		12	-10	0	3	0	10		5	88
2N5018	30	1	2	15	10	-15	12		10	-15	1	10		20	75		45	-15	0	10	0	12	35	65	88
2N5019	30	1	2	15	10	-15	7		5	-15	1	5		20	150		45	-15	0	10	0	7	90	125	88
e2N5114	30	1	0.5	20	0,5	-15	12	5	10	-15	.001	30	90	18	75	1	25	-15	0	7	0	12	16	21	88
•2N5115	30	1	0.5	20	0.5	15	7	3	6	-15	.001	16	60	15	100	1	25	-15	0	7	0	7	30	38	88
•2N5116	30	1	0.5	20	0.5	-15	5	1	4	-15	.001	5	25	15	150	1	25	-15	0	7	0	5	42	60	88
J174	30	1	1	20	1	-15	10	5	10	-15	.01	20	100	15	85	1	11	0	10	5.5	0	10	2	5	88
J175	30	1	1	20	1	-15	10	3	6	-15	.01	7	60	15	125	.5	11	0	10	5.5	0	10	5	10	88
J176	30	1	1	20	1	-15	10	1	4	-15	.01	2	25	15	250	.25	11	0	10	5.5	0	10	15	15	88
J177	30	1	1	20	1	-15	10	.8	2.25	-15	.01	1.5	20	15	300	,1	11	0	10	5.5	0	10	20	20	88
P1086E	30	1	2	20	10	-15	10		10	-15	.01	10		15	75	1	45	-15	0	10	15	0	35	50	88
P1087E	30	1	2	20	10	-15	5		5	-15	.01	5		15	150		45	-15	0	10	15	0	40	75	88
U304	30	1	0.5	20	0.5	-15	12	5	10	15	1	30	90	15	85		27	-15	0	7	0	12	35	35	88
U305	30	1	0.5	20			7	3	4	15	1	15	60	15	110		27	-15	0	7	0	7	50	45	88
U306	30	1	0.5	20			5	1	4	15	1	5	25	15	175		27	-15	0	7	0	5	60	80	88

Note. JAN qualified per applicable MIL-S-19500 specification

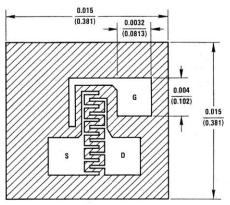
Table 15. P-Channel Selection Guide: Amplifiers

Transistor Type		VGSS VGDO @ IG (µA)		GSS DGO @ V _{DG} (V)	{ Min		V _p @ V _{DS} (V)	Ι _D (μΑ)	(n Min	IDSS nA) (Max	@ V _{DS} (V)	(mn Min	G _{fs} nho) Max		G (μmho) Max	oss @ V _{DS} (V)	(pF) Max	C _{iss} V _{DS} (V)	V _{GS} (V)	(pF) Max	C _{rss} V _{DS} (V)	V _{GS} (V)	$\begin{pmatrix} \underline{NV} \\ \sqrt{Hz} \end{pmatrix}$ Max	^a n @ Freq (Hz)	Process No.
•2N2608	30	1	10	30	1	4	-5	1	0.9	4.5	5	1		5			17	-5	1				125	1000	89
2N2609	30	1	30	30	1	4	-5	1	2	10	5	2.5		5			30	5	1				125	1000	88
2N3329	20	10	10	10		5	-15	10	1	3	10	1	2	10/1mA	20	10	20	-10	1				125	1000	89
2N3330	20	10	10	10		6	-15	10	2	6	10	1.5	3	10/2mA	40	10	20	-10	1				125	1000	89
2N3331	20	10	10	10		8	-15	10	5	15	10	2	4	10/5mA	100	10	20	-10	1				155	1000	89
2N3332	20	10	10	10		6	-15	10	1	6	10	1	2.2	10/1mA	20	10	20	-10	1				65	1000	89
2N4381	25	1	1	15	1	5	-15	1	3	12	15	2	6	15	75	15	20	-15	0	5	-15	0	20	1000	89
2N4382	25	1	1	15	2.5	9	-15	1	10	30	15	4	8	15	100	15	20	-15	0	5	-15	0	20	1000	88

Note. JAN qualified per applicable MIL-S-19500 specification

Transistor		GSS GDO		GSS DGO		(V)	Vp @ Vns			IDSS			G _{fs}	av		oss	(Ciss		(=)	Crss		(NV)	e _n	
Туре	(V) Min	@ ^I G (μΑ)		@ V _{DG} (V)	Min	Max	@ V _{DS} (V)	Ι _D (μΑ)	Min	nA) Max	@ V _{DS} (V)	Min	nho) Max	@ V _{DS} (V)	(µmno) Max	@ V _{DS} (V)	(pF) Max	V _{DS} (V)	V _{GS} (V)	(pF) Max	V _{DS} (V)	V _{GS} (V)	(VHz) Max	@ Freq (Hz)	Proces No.
2N5020	25	1	1	15	0.3	1.5	-15	1	0.3	1.2	15	1	3.5	15	20	15	25	-15	0	7	-15	0	30	1000	89
2N5021	25	1	1	15	0.5	2.5	-15	1	1	3.5	15	1.5	6	15	20	15	25	-15	0	7	-15	0	30	1000	89
2N5460	40	10	5	20	0.75	6	-15	1	1	5	15	1	4	15	50	15	7	-15	0	2	-15	0	115	100	89
2N5461	40	10	5	20	1	7.5	-15	1	2	9	15	1.5	5	15	50	15	7	-15	0	2	-15	0	115	100	89
2N5462	40	10	5	20	1.8	9	-15	1	4	16	15	2	6	15	50	15	7	-15	0	2	-15	0	115	100	89
J270	30	1	0.2	20	0.5	2.0	.15	.001	2	15	15	6.0	15,0	15	200	15	t20	15	0	t5	15	0	t10	1k	88
J271	30	1	0.2	20	1.5	4.5	15	.001	6	50	15	8.0	18.0		500	15	t20	15	0	t5	15	0	110	1k	88
PN4342	25	10	10	15		5.5	-10	1	4	12	10	2	6	10	75	10	20	-10	0	5	-10	0	80	100	89
PN4343	25	10	10	15		10	-10	1	10	30	10	4	8	10	100	10	20	-10	0	5	-10	0	80	100	88
PN4360	20	10	10	15	0.7	10	-10	1	3	30	10	2	8	10	100	10	20	-10	0	5	-10	0	190	100	89
PN5033	20	10	10	15	0.3	2.5	-10	1	0.3	3.5	10	1	5	10	20	10	25	-10	0	7	-10	0	100	1000	89
U300	40	1	0.1	20	5	10	-15	.001	30	90		8	12	15			20	-15	15 mA	5.5	-15	15 mA	40	1000	88
U301	40	1	0.1	20	2.5	60	15	.001	15	60		7	11	15			20	-15	7 mA	5.5	-15	5.5 mA	40	1000	88

Table 16. Pro-Electron JFETs: Amplifiers


Type No.	BV (V)	/GSS /GDO @IG (μA)	I ID	GSS IGD @VGD (V)	Min	V (V) (Max	P @ V _{DS} (V)	I _D (nA)	(' Min	V _G ; V) Max	s @V _{DS} (V)	Ι _D (μΑ)	(r Min	IDSS nA) Max	@ V _{DS} (V)	(mı Min	R _e (Y _F mho) Max	S) @f (MHz)	C _i (pF)@ Typ		V _{GS} (V)	C _r (pF) Typ	rss @ V DS (V)	V _{GS} (V)	(dB ^e n Max	NF) @ R _G * Typ	= 1k f (Hz)* (MHz)	Process No.
BF244A	30	1	5	20	.5	8	15	10	.4	2.2	15	200	2	6.5	15	3	6.5	.001	4	20	-1	1.1	20	-1		1.5	100	50
BF244B	30	1	5	20	.5	8	15	10	1.6	3.8	15	200	6	15	15	3	6.5	.001	4	20	-1	1.1	20	-1		1.5	100	50
BF244C	30	1	5	20	.5	8	15	10	3.2	7.5	15	200	12	25	15	3	6.5	.001	4	20	-1	1.1	20	-1		1.5	100	50
BF245A	30	1	5	20	.5	8	15	10	.4	2.2	15	200	2	6.5	15	3	6.5	.001	4	20	-1	1.1	20	-1				50
BF245B	30	1	5	20	.5	8	15	10	1.6	3.8	15	200	6	15	15	3	6.5	.001	4	20	-1	1.1	20	-1				50
BF245C	30	1	5	20	.5	8	15	10	3.2	7.5	15	200	12	25	15	3	6.5	.001	4	20	-1	1.1	20	-1				50
BF246A	25	1	5	15	.6	14.5	15	10	1.5	4.0	15	200	30	80	15	8		.001	11	15	0	3.5	15	0				51
BF246B	25	1	5	15	.6	14.5	15	10	3.0	7.0	15	200	60	140	15	8		.001	11	15	0	3.5	15	0				51
BF246C	25	1	5	15	.6	14.5	15	10	5.5	12	15	200	110	250	15	8		.001	11	15	0	3.5	15	0				51
BF247A	25	1	5	15	.6	14.5	15	10	1.5	4.0	15	200	30	80	15	8		.001	11	15	0	3.5	15	0				51
BF247B	25	1	5	15	.6	14.5	15	10	3.0	7.0	15	200	60	140	15	8		.001	11	15	0	3.5	15	0				51
BF247C	25	1	5	15	.6	14.5	15	10	5.5	12	15	200	110	250	15	8		.001	11	15	0	3.5	15	0				51
BF256A	30	1	5	20					.5	7.5	15	200	3	7	15	4.5		.001				.7	20	-1		7.5	800	50
BF256B	30	1	5	20					.5	7.5	15	200	6	13	15	4.5		.001				.7	20	-1		7.5	800	50
BF256C	30	1	5	20					.5	7.5	15	200	11	18	15	4.5		.001				.7	20	-1		7.5	800	50
BC264A	30	1	10	20	.5		15	10	.2	1.2	15	1000	2	4.5	15	2.5		.001	4.0	15	-1	1.2	15	-1		40*	10*	50
BC264B	30	1	10	20	.5		15	10	.4	1.4	15	1500	3.5	6.5	15	3.0		.001	4.0	15	-1	1.2	15	-1		40*	10*	50
BC264C	30	1	10	20	.5		15	10	.5	1.5	15	2500	5.0	8.0	15	3.5		.001	4.0	15	-1	1.2	15	-1		40*	10*	50
BC264D	30	1	10	20	.5		15	10	.6	1.6	15	3500	7.0	12.0	15	4.0		.001	4.0	15	-1	1.2	15	-1		40*	10*	50

JFET Process Characteristics

This section contains complete design curves for all of Fairchild Semiconductor's discrete JFET processes. Temperature and $V_{GS(off)}$ distribution data is provided to facilitate worst-case design. In addition a complete list of all device types supplied from this process is included to aid in cross reference searches and the selection of preferred

device types. The curves in this section should be considered typical of the process supplied by Fairchild Semi-conductor. Every effort is made to keep the process in tolerance with the published graphs, but the exact distribution of any specific lot of material is not guaranteed.

Process 50 N-Channel JFET

GATE IS ALSO BACKSIDE CONTACT

DESCRIPTION

Process 50 is designed primarily for RF amplifier and mixer applications. It will operate up to 450 MHz with low noise figure and good power gain. These devices offer outstanding performance at VHF aircraft and communications frequencies. Their major advantage is low crossmodulation and intermodulation, low noise figure and good power gain. The device is also a good choice for analog switching where low capacitance is very important.

CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MIN	түр	MAX	UNITS
Gate-Source Breakdown Voltage	BV _{GSS}	$V_{DS} = 0V, I_{G} = -1 \mu A$	-25	-40		V
Zero Gate Voltage Drain Current	IDSS	V _{DS} = 15V, V _{GS} = 0V	1.0	10	20	mA
Forward Trans- conductance	9fs	V _{DS} = 15V, V _{GS} = 0	3.0	5.5	7.0	mmhos
Forward Trans- conductance	9fs	V _{DG} = 15V, I _D = 200 µA		1.1		mmhos
Reverse Gate Leakage	I _{GSS}	$V_{GS} = -20V, V_{DS} = 0$		-5.0	-100	pА
"ON" Resistance	r _{DS}	V _{DS} = 100 mV, V _{GS} = 0	100	175	500	Ω
Pinch Off Voltage	V _{GS(OFF)}	V _{DS} = 15V, I _D = 1 nA	-0.7	-3.5	-6.0	V
Output Conductance	g _{os}	V _{DG} = 15V, I _D = 1 mA, f = 1 kHz		10		μ mhos
Feedback Capacitance	Crss	$V_{DG} = 15V, V_{GS} = 0$	9	0.7	0.9	pF
Input Capacitance	Ciss	$V_{DS} = 15V, V_{GS} = 0$		3.5	4.0	pF
Noise Voltage	en	V _{DG} = 15V, I _D = 1 mA, f = 100 Hz		8.0		nV/√Hz
Noise Figure	NF	V_{DG} = 15V, I_D = 5 mA, R_G = 1 k Ω , f = 400 MHz	4	2.2	4.0	dB
Power Gain	G _{PS}	V _{DG} = 15V, I _D = 5 mA, f = 400 MHz		12		dB

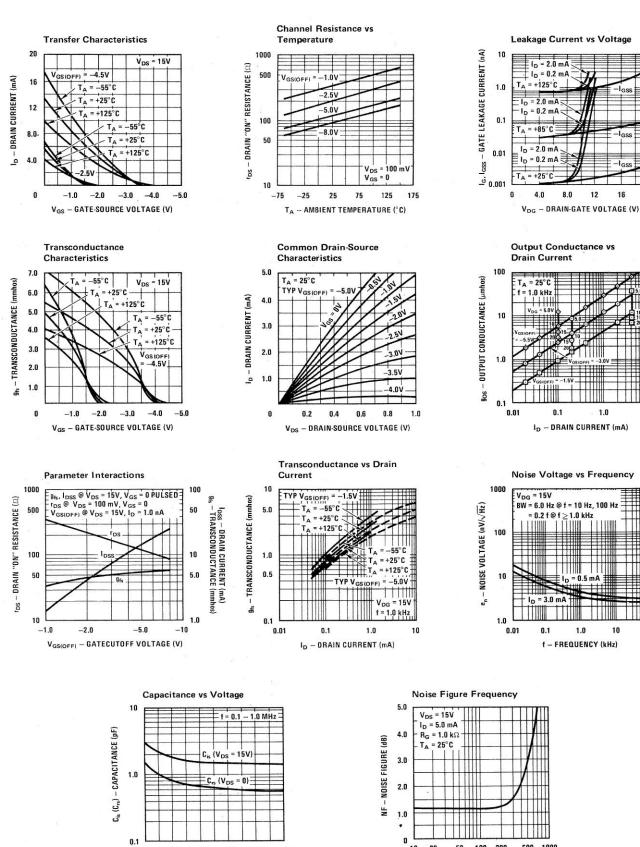
Examples of process 50 part numbers are as follows. *Denotes preferred parts.

2N3823 2N3966 2N4223 2N4224 2N4416 *2N4416A 2N5078 2N5103 2N5104 2N5105 2N5556 2N5556 2N5557 2N5558	* 2N5484 * 2N5485 * 2N5486 2N5555 2N5668 2N5669 2N5670 * J304 * J305 PN4223 PN4224 * PN4416	PN5163 MPF102 MPF106 MPF107 MPF110 MPF111 2N3819 2N5248 BF244A BF244A BF244B BF244C TIS58 TIS59	2N3823JAN,	BC264C BC264D BF245A BF245B BF245C BF256A BF256B BF256C PER MIL-S-19500 JANTX, JANTXV J, JANTX, JANTXV
--	--	--	------------	--

IGS

16 20

12


1.0

10

100

10

-8.0

-4.0

n

-12 -16

V_{GS} - GATE-SOURCE VOLTAGE (V)

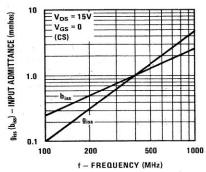
-20

20

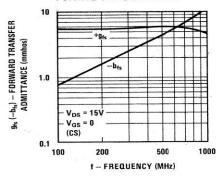
50 100

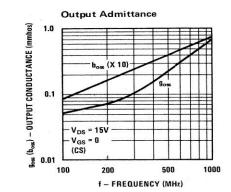
10

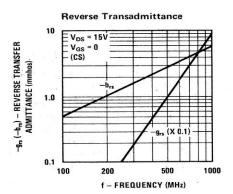
200

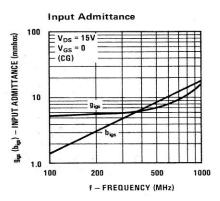

f - FREQUENCY (MHz)

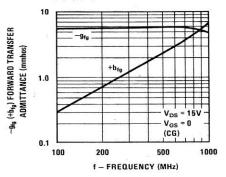

500 1000

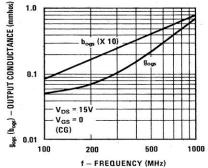

Process 50

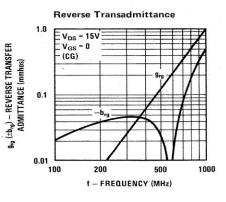

COMMON SOURCE

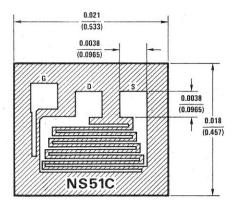

Input Admittance






COMMON GATE





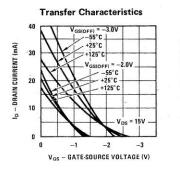
Output Admittance

Process 51 N-Channel JFET

GATE IS ALSO BACKSIDE CONTACT

DESCRIPTION

Process 51 is designed primarily for electronic switching applications such as low ON resistance analog switching. It features excellent C_{iss} $R_{DS(ON)}$ time constant. The inherent zero offset voltage and low leakage current make these devices excellent for chopper stabilized amplifiers, sample and hold circuits, and reset switches. Low feed-through capacitance also allows them to handle video signals to 100 MHz.


CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
Gate-Source Breakdown Voltage	BV _{GSS}	$V_{DS} = 0V, I_{G} = -1 \mu A$	-30	-50		v
Zero Gate Voltage Drain Current	IDSS	V _{DS} = 20V, V _{GS} = 0 Pulse Test	5.0	65	170	mA
Reverse Gate Leakage	I _{GSS}	$V_{GS} = -20V, V_{DS} = 0$		-15	-200	pА
"ON" Resistance	r _{DS}	V _{DS} = 100 mV, V _{GS} = 0	20	35	100	Ω
Forward Trans- conductance	9 _{fs}	V _{DG} = 15V, I _D = 2 mA		8.5		mmhos
Pinch Off Voltage	V _{GS(OFF)}	V _{DS} = 20V, I _D = 1 nA	-0.5	-4.5	-9.0	v
Drain "OFF" Current	I _{D(OFF)}	$V_{DS} = 20V, V_{GS} = -10V$		15	200	pА
Feedback Capacitance	C _{rss}	V _{DG} = 15V, I _D = 5 mA, f = 1 MHz		3.5	4.0	pF
Input Capacitance	Ciss	V _{DS} = 15V, I _D = 5 mA, f = 1 MHz		12	16	pF
Noise Voltage	en	$V_{DG} = 15V, I_{D} = 1 \text{ mA, f} = 100 \text{ Hz}$		6.0		nV/√Hz
Turn-On Time	t _{on}	V _{DD} = 10V, I _D = 6.6 mA		12	20	ns
Turn-Off Time	t _{off}	$V_{DD} = 10V, I_{D} = 6.6 \text{ mA}$		40	80	ns

Examples of process 51 part numbers are as follows. *De

*Denotes preferred parts.

2N4861	*PN4092	BF247A
2N4861A	*PN4093	BF247B
	*PN4391	BF247C
M	*PN4392	TIS73
	*PN4393	T1S74
	*PN4856	TIS75
*NF5103	*PN4857	
*2N5638	*PN4858	QUALIFIED PER MIL-S-19500
*2N5639	*PN4859	2N4091 JAN, JANTX, JANTXV
*2N5640	*PN4860	2N4092 JAN, JANTX, JANTXV
2N5653	*PN4861	2N4093 JAN, JANTX, JANTXV
2N5654	U1897E	2N4856 JAN, JANTX, JANTXV
*J111	U1898E	2N4857 JAN, JANTX JANTXV
*J112	U1899E	2N4858 JAN, JANTX, JANTXV
*J113		2N4859 JAN, JANTX, JANTXV
*PF5101		2N4860 JAN, JANTX, JANTXV
*PF5102		2N4861 JAN, JANTX, JANTXV
*PF5103	BF246C	
*PN4091		
	2N4861A *NF5101 *NF5102 *NF5103 *2N5638 *2N5639 *2N5640 2N5653 2N5654 *J111 *J112 *J113 *PF5101 *PF5102 *PF5103	2N4861A *PN4093 *PN4391 *PN4392 *NF5101 *PN4393 *NF5102 *PN4856 *NF5103 *PN4857 *2N5638 *PN4858 *2N5639 *PN4859 *2N5640 *PN4860 2N5653 *PN4861 2N5654 U1897E *J111 U1898E *J112 U1899E *J113 * PF5101 BF246A *PF5102 BF246B *PF5103 BF246C

Process 51

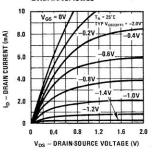
Transfer Characteristics 16 V_{GS(OFF)} = -12 - +25°C = +125°C 11 SOFF) +125°C +25°C -55° C

-1.0

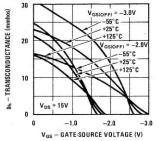
V_{GS} - GATE-SOURCE VOLTAGE (V)

-1.5

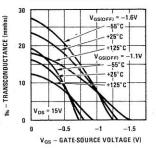
DRAIN CURRENT (mA)


- 0

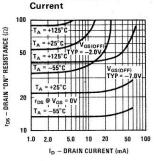
0


0

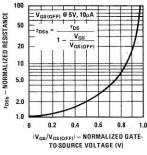
Common Drain-Source Characteristics

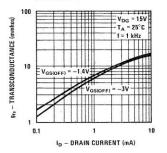


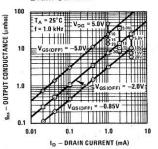
Transfer Characteristics

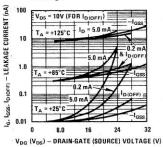


Transfer Characteristics

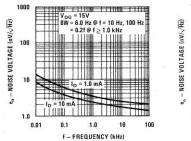

-0.5

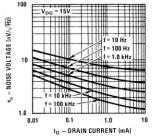

Resistance vs Drain

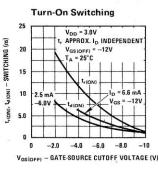



Transconductance vs Drain Current

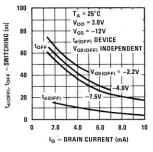
Output Conductance vs Drain Current


Leakage Current vs Voltage

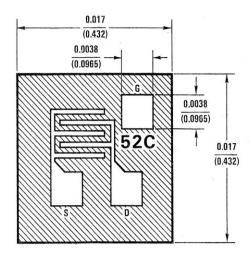

Capacitance vs Voltage



Noise Voltage vs Frequency



Noise Voltage vs Current

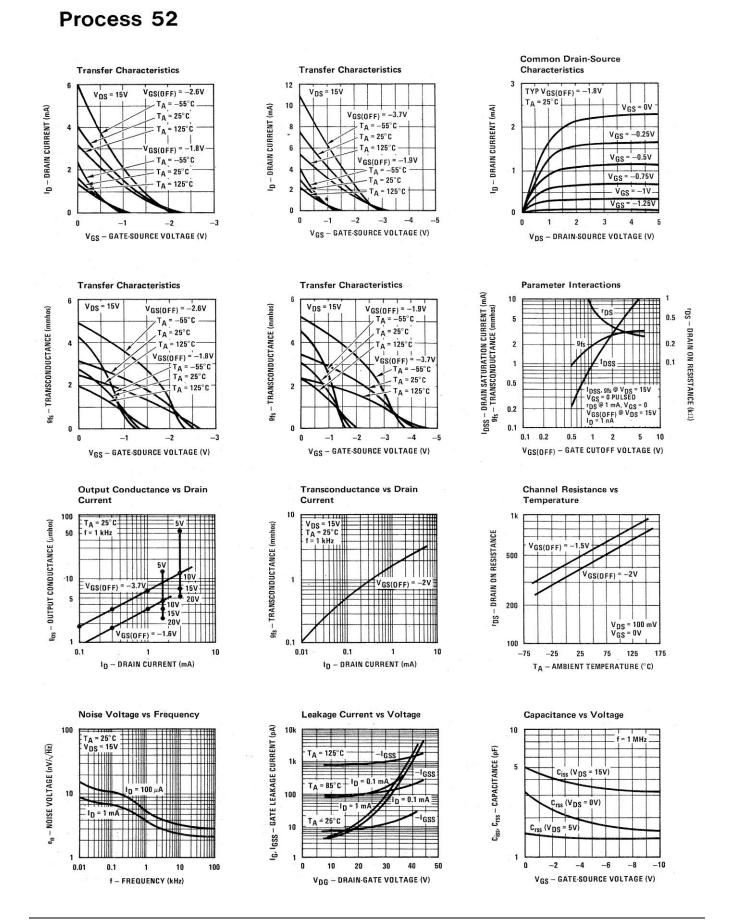


Turn-Off Switching

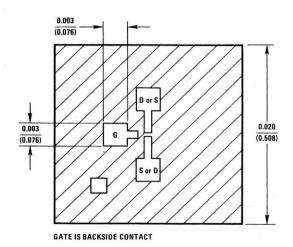
d(OFF).

Process 52 N-Channel JFET

GATE IS ALSO BACKSIDE CONTACT


DESCRIPTION

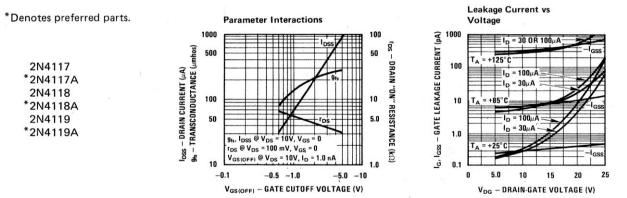
Process 52 is designed primarily for low level audio and general purpose applications. These devices provide excellent performance as input stages for piezo electric transducers or other high impedance signal sources. Their high output impedance and high voltage breakdown lend them to high gain audio and video amplifier applications. Source and drain are interchangeable.


CHARACTERISTIC	PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
Gate-Source Breakdown	BVGSS	$V_{DS} = 0V, I_{G} = -1 \mu A$	-40	-70		V
Voltage						
Drain Saturation Current	DSS	$V_{DS} = 20V, V_{GS} = 0V$	0.2	1.5	12	mA
Forward Transconductance	9fs	V _{DS} = 20V, V _{GS} = 0V	1.0	2.5	5.0	mmho
Forward Transconductance	9fs	V _{DS} = 20V., I _D = 200 µA		700		μmho
Reverse Gate Leakage Current	IGSS	V _{GS} =30V, V _{DS} = 0V		-10		pА
Drain ON Resistance	rDS	V _{DS} = 100 mV, V _{GS} = 0V	250	400	2000	Ω
Gate Cutoff Voltage	VGS(OFF),VP	V _{DS} = 15V, I _D = 1 nA	-0.3	1.0	-8.0	V
Output Conductance	9os	V _{DG} = 15V, I _D = 200 μA		2.0		μmho
Feedback Capacitance	C _{rss}	V _{DG} = 15V, V _{GS} = 0V, f = 1 MHz		1.3	1.8	pF
Input Capacitance	C _{iss}	V _{DG} = 15V, V _{GS} = 0V, f = 1 MHz		5	6	pF
Noise Voltage	en	V_{DG} = 15V, I_D = 200 μ A, f = 100 Hz		10		nV/√Hz

Examples of process 52 part numbers are as follows.

*Denotes preferred parts.

Process 53 N-Channel JFET

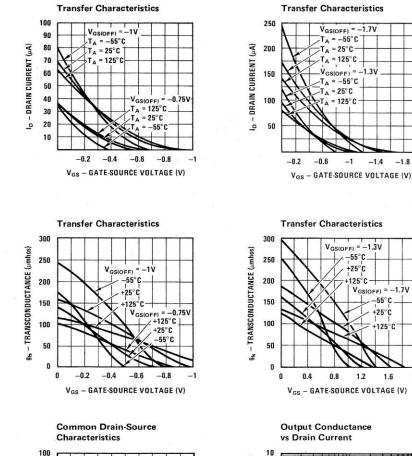


DESCRIPTION

Process 53 is designed primarily for low current DC and audio applications. These devices provide excellent performance as input stages for sub picoamp instrumentation or any high impedance signal sources.

CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MIN	ТҮР	МАХ	UNITS
Gate-Source Breakdown Voltage	BV _{GSS}	$V_{DS} = 0V, I_{G} = -1 \mu A$	-40	-60	2 8	v
Zero Gate Voltage Drain Current	IDSS	V _{DS} = 10V, V _{GS} = 0	0.02	0.25	1.0	mA
Forward Trans- conductance	g _{fs}	V _{DS} = 10V, V _{GS} = 0	80	250	350	μmho
Forward Trans- conductance	9 _{fs}	$V_{DG} = 15V, I_{D} = 50 \mu\text{A}$		120		μmho
Reverse Gate Leakage	IGSS	$V_{GS} = -20V, V_{DS} = 0$		-0.3	-10	рА
Pinch Off Voltage	V _{GS(OFF)}	V _{DS} = 10V, I _D = 1 nA	-0.5	-2.2	-6.0	v
Feedback Capacitance	Crss	$V_{DG} = 15V, V_{GS} = 0, f = 1 MHz$		0.85	1.0	pF
Input Capacitance	Ciss	V _{DS} = 15V, V _{GS} = 0, f = 1 MHz		2.0	2.5	pF
Output Conductance	g _{os}	$V_{DG} = 10V, I_{D} = 50 \mu A$		0.9	5.0	μmhos
Noise Voltage	en	$V_{DG} = 10V, I_{D} = 50 \mu A,$	-	45	150	nV∕√Hz
		f = 100 Hz			1	

Examples of process 53 part numbers are as follows.



V_{DS} = 10V

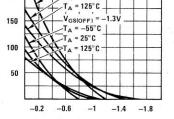
-4.0

 $V_{GS(OFF)} = -3.6V$ $T_A = -55^{\circ}C$

Process 53

TYP VGS(OFF) = -0.8V gos – OUTPUT CONDUCTANCE (µmhos) T_A = +25°C ٥١ 0.1V Vce $V_{GS} = -0.2V$ $V_{GS} = -0.3V$ -0.5 VGS = -0.4V 1.0 0 2.0 3.0 4.0 5.0

I_D – DRAIN CURRENT (μA)


80

60

40

20

0

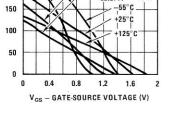
ID – DRAIN CURRENT (mA) T_A = +25°C T_A = +125°C 0.4 $V_{GS(OFF)} = -1.8V$ $T_A = -55^{\circ}C$ T_A = +25°C 0.2 A = +125° C 0 0 -1.0 -2.0

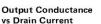
0.8

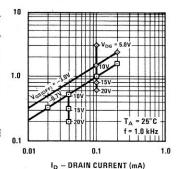
0.6

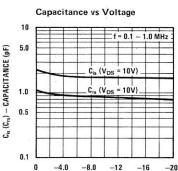
TRANSCONDUCTANCE (µmhos)

 V_{GS}

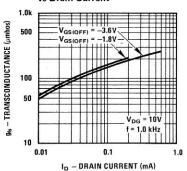

-3.0 V_{GS} - GATE-SOURCE VOLTAGE (V)


Transfer Characteristics

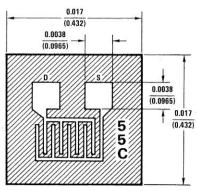

Transfer Characteristics 400 $V_{GS(OFF)} = -3.6V$ $T_A = -55^{\circ}C$ $V_{DS} = 10V$ T_A = +25°C 300 $T_A = +125^{\circ}C$ -V_{GS(OFF)} = -1.8V -T_A = -55°C 200 T_A = +25°C = +125°C 100 ÷ 0 -1.0 0 -3.0 -2.0 -4.0


- GATE-SOURCE VOLTAGE (V)

+25°C 125°C $V_{GS(OFF)} = -1.7V$



V_{GS} - GATE-SOURCE VOLTAGE (V)



1.0k = V_{DG} = 10V = BW = 6.0 Hz @ f = 10 Hz, 100 Hz 500 = 0.2f @ $f \ge 1.0 \text{ kHz}$ 200 100 = 10uA 50 20 100 10 0.01 0.03 0.1 0.5 1.0 2.0 10 50 100 f - FREQUENCY (kHz)

en – NOISE VOLTAGE (nV/<Hz)

Process 55 N-Channel JFET

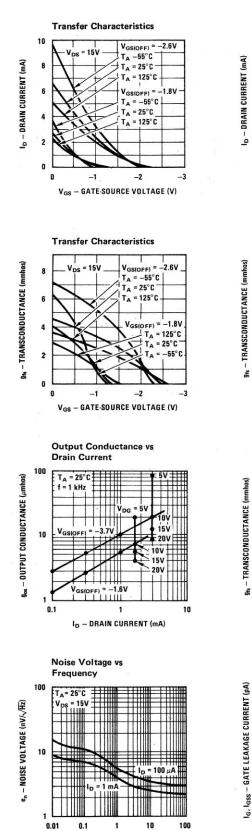
GATE IS BACKSIDE CONTACT

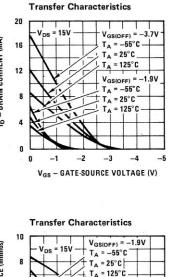
DESCRIPTION

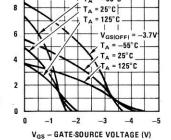
Process 55 is a general purpose low level audio amplifier and switching transistor. Wafer processing is similar to process 52 but process 55 uses a larger geometry. This results in higher Y_{fs} , I_{DSS} , and capacitance and lower $R_{DS(ON)}$. It is useful for audio and video frequency amplifiers and RF amplifiers under 50 MHz. It may also be used for analog switching applications.

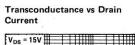
CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
Gate-Source Breakdown Voltage	BV _{GSS}	$V_{DS} = 0V, I_{G} = -1 \mu A$	-40	-70		v
Zero Gate Voltage Drain Current	IDSS	V _{DS} = 20V, V _{GS} = 0	0.5	5.0	20	mA
Forward Trans- conductance	9 _{fs}	V _{DS} = 20V, V _{GS} = 0	2.0	4.5	7.0	mmho
Forward Trans- conductance	9fs	$V_{DG} = 15V, I_{D} = 200 \mu A$		1200	10	μmhos
Reverse Gate Leakage	I _{GSS}	$V_{GS} = -30V, V_{DS} = 0$		-10	-100	pA -
"ON" Resistance	r _{DS}	$V_{DS} = 100 \text{ mV}, V_{GS} = 0$	140	250	600	Ω
Pinch Off Voltage	V _{GS(OFF)}	V _{DS} = 20V, I _D = 1 nA	-0.5	-2.0	-8.0	v
Feedback Capacitance	Crss	V _{DG} = 15V, V _{GS} = 0, f = 1 MHz		1.5	2.0	pF
Input Capacitance	Ciss	V _{DS} = 15V, V _{GS} = 0, f = 1 MHz		6.0	7.0	pF
Output Conductance	g _{os}	$V_{DG} = 15V, I_{D} = 200 \mu A$		2		μmhos
Noise Voltage	en	$V_{DG} = 15V, I_{D} = 200 \mu\text{A}, f = 100 \text{Hz}$		10		nV/√Hz

Examples of process 55 part numbers are as follows.

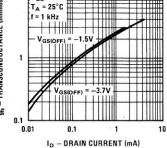

*Denotes preferred parts.

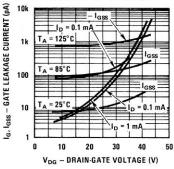

2N3436	*2N5361
2N3437	*2N5362
2N3438	*2N5363
	*2N5364
2N3821	
2N3822	*2N5457
2N3824	*2N5458
2N4220	*2N5459
2N4220A	MPF103
2N4221	MPF104
2N4221A	MPF105
2N4222	MPF108
2N4222A	MPF109
2N5358	MPF112
2N5359	PN4220
2N5360	PN4221
2110000	PN4222

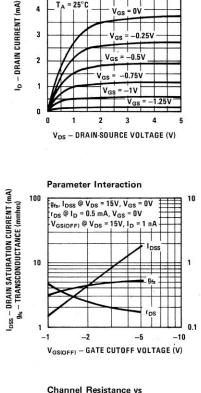

FDS


- DRAIN "ON" RESISTANCE (kn)

Process 55





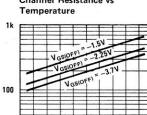


10

Common Drain-Source

.81

0


Characteristics

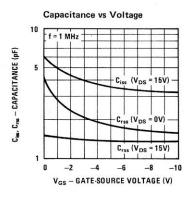
TYP VGSOFF

T_A = 25°C

5

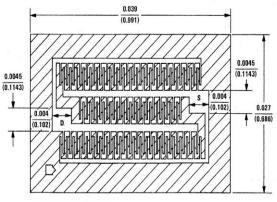
4

 r_{DS} – DRAIN "ON" RESISTANCE (Ω)


10

-75

-25 25 75 125 175 T_A - AMBIENT TEMPERATURE (°C)


= 100 VDS

 $V_{GS} = 0V$

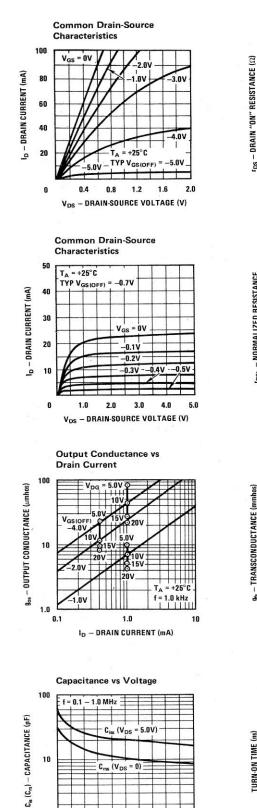
f - FREQUENCY (kHz)

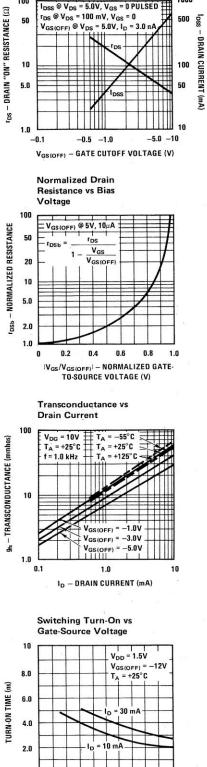
Process 58 N-Channel JFET

GATE IS BACKSIDE CONTACT

DESCRIPTION

Process 58 was developed for analog or digital switching applications where very low $r_{DS(ON)}$ is mandatory. Switching times are very fast and $R_{DS(ON)} C_{iss}$ time constant is low. The 6 Ω typical on resistance is very useful in precision multiplex systems where switch resistance must be held to an absolute minimum. With r_{DS} increasing only 0.7%/ °C, accuracy is retained over a wide temperature excursion.

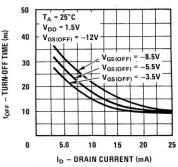

CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
Gate-Source Breakdown Voltage	BV _{GSS}	V _{DS} = 0V, I _G = −1 μA	-25	-30		v
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 5V, V _{GS} = 0 Pulse Test	100	400	1000	mA
Reverse Gate Leakage	I _{GSS}	$V_{GS} = -15V, V_{DS} = 0$		-50	-500	pА
"ON" Resistance	r _{DS}	V _{DS} = 100 mV, V _{GS} = 0	3.0	6.0	20	Ω
Pinch Off Voltage	V _{GS(OFF)}	$V_{DS} = 5V, I_{D} = 3 nA$	-0.5	-5.0	-12	v
Drain "OFF" Current	I _{D(OFF)}	V _{DS} = 5V, V _{GS} = -10V		0.05	20	nA
Feedback Capacitance	C _{rss}	$V_{DG} = 15V, I_{D} = 2 \text{ mA}, f = 1 \text{ MHz}$		12	25	pF
Input Capacitance	Ciss	$V_{DG} = 15V, I_{D} = 2 \text{ mÅ}, \text{ f} = 1 \text{ MHz}$		25	50	pF
Forward Trans- conductance	9fs	V _{DG} = 10V, I _D = 2 mA		10		mmhos
Output Conductance	g _{os}	$V_{DG} = 10V, I_{D} = 2 \text{ mA}$		100		μmhos
Noise Voltage	en	V_{DG} = 15V, I_{D} = 2 mA, f = 100 Hz		6.0		nV/√H


Examples of process 58 part numbers are as follows. *Denote

*Denotes preferred parts.

U320	*J108	*2N5432
U321	*J109	*2N5433
U322	*J110	*2N5434

Process 58


Parameter Interactions

100

1000

"ON" Resistance vs

-4.0

-8.0 -12

V_{GS} - GATE-SOURCE VOLTAGE (V)

-16

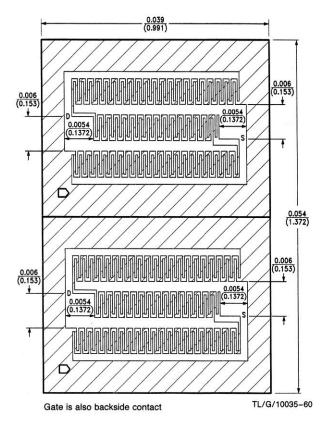
-20

1.0

0

-4.0 -6.0

 $V_{GS(OFF)} - GATE-SOURCE CUTOFF VOLTAGE (V)$


-8.0

-10

0

-2.0

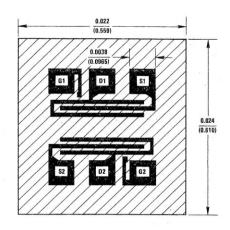
Process 59 N-Channel JFET

DESCRIPTION

Process 59 is provided for analog or digital switching applications where very low $\mathsf{R}_{\mathsf{DS}(\mathsf{ON})}$ is mandatory. The 4Ω typical ON resistance is very useful where switch resistance must be held to an absolute minimum.

Electrical Characteristics (T_A = 25°C)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
BV _{GSS}	Gate-Source Breakdown Voltage	$V_{DS} = 0V, I_G = -1 \mu A$	25			v
DSS	Zero Gate Voltage Drain Current	$V_{DS} = 15V, V_{GS} = 0V$ Pulse Test	100	600	1500	mA
IGSS	Reverse Gate Leakage	$V_{GS} = -15V, V_{DS} = 0V$			1.0	nA
rds(ON)	ON Resistance	$V_{DS} = 100 \text{ mV}, V_{GS} = 0 \text{V}$	1.5	4.0	10	Ω
V _{GS(OFF)}	Pinch Off Voltage	$V_{DS} = 5V, I_D = 100 \text{ nA}$	0.5	5.0	10	V
ID(OFF)	Drain OFF Current	$V_{DS} = 5V, V_{GS} = -10V$		1.0	10	nA
Crss	Feedback Capacitance	$V_{DG} = 15V$, $I_D = 2$ mA, $f = 1$ MHz		25	35	pF
Ciss	Input Capacitance	$V_{DG} = 15V$, $I_D = 2$ mA, $f = 1$ MHz		50	80	pF
9fs	Forward Transconductance	$V_{DG} = 10V, I_D = 2 \text{ mA}$		10		mmho
g _{os}	Output Conductance	$V_{DG} = 10V, I_D = 2 \text{ mA}$		200		μmho
e _n	Noise Voltage	$V_{DG} = 15V, I_D = 2 \text{ mA}, f = 100 \text{ Hz}$		6.0		nV/√Hz


This process is available in the following device types.

J105

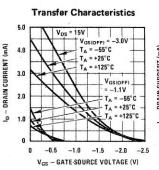
J106

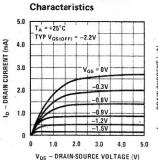
J107

Process 83 N-Channel JFET

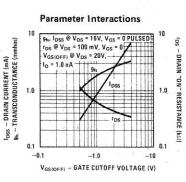
DESCRIPTION

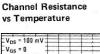
Process 83 is a monolithic dual JFET with a diode isolated substrate. It is intended for operational amplifier input buffer applications. Processing results in low input bias current and virtually unmeasureable offset current. Likewise matching characteristics are virtually independent of operating current and voltage, providing design flexibility. Most GP 2N types are sorted from this family.

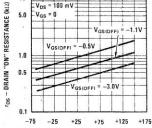

CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
Gate-Source Breakdown Voltage	BV _{GSS}	V _{DS} = 0V, I _G = -1 μA	-50	-70		v
Zero Gate Voltage Drain Current	IDSS	V _{DS} = 15V, V _{GS} = 0	0.5	2.5	8.0	mA
Forward Trans- conductance	9fs	V _{DS} = 15V, V _{GS} = 0	1.0	2.5	5.0	mmho
Pinch Off Voltage	V _{GS(OFF)}	$V_{DS} = 15V, I_{D} = 1 nA$	-0.5	-2.0	-4.5	v
Gate Current	I _G	$V_{DG} = 20V, I_{D} = 0.2 \text{ mA}$	11	3.0	50	pА
Forward Trans- conductance	9 _{fs}	V _{DG} = 15V, I _D = 0.2 mA	600	850		μmhos
Output Conductance	g _{os}	$V_{DG} = 15V, I_{D} = 0.2 \text{ mA}$		1.0	5.0	μmhos
"ON" Resistance	r _{DS}	$V_{DS} = 100 \text{ mV}, V_{GS} = 0$		450		Ω
Noise Voltage	en	V _{DG} = 15V, I _D = 0.2 mA f = 100 Hz		10	50	nV/√Hz
Differential Match	V _{GS1} -V _{GS2}	V _{DG} = 15V, I _D = 0.2 mA		7.0	25	mV
Differential Match	ΔV_{GS1-2}	V _{DG} = 15V, I _D = 0.2 mA		10	50	μV/°C
Common Mode Rejection	CMRR	V _{DG} = 15V, I _D = 0.2 mA	80	95	2	dB
Feedback Capacitance	Crs	V _{DG} = 15V, I _D = 0.2 mA, f = 1 MHz		1.0	1.2	pF
Input Capacitance	C _{is}	V _{DG} = 15V, I _D = 0.2 mA, f = 1 MHz		3.4	4.0	pF


Examples of process 83 part numbers are as follows.

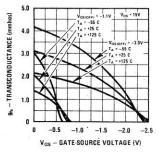
*Denotes preferred parts.


2N3921	2N5047	U233	J410
2N3922	*2N5196	U234	J411
*2N3954	*2N5197	U235	J412
*2N3954A	*2N5198		
*2N3955	*2N5199		*NPD8301
*2N3955A	2N5452		*NPD8302
*2N3956	2N5453		*NPD8303
*2N3957	2N5454		
*2N3958	*2N5545		
2N4084	*2N5546		
2N4085	*2N5547		
2N5045	U231		
2N5046	U232		

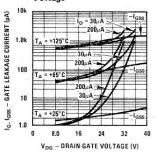

Process 83



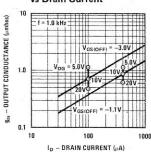
Common Drain-Source

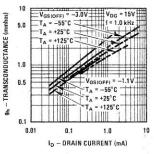


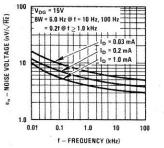
10

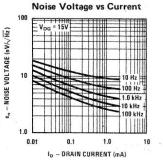


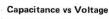
T_A - AMBIENT TEMPERATURE (°C)

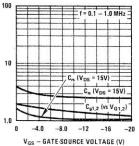

Transfer Characteristics


Leakage Current vs Voltage

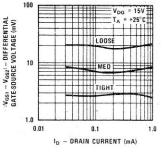

Output Conductance vs Drain Current

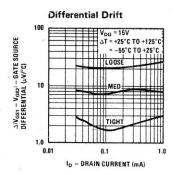




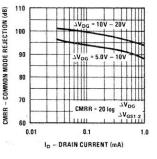


Noise Voltage vs Frequency

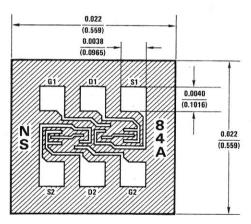




(Crs) - CAPACITANCE (pF)


5°

Differential Offset



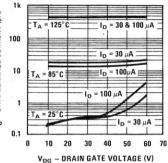
CMRR vs Drain Current

© 1977 Fairchild Semiconductor Corporation Rev. 1.0 • 7/20/15

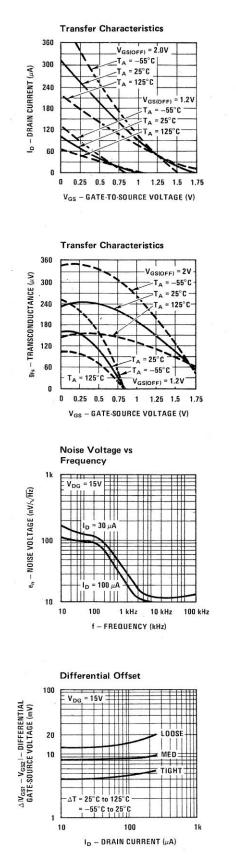
Process 84 N-Channel JFET

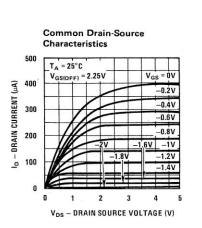
DESCRIPTION

Process 84 is a monolithic dual JFET with a diode isolated substrate. It is designed for the most critical operational amplifier input stages or electrometer single ended preamp. Ideal for medical applications and instrumentation inputs where subpicoamp inputs are important. Device design considered high CMRR, subpicoamp leakage over wide input swings, low capacitance, and tight match over wide current range.


CHARACTERISTIC	PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
Gate-Source Breakdown Voltage	BV _{GSS}	$V_{DS} = 0V, I_{G} = -1 \mu A$	-40	-60		V
Drain Saturation Current	IDSS	$V_{DS} = 15V, V_{GS} = 0V$	20	300	1000	μA
Forward Transconductance	g _{fs}	$V_{DS} = 15V, V_{GS} = 0V$	90	180	300	μV
Forward Transconductance	g _{fs}	$V_{DS} = 15V, I_{D} = 30 \mu A$	50	120	150	μV
Gate Cutoff Voltage	V _{GS(OFF)}	V _{DS} = 15V, I _D = 1 nA	0.5	2	4.5	v
Reverse Gate Leakage Current	GSS	$V_{DS} = 0V, V_{GS} = -20V$	147	1	5	pА
Gate Leakage Current	I _G	$V_{DG} = 10V, I_{D} = 30 \mu A$		0.5	3	pА
Feedback Capacitance	C _{rss}	$V_{DS} = 15V, V_{GS} = 0, f = 1 MHz$		0.3	0.4	pF
Input Capacitance	C _{iss}	$V_{DS} = 15V, V_{GS} = 0, f = 1 MHz$		2	3	pF
Noise Voltage	en	$V_{DS} = 15V, I_{D} = 30 \mu\text{A}, f = 1 \text{kHz}$		30	50	nV/√Hz
Noise Voltage	en	$V_{DS} = 15V, I_{D} = 30 \mu\text{A}, f = 10 \text{Hz}$		180		nV/ √Hz
Output Conductance	g _{os}	$V_{DS} = 10V, I_{D} = 30 \mu A$	С.	0.1	0.2	μV
Differential Gate-Source Voltage	$ V_{GS1} - V_{GS2} $	$V_{DS} = 10V, I_{D} = 30 \mu A$	-	12	25	mV
Differential Gate-Source Voltage Drift	ΔV_{GS1-2}	$V_{DS} = 10V, I_{D} = 30 \mu A$		10	50	μV/°C
Common-Mode Rejection Ratio	CMRR	$V_{DS} = 10V, I_{D} = 30 \mu A$		112	с. С	dB

Examples of process 84 part numbers are as follows.


*Denotes preferred parts.


2N5902 2N5903 2N5904 2N5905			Parameter Interactions			Leakage Voltage
*2N5906 *2N5907 *2N5908 *2N5909	TANCE (μV) SENT (μA)	1k	$\begin{array}{c} g_{rs}, I_{OSS} \oplus V_{DS} = 15V, V_{OS} = 0V\\ V_{OS(OFF)} \oplus V_{DS} = 15V, I_{D} = 1.0A\\ \end{array}$	LEAKAGE CURRENT (pA)	1k 100	_ T _A = 125°)
2	s – Transconductance I _{des} – Drain Currence	100		GATE LEAKAGE	10 1	T _A = 85°C
	- ²⁸ -	10 0	1 1 10 gs(off) - VOLTAGE GATE-TO-SOURCE (V)	- 9I	0.1	0 10 2 V _{DG} - D

Leakage Current vs Voltage and Drain Current

Process 84

Transconductance vs

V_{DG} = 15V f = 1 kHz

21

Drain Current

V_{GS(OFF)} = 2V

25°C

125

TA

= -55°C

1k

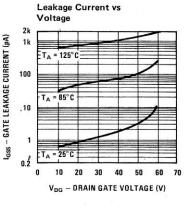
500

300

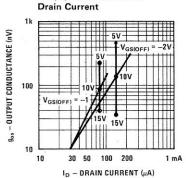
200

100

50

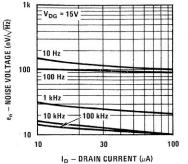

30

20


10

10 20 30 50 100 200

 $g_m = \mathsf{TRANSCONDUCTANCE} \left(\mu \mathsf{V} \right)$



Output Conductance vs

Noise Voltage vs Current

 $I_D - DRAIN CURRENT (\mu A)$

Differential Drift

+++++

V_{DG} = 15V -

MED

TIGHT

∆T = 25°C to 125°C

-55°C to 25°C

50 100

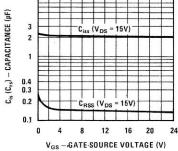
ID - DRAIN CURRENT (µA)

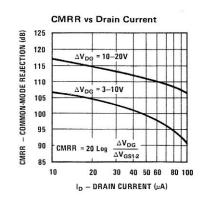
1 mA

100

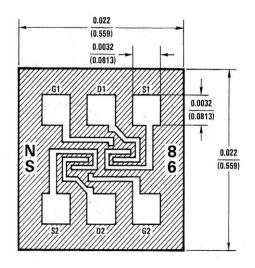
30

10


5

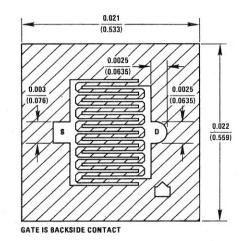

1

10


 $\Delta |V_{GS1}^{*-} V_{GS2}| - GATE-SOURCE$ DIFFERENTIAL ($\mu V /^{\circ}$ C) 10

Capacitance vs Voltage

© 1977 Fairchild Semiconductor Corporation Rev. 1.0 • 7/20/15 AN-6609

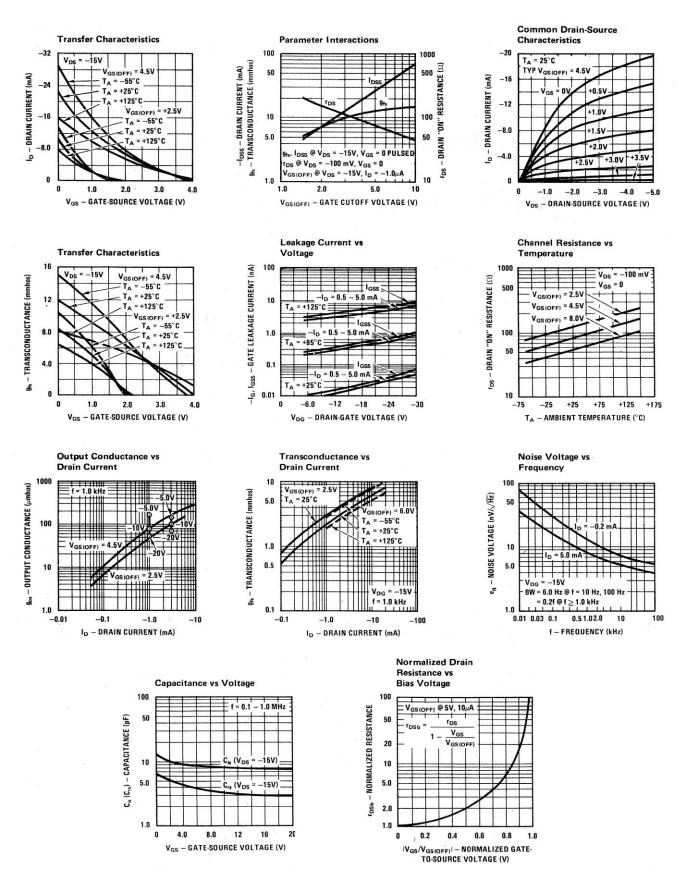

DESCRIPTION

Process 86 is a monolithic dual JFET with a diode isolated substrate. It is intended for critical amplifier input stages requiring low noise, sub picoamp bias currents and high gain. Exacting process control results in consistent parameter distribution with tight match and low drift.

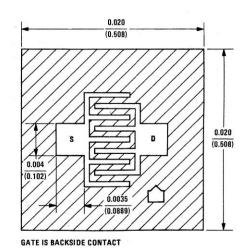
This process is available in the following device types. *Denotes preferred parts.

U421 U422 U423 U424 U425 U425 U426

Process 88 P-Channel JFET


DESCRIPTION

Process 88 is designed primarily for electronic switching applications where a P channel device is desirable. Inherent zero offset voltage, low leakage and low $R_{DS(ON)}$ C_{iss} time constant make this device excellent for low level analog switching, sample and hold circuits and chopper stabilized amplifiers. This device is the complement to Process 51.


CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
Gate-Source Breakdown Voltage	BV _{GSS}	$V_{DS} = 0V, I_G = 1 \mu A$	30	40		v
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = -15V, V_{GS} = 0$	-5.0	-30	-90	mA
Forward Trans- conductance	9fs	$V_{DS} = -15V, V_{GS} = 0$	4.0	13	17	mmhos
Forward Trans- conductance	9fs	$V_{DG} = -15V, I_{D} = -2 \text{ mA}$		3.5		mmhos
Gate Leakage	IGSS	$V_{GS} = 20V, V_{DS} = 0$		0.05	1.0	nA
"ON" Resistance	r _{DS}	$V_{DS} = -100 \text{ mV}, V_{GS} = 0$	50	80	200	Ω
Pinch Off Voltage	V _{GS(OFF)}	$V_{DS} = -15V, I_{D} = -1 nA$	0.5	5.0	10	v
Drain "OFF" Current	I _{D(OFF)}	$V_{DS} = -15V, V_{GS} = 10V$		-0.05	-10	nA
Feedback Capacitance	Crss	$V_{DG} = -15V$, $I_{D} = -2$ mA, f = 1 MHz		4.0	5.0	pF
Input Capacitance	Ciss	$V_{DS} = -15V, I_{D} = -2 \text{ mA}, f = 1 \text{ MHz}$		14	15	pF
Output Conductance	g _{os}	$V_{DG} = -15V, I_{D} = -2 \text{ mA}$		100	300	μmhos
Noise Voltage	en	V _{DG} = -15V, I _D = -2 mA, f = 100 Hz		20		nV/√Hz

This process is available in the following device types. *Denotes preferred parts.

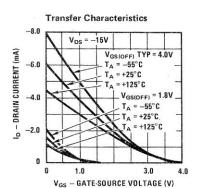
2N2609	2N3382	*J174
2N4382	2N3384	*J175
2N5018	2N3386	*J176
2N5019	2N3993	*J177
*2N5114	2N3993A	*J270
*2N5115	2N3994	*J271
*2N5116	2N3994A	
U300		QUALIFIED PER MIL-S-19500
U301		*2N5114JAN, JANTX, JANTXV
U304	P1086E	*2N5114JAN, JANTX, JANTXV
U305	P1087E	· · · · · · · · · · · · · · · · · · ·
U306	PN4343	*2N5116JAN, JANTX, JANTXV

Process 89 P-Channel JFET

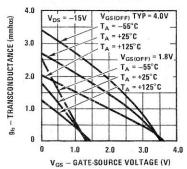
DESCRIPTION

Process 89 is designed primarily for low level amplifier applications. This device is the complement to Process 55. Commonly used in voltage variable resistor applications.

CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
Gate-Source Breakdown Voltage	BV _{GSS}	$V_{DS} = 0V, I_G = 1 \mu A$	20	40		V
Zero Gate Voltage Drain Current	IDSS	$V_{DS} = -15V, V_{GS} = 0$	-0.3	-4.0	-20	mA
Forward Trans- conductance	g _{fs}	$V_{DS} = -15V, V_{GS} = 0$	1.0	2.5	4.0	mmhos
Forward Trans- conductance	gfs	$V_{DG} = -15V, I_{D} = -0.2 \text{ mA}$		700		μmhos
Gate Leakage	I _{GSS}	$V_{GS} = 20V, V_{DS} = 0$		0.02	1.0	nA
Pinch Off Voltage	V _{GS(OFF)}	$V_{DS} = -15V, I_{D} = -1 nA$	0.5	3.0	9.0	V
Feedback Capacitance	Crss	$V_{DG} = -15V, V_{GS} = 0, f = 1 MHz$		2.0	2.5	pF
Input Capacitance	Cis	$V_{DS} = -15V, I_{D} = -2 \text{ mA}, f = 1 \text{ MHz}$		7.0	8.5	pF
"ON" Resistance	r _{DS}	$V_{DS} = -100 \text{ mV}, V_{GS} = 0$		450	1.12	Ω
Output Conductance	g _{os}	$V_{DG} = -15V, I_{D} = -0.2 \text{ mA}$		5.0	15	μmhos
Noise Voltage	en	$V_{DG} = -15V, I_{D} = -0.2 \text{ mA},$ f = 100 Hz		30	2 2 8	nV/√Hz

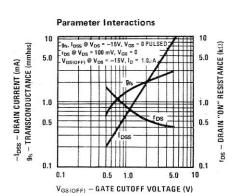

This process is available in the following device types. *Denotes preferred parts.

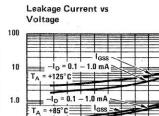
2N2608 2N4381 2N5020 2N5021 2N3329 2N3330 2N3331 2N3332 *2N5460 *2N5461 *2N5462 PN4342 PN4360 PN5033


2N3820

QUALIFIED PER MIL-S-19500 2N2608JAN






Transfer Characteristics

Output Conductance vs Drain Current

-I_D = 0.1 - 1.0 mA

-24

GS(OFF) = 1.8V

-10

-55°C T

+25°C

+125

-1.0

I_D - DRAIN CURRENT (mA)

-18

V_{DG} - DRAIN-GATE VOLTAGE (V)

-30

= +25°C-

-6.0 -12

Transconductance vs

V_{GS(OFF)} = 4.0V

T_A = -55°C

- +25°C +125°C

Drain Current

- GATE LEAKAGE CURRENT (nA)

IGSS

<u>ð</u> 0.01

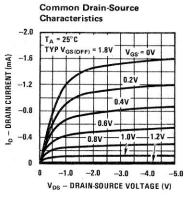
TRANSCONDUCTANCE (mmhos)

04s -

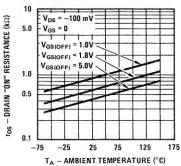
0.1

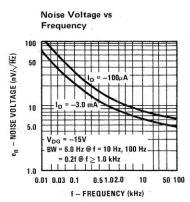
10

5.0


1.0

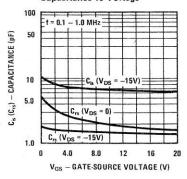
0.5


0.1

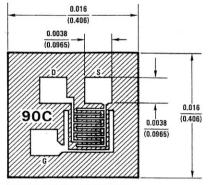

-0.01

0

Channel Resistance vs Temperature



-15\


-0.1

DG

f = 1.0 kHz

Process 90 P-Channel JFET

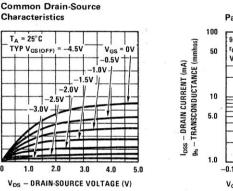
GATE IS ALSO BACKSIDE CONTACT

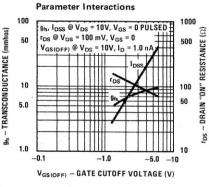
DESCRIPTION

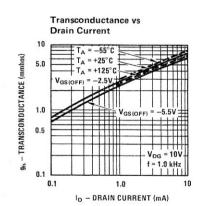
Process 90 is designed for VHF/UHF mixer/ amplifier and applications where Process 50 is not adequate. Has sufficient gain and low noise, common gate configuration at 450 MHz, for sensitive receivers. The high transconductance and square law characteristics insures low crossmodulation and intermodulation distortions. Common-gate operation simplifies circuitry. Consider Process 92 for even higher performance.

CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MIN	түр	MAX	UNITS
Gate-Source Breakdown Voltage	BV _{GSS}	$V_{DS} = 0V, I_G = -1 \mu A$	-20	-30		V
Zero Gate Voltage Drain Current	IDSS	V _{DS} = 10V, V _{GS} = 0	3	18	40	mA
Forward Trans- conductance	g _{fs}	V _{DS} = 10V, V _{GS} = 0	5.5	8.0	10	mmhos
Forward Trans- conductance	9fs	V _{DS} = 10V, I _D = 5 mA	4.5	5.8		mmhos
Reverse Gate Current	IGSS	$V_{GS} = -15V, V_{DS} = 0$		-5.0	-100	pА
"ON" Resistance	r _{DS}	$V_{DS} = 100 \text{ mV}, V_{GS} = 0$		90		Ω
Pinch Off Voltage	V _{GS(OFF)}	$V_{DS} = 10V, I_{D} = 1 nA$	-1.5	-3.5	-6.0	V
Output Conductance	g _{os}	$V_{DG} = 10V, I_{D} = 5 \text{ mA}$		45	100	μmhos
Feedback Capacitance	C _{rs}	V _{DG} = 10V, 1 _D = 5 mA		1.0	1.2	pF
Input Capacitance	Cis	V _{DG} = 10V, I _D = 5 mA		4.0	5.0	pF
Noise Voltage	en	V _{DG} = 10V, I _D = 5 mA, f = 100 Hz		13	-	nV/√Hz
Noise Figure	NF	$V_{DG} = 10V, I_{D} = 5 \text{ mA}, \text{ f} = 450 \text{ MHz}$		3.0		dB
Power Gain	G _{pg} (CG)	V _{DG} = 10V, I _D = 5 mA, f = 450 MHz		11		dB

This process is available in the following device types.


*2N5397 2N5398 U312


J114 *J210 *J211 *J212 *Denotes preferred parts.

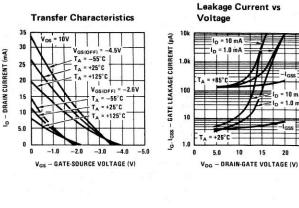

*2N5245

*2N5246 *2N5247

*J211	
*J212	
*J300	
	Par

50

40


30

20

10

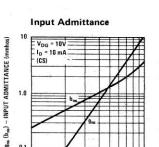
0

ID - DRAIN CURRENT (mA)

Leakage Current vs

10

+25°C

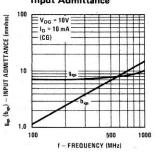

10 15 20 25

1.0 mA

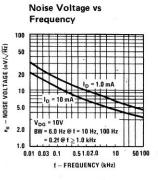
= 1.0 m

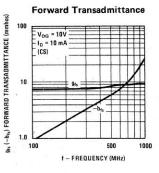
COMMON SOURCE

COMMON GATE

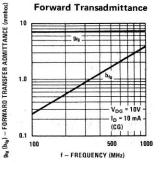

500 f - FREQUENCY (MHz)

1000

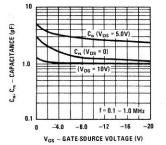

0.1

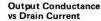

100

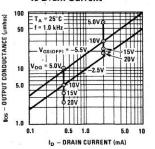
Input Admittance

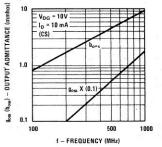


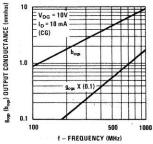
Transfer Characteristics 12 $V_{GS(OFF)} = -4.5V$ $T_A = -55^{\circ}C$ 9ts - TRANSCONDUCTANCE (mmhos) 10'v 10 T_ = +25°C = +125°C 8.0 GS (OFF) +125° 6.0 4.0 2.0 0 0 -1.0 -2.0 -3.0-4.0 -5.0 V_{GS} - GATE-SOURCE VOLTAGE (V)

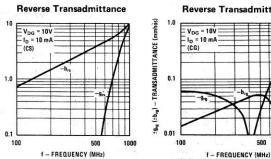


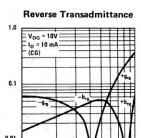



Forward Transadmittance

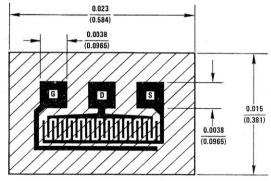

Capacitance vs Voltage






Output Admittance

Output Admittance



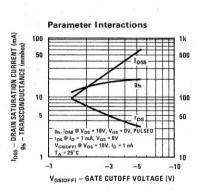
500

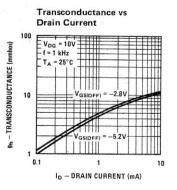
1000

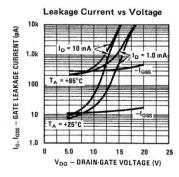
-9rs (-brs) - REVERSE TRANSFER ADMITTANCE (mmhos)

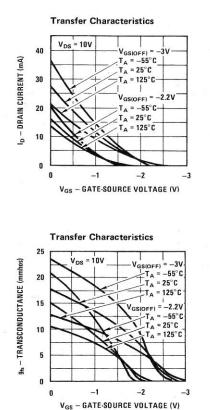
Process 92 N-Channel Junction Match

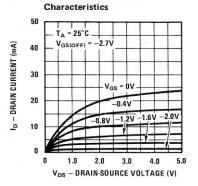
DESCRIPTION

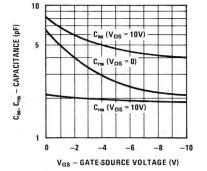

Process 92 is designed for VHF/UHF amplifier, oscillator, and mixer applications. As a common gate amplifier, 16 dB at 100 MHz and 12 dB at 450 MHz can be realized. Worst case 75 ohm input impedance provides ideal input match.

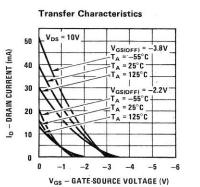

CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
Gate-Source Breakdown Voltage	BV _{GSS}	$V_{DS} = 0V, I_{G} = -1 \mu A$	-20	-30		V
Zero Gate Voltage Drain Current	IDSS	$V_{DS} = 10V, V_{GS} = 0, Pulsed$	10	38	80	mA
Forward Trans- conductance	gfs	V_{DS} = 10V, V_{GS} = 0, Pulsed		19		mmhos
Forward Trans- conductance	9fs	V _{DG} = 10V, I _D = 10 mA	10	13	18	mmhos
Reverse Gate Current	IGSS	$V_{GS} = -15V, V_{DS} = 0$		-15	-100	pА
"ON" Resistance	r _{DS}	$V_{DS} = 100 \text{ mV}, V_{GS} = 0$	35	45	80	Ω
Pinch Off Voltage	V _{GS(OFF)}	V _{DS} = 10V, I _D = 1 nA	-1.5	-4.0	-6.5	V
Output Conductance	g _{os}	$V_{DG} = 10V, I_{D} = 10 \text{ mA}$		160	250	μ mhos
Feedback Capacitance	C _{gd}	$V_{DG} = 10V, I_{D} = 10 \text{ mA}, \text{ f} = 1 \text{ MHz}$		2.0	2.5	pF
Input Capacitance	C _{gs}	V_{DG} = 10V, I_{D} = 10 mA, f = 1 MHz		4.1	5.0	pF
Noise Voltage	en	$V_{DG} = 10V, I_{D} = 10 \text{ mA}, \text{ f} = 100 \text{ Hz}$		6.0	201	nV/√Hz
Noise Figure	NF	V _{DG} = 10V, I _D = 10 mA, f = 450 MHz		3.0		dB
Power Gain	G _{pg}	V _{DG} = 10V, I _D = 10 mA, f = 450 MHz		12	с. Эл	dB

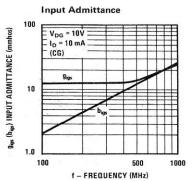

This process is available in the following device types. *Denotes preferred parts.

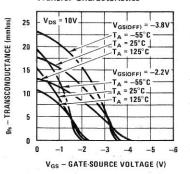

U308	U430
*U309	U431
*11310	

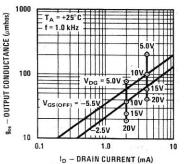




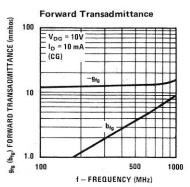


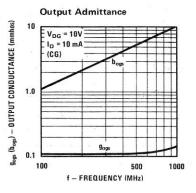

Common Drain-Source

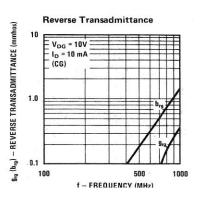

Capacitance vs Voltage



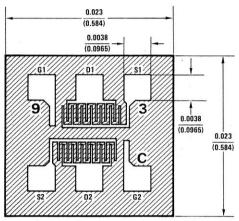
Transfer Characteristics




Output Conductance vs Drain Current

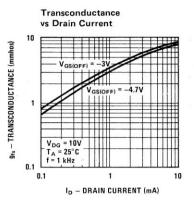


Noise Voltage vs Frequency

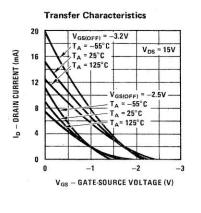


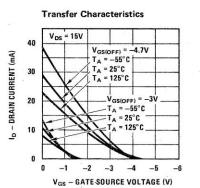
Process 93 N-Channel JFET

DESCRIPTION


Process 93 is a monolithic dual JFET with a diode isolated substrate. It is intended for wide band, low noise, single ended video amplifier input stages, and high slew rate op amps. Monolithic structure eliminates thermal transient errors, and provides freedom to pick operating current and voltage.

CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
Gate-Source Breakdown Voltage	BV _{GSS}	$V_{DS} = 0V, I_{G} = -1 \mu A$	-25	-30		v
Zero Gate Voltage Drain Current	IDSS	V_{DS} = 10V, V_{GS} = 0, Pulsed	3.0	18	40	mA
Forward Trans- conductance	9fs	$V_{DS} = 10V, V_{GS} = 0, Pulsed$		8.0		mmhos
Forward Trans- conductance	9fs	V _{DG} = 10V, I _D = 5 mA	5.0	6.0	10	mmhos
Output Conductance	g _{os}	$V_{DG} = 10V, I_{D} = 5 \text{ mA}$		50	100	μmhos
Pinch Off Voltage	V _{GS(OFF)}	V _{DS} = 10V, I _D = 1 nA	-1.5	-3.5	-6.0	v
"ON" Resistance	r _{DS}	V _{DS} = 100 mV, V _{GS} = 0		100		Ω
Gate Current	I _G	V _{DG} = 10V, I _D = 5 mA		10	100	pА
Noise Voltage	en	V _{DG} = 10V, I _D = 5 mA, f = 100 Hz		9.0	30	nV/ √Hz
Differential Match	VGS1-VGS2	$V_{DG} = 10V, I_{D} = 5 \text{ mA}$		9.0	30	mV
Differential Match	ΔV_{GS1-2}	$V_{DG} = 10V, I_{D} = 5 \text{ mA}$		15	40	μV/°C
Common Mode Rejection	CMRR	V _{DG} = 10V, I _D = 5 mA		90	96 20	dB
Feedback Capacitance	Crs	V _{DG} = 10V, I _D = 5 mA, f = 1 MHz		1.0	1.2	pF
Input Capacitance	Cis	V _{DG} = 10V, I _D = 5 mA, f = 1 MHz		4.2	5.0	pF


This process is available in the following device types.


*Denotes preferred parts.

^{*2}N5911 *2N5912 U257

Transfer Characteristics

V_{DS} = 15V

 $V_{GS(OFF)} = -4.7V$ $T_A = -55^{\circ}C$

T_A = 25°C

T_A = 125°C

 $T_A = -55^\circ C$

T_A = 25°C

T_A = 125°C

GS(OFF)

-4 -5

-3

V_{GS} - GATE-SOURCE VOLTAGE (V)

Noise Voltage vs Frequency

-3V

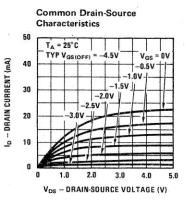
-6

12.5

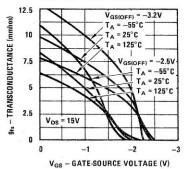
10

7.5

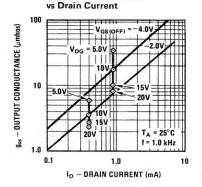
5

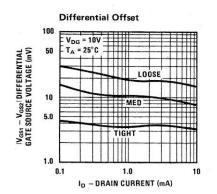

2.5

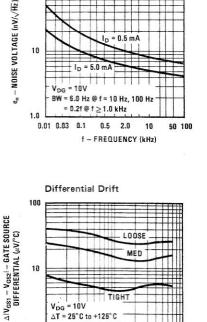
6

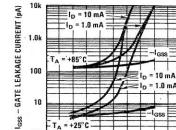

100

0 -1 -2

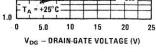

gfs – TRANSCONDUCTANCE (mmhos)

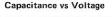


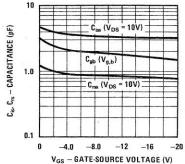

Transfer Characteristics

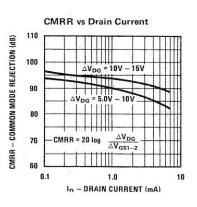


Output Conductance





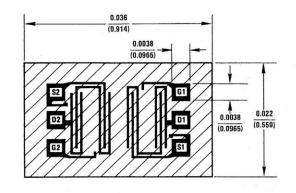



0

Leakage Current vs Voltage

© 1977 Fairchild Semiconductor Corporation Rev. 1.0 • 7/20/15 = --55°C TO +25°C

1.0


ID - DRAIN CURRENT (mA)

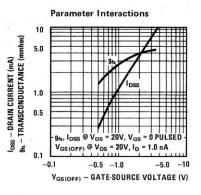
10

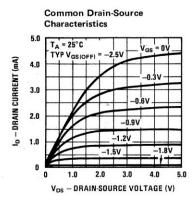
1.0

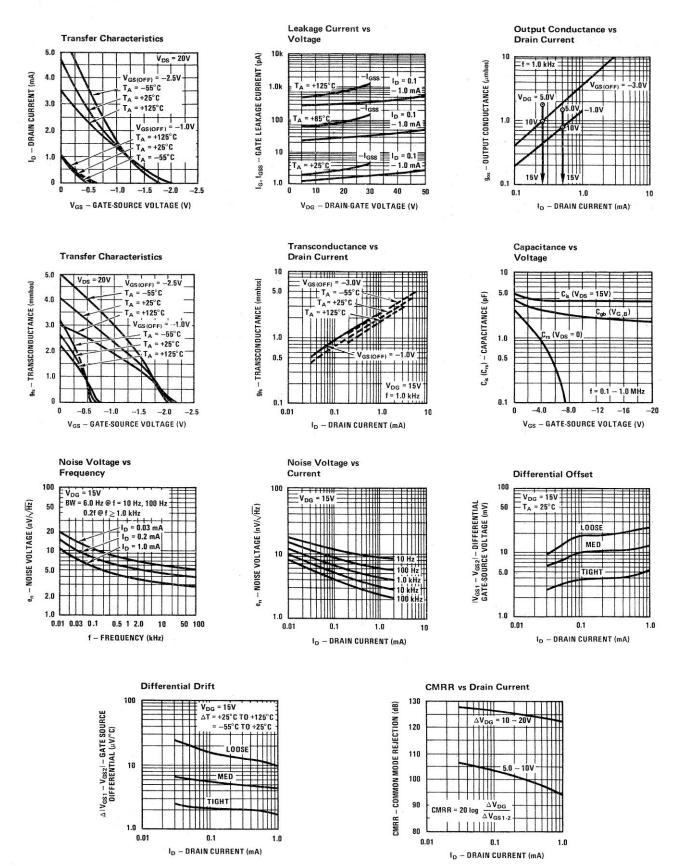
0.1

Process 93 P-Channel JFET

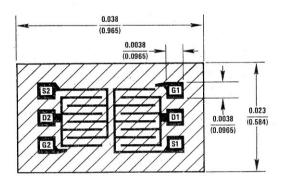
DESCRIPTION


Process 94 is a monolithic dual JFET. It is strictly intended for operational amplifier input buffer applications. Special processing results in extremely low input bias current and virtually unmeasureable offset current. It is important to note that the <5 pico ampere bias current is measured at 35 volts. Typical CMRR is 125 dB. Performance superior to electrometer tubes can be readily achieved with low offset voltage and almost zero long term drift.


CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MIN	ТҮР	МАХ	UNITS
Gate-Source Breakdown Voltage	BV _{GSS}	$V_{DS} = 0V, I_{G} = -1 \mu A$	-40	-70		V
Zero Gate Voltage Drain Current	IDSS	V _{DS} = 15V, V _{GS} = 0	0.5	3.0	10	mA
Forward Trans- conductance	g _{fs}	V _{DS} = 15V, V _{GS} = 0	1.5	3.5	7.0	mmho
Forward Trans- conductance	g _{fs}	V _{DG} = 15V, I _D = 0.2 mA	0.9	1.2	1.8	mmhos
Pinch Off Voltage	V _{GS(OFF)}	V _{DS} = 15V, I _D = 1 nA	-0.5	-2.0	-6.0	V
Gate Current	I _G	$V_{DG} = 35V, I_{D} = 0.20 \text{ mA}$		1.0	15	рА
Feedback Capacitance	C _{rss}	$V_{DS} = 15V, V_{GS} = 0, f = 1 MHz$		0.01	0.02	pF
Input Capacitance	Ciss	$V_{DS} = 15V, V_{GS} = 0, f = 1 MHz$		4.0	5.0	pF
Noise Voltage	en	$V_{DG} = 15V, I_{D} = 0.2 \text{ mA}, f = 10 \text{ Hz}$		12	50	nV/√Hz
Output Conductance	g _{os}	V _{DG} = 15V, I _D = 0.2 mA		<0.1		μmhos
Differential Match	V _{GS1} -V _{GS2}	$V_{DG} = 15V, I_{D} = 0.2 \text{ mA}$		5.0	25	mV
Differential Match	ΔV_{GS1-2}	$V_{DG} = 15V, I_{D} = 0.2 \text{ mA}$		6.0	50	μV/°C
Common Mode Rejection	CMRR	$V_{DG} = 15V, I_{D} = 0.2 \text{ mA}$		125		dB

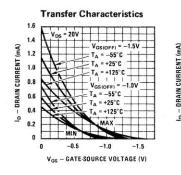

This process is available in the following device types.

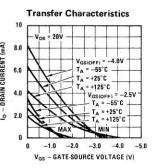
*Denotes preferred parts.

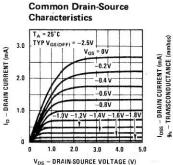

*NDF9406	
*NDF9407	
*NDF9408	
*NDF9409	
*NDF9410	
NDF9401	
NDF9402	
NDF9403	
NDF9404	
NDF9405	

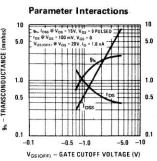
Process 95 N-Channel JFET

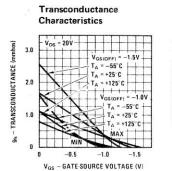
DESCRIPTION

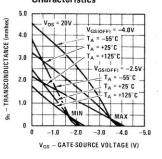

Process 95 is a monolithic dual JFET with a diode isolated substrate. It is intended for operational amplifier input buffer applications. Processing results in low input bias current and virtually unmeasureable offset current. Low noise voltage and high CMRR for critical I/f applications.

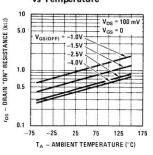

CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MIN	ТҮР	МАХ	UNITS
Gate-Source Breakdown Voltage	BV _{GSS}	$V_{DS} = 0V, I_{G} = -1 \mu A$	-40	-70		v
Zero Gate Voltage Drain Current	DSS	V _{DS} = 15V, V _{GS} = 0	0.5	3.0	8.0	mA
Forward Trans- conductance	9 _{fs}	V _{DS} = 15V, V _{GS} = 0	1.0	2.5	4.0	mmhos
Forward Trans- conductance	g _{fs}	V _{DG} = 15V, I _D = 0.2 mA	0.5	0.7		mmhos
Gate Leakage	I _{GSS}	$V_{GS} = -20V, V_{DS} = 0$		-5.0	-100	pA
Pinch Off Voltage	V _{GS(OFF)}	V _{DS} = 15V, I _D = 1 nA	-0.5	-2.5	-4.0	V
Input Capacitance	C _{iss}	$V_{DS} = 15V, V_{GS} = 0, f = 1 MHz$		10	14	pF
Noise Voltage	e _n	$V_{DS} = 15V, I_{D} = 0.2 \text{ mA},$ f = 10 Hz		8.0	30	nV/√Hz
Noise Voltage	e _n	V _{DS} = 15V, I _D = 0.2 mA, f = 100 Hz		6.0	10	nV/√Hz
Output Conductance	g _{os}	$V_{DG} = 15V, I_{D} = 0.2 \text{ mA}$		0.3	1.0	μ mhos
Feedback Capacitance	Crss	$V_{DS} = 15V, V_{GS} = 0, f = 1 MHz$		3.5	5.0	pF
Differential Match	V _{GS1} -V _{GS2}	$V_{DG} = 20V, I_{D} = 0.2 \text{ mA}$		6.0	25	mV
Differential Match	ΔV_{GS1-2}	$V_{DG} = 20V, I_{D} = 0.2 \text{ mA}$		9.0	60	μV/°C
Common Mode Rejection	CMRR	V _{DG} = 20V, I _D = 0.2 mA	86	115		dB

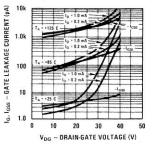

This process is available in the following device types.

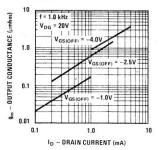

2N5515	*2N5522
2N5516	*2N5523
2N5517	*2N5524
2N5518	*2N6483
2N5519	*2N6484
*2N5520	*2N6485
*2N5521	


*Denotes preferred parts.






Transconductance Characteristics


Channel Resistance vs Temperature

Leakage Current vs Voltage

Output Conductance vs Drain Current

Capacitance vs Voltage

C- (Vos = 15V)

Cc. SUBS (Vc. SUBS)

-8.0 -12 -16

 V_{GS} – GATE-SOURCE VOLTAGE (V)

Crs (VDS = 0) -

f = 0.1 - 1.0 MHz

15V)

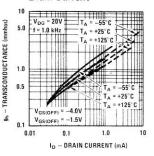
(V

100

50

10

5.0


1.0

0 -4.0

(Crs) - CAPACITANCE (pF)

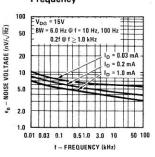
5°

Transconductance vs Drain Current

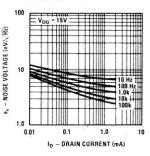
Differential Offset

LOOSE

MED


TIGHT

V_{DG} = 20V

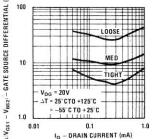

 $T_A = 25^{\circ}C$


I_D

Noise Voltage vs Frequency

Noise Voltage vs Current

CMRR vs Drain Current


130 (qB)

COMMON MODE REJECTION

CMRR

80

0.01

0.1 1.0 189VIL - DRAIN CURRENT (mA)

 $CMRR = 20 \log \frac{\Delta V_{DG}}{\Delta V_{GS1-2}}$ 120 = 15V 25 5.0V 100 90

0.1

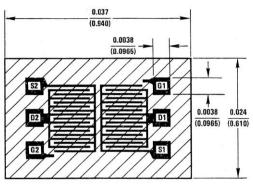
I_D - DRAIN CURRENT (mA)

DIFFERENTIAL GATE-SOURCE VOLTAGE (mV)

V_{GS1} - V_{GS2}

-20

100


10

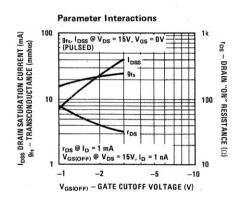
1.0

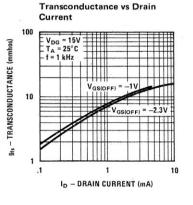
0.01

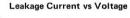
1.0

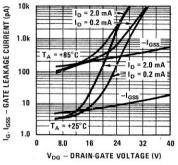
Process 96 N-Channel JFET

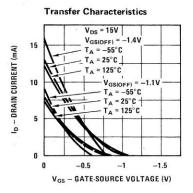
DESCRIPTION

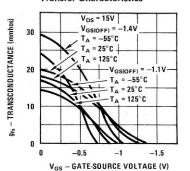

Process 96 is a monolithic dual JFET with a diode isolated substrate. It is intended for wide band, low noise, single ended video amplifier input stages. Also ideal for matched voltage variable resistor applications over 60 dB tracking range.

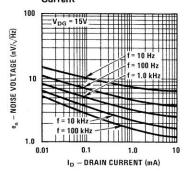

CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MIN	түр	МАХ	UNITS
Gate-Source Breakdown Voltage	BV _{GSS}	$V_{DS} = 0V, I_{G} = -1 \ \mu A$	-40	-55		v
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 15V, V _{GS} = 0	5.0	15	30	mA
Forward Trans- conductance	9fs	V _{DS} = 15V, V _{GS} = 0	9.0	18	30	mmhos
Forward Trans- conductance	9 _{fs}	V _{DG} = 15V, I _D = 2 mA	7.5	9.0		mmhos
Output Conductance	g _{os}	V _{DG} = 15V, I _D = 2 mA		15	45	μ mhos
Pinch Off Voltage	V _{GS(OFF)}	V _{DS} = 15V, I _D = 1 nA		-1.8	-3.0	V
"ON" Resistance	r _{DS}	$V_{DS} = 100 \text{ mV}, V_{GS} = 0$	35	70	120	Ω
Gate Current	IGSS	$V_{GS} = -20V, V_{DS} = 0$		-8.0	-100	pА
Gate Current	I _G	$V_{DG} = 15V, I_{D} = 2 \text{ mA}$		15	200	pА
Noise Voltage	en	$V_{DG} = 15V, I_{D} = 2 \text{ mA}, \text{ f} = 100 \text{ Hz}$		4.5	10	nV/√Hz
Feedback Capacitance	C _{rs}	V_{DG} = 15V, I_{D} = 2 mA, f = 1 MHz		2.5	3.0	pF
Input Capacitance	Cis	$V_{DG} = 15V, I_{D} = 2 \text{ mA}, \text{ f} = 1 \text{ MHz}$		10	12	pF
Differential Voltage	VGS1-VGS2	$V_{DG} = 15V, I_{D} = 2 \text{ mA}$		8.0	25	mV
Differential Voltage	ΔV_{GS}	$V_{DG} = 15V, I_{D} = 2 \text{ mA}$		9.0	50	μV/°C
Common Mode Rejection	CMRR	V _{DG} = 15V, I _D = 2 mA	76	95		dB

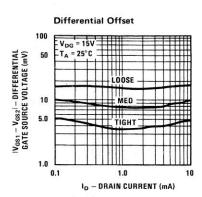

This process is available in the following device types. *Denotes preferred parts.

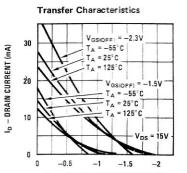

*2N5564	
*2N5565	
*2N5566	



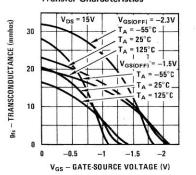








Noise Voltage vs Current



 V_{GS} – GATE-SOURCE VOLTAGE (V)

Transfer Characteristics

Noise Voltage vs Frequency

= 15V

BW = 6.0 Hz @ f = 10 Hz, 100 H;

'n

50 100

10

0.51.02.0

f - FREQUENCY (kHz)

V_{DG} = 15V

LOOSE

TIGH

1.0

I_D - DRAIN CURRENT (mA)

MED

ΔT = +25°C TO +125°C

--55°C TO +25°C

10

= 0.2f @ f ≥ 1.0 kHz

VDG

100

50

20

10

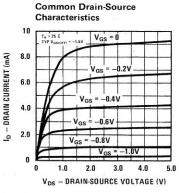
5.0

1.0

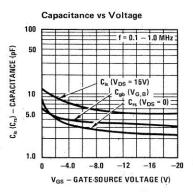
100

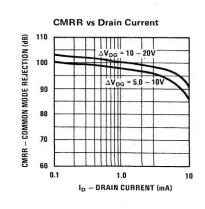
10

1.0

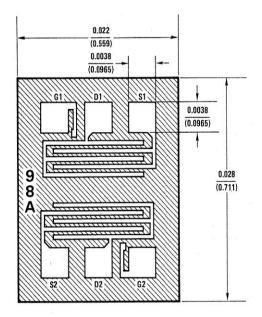

 $\Delta |V_{GS1} - V_{GS2}| - GATE SOURCE$ DIFFERENTIAL ($\mu V |^{\circ}$ C)

0.01 0.03 0.1


Differential Drift


- NOISE VOLTAGE (nV//Hz

. ۳ 2.0


Output Conductance vs Drain Current 100 OUTPUT CONDUCTANCE (µmhos) T_A = 25°C 50 f = 1.0 kHz $V_{DG} = 5.0V$ 10 5.0 VORIOEE VGS(OFF) - sof 1.0 0.5 1.0 0.1 5.0 10 ID - DRAIN CURRENT (mA)

© 1977 Fairchild Semiconductor Corporation Rev. 1.0 • 7/20/15

Process 98 N-Channel JFET

DESCRIPTION

Process 98 is a high gain, general purpose, monolithic dual JFET with a diode isolated substrate. It is intended for amplifier input stages requiring high gain, low noise and low offset drift over temperature. Strict processing controls result in low input bias currents and virtually immeasurable offset currents. Matching characteristics are essentially independent of operating current and voltage.

This process is available in the following device types.

*Denotes preferred parts.

2N5561	J401
2N5562	J402
2N5563	J403
U401	J404
U402	J405
U403	J406
U404	
U405	
U406	

References

[1] 1977 JFET DATABOOK, National Semiconductor

Editor: Richard Dunipace, June 2015.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC