¢ HIBERNATE

Hibernate Reference Documentation

Version: 3.0alpha

Table of Contents

1= =0 2SRRI Vii
1. QUICKStart With TOMICALuiiiiii s a s annsssnsnsnnnnnnnnnnnsnnnnns 1
1.1. Getting started With HIDEIMNELEcooiiiiiieice e 1

1.2, FIrSt PErSISIENT ClESSiveiiiiiiiiie ettt e e e e e s e e e nnne s 3

RS AV = o o T g Te 1 = o PRSPPI 4

1.4, PlayiNg WITN CBLSccoiiuiiiieiiiiiiee ettt e e e e e s e e e e e e e s anbn e e e e s nnnneees 5

LT T o PP PEPPRRPP 7

A o T (o U = RSO 8
P2 I @Y= a1 = SRR 8

2.2, INSEANCE SLALES ...ttt ettt e e e ettt et e e e e e s s e bbb e et e e e e e e e e bbb eeeaaeeaan 10

2.3 IMX INEEGIELION ...ttt e e s e e e s e e e e s s ar e e e e annne e e e e anreeeeean 10

A O NS | oo] 1 PRSPPI 10

R Ofo T {[o 18] =11 o Lo PP PP PP PPPPPTROPPPRPN 12
3.1. ProgrammatiC CONFIQUIALIONceeviiiiiiiiiiiiie e eeee e eeee e e e e e e e e et e e e e e e e e e e e e e e eeeeeeeeeeeeeeeeeees 12

3.2. ObtaiNING 8 SESSIONFECIONYvveieeiiieiee ettt e e st e e s sbae e e e e snbneeeean 12

3.3. User provided IDBC CONNECLIONuueeiiiieeeiiiiiiieeiee e e e e e e eeieeee e e e e e e e s eeeaee e e s annneeneeeeeens 13

3.4. Hibernate provided JDBC CONNECLIONcccciiiiiiiiiiieeee e e eeeciiitee e e e e e e st e e e e e e e e s ennnvaaeeea s 13

3.5. Optional configuration ProPEITIESeieiiiieiieiiiiie e s e e e ee e 15
N TS O T B - = ot £ SR PPPRPPOTRRR 18

3.5.2. Outer JOiN FEIChINGcouveiiiii e 19

R T I = 1= YA (=1 1 19

3.5.4. Second-level and qQUErY CaChoviiiiiie e 19

3.5.5. Transaction strategy CONfIQUIaLIONccoiiiuureieieiee e eee e e e e e e e e e e 19

3.5.6. INDI-bound SESSIONFACLONYccevviiiiieeeeeiiiiiiiee e e r e e e e e nrnes 20

3.5.7. Query Language SUDSHTULIONocuviiiiiiiiiie e 20

3.5.8. HIDEINELE SLALISHICS ...eieiivviiieiiiiiiee ettt e s e e e e snraeeeeans 21

G oo o oo [T PP P PP OUPPPPTPPPPRN 21

3.7. Implementing a NaMINGSLTEIEOYceevvveiiiiiiiiiieiiieeeeeeeeeee e e e e e e e e e e e e e e eeereeeeeeereeerereeeees 21

3.8. XML CoNnfigUration FIlEccoiuiiiiiiiiiiie ittt e e 21
S S = L O TSR 23
4.1. A SIMPIE POJO EXAMPIE ..uvveiiieeee ettt e e e e e e e e e et e e e e e e e s s et raeeeaeas 23
4.1.1. Declare accessors and mutators for persistent fields ... 24

4.1.2. Implement ano-argument CONSITUCTONcccuvviieieeeeeiiiiiiie e e e e e e e sesirrrre e e e e e e e aaeees 24

4.1.3. Provide an identifier property (Optional)cocoueeeeiiiiiieeiiiiiee e 24

4.1.4. Prefer non-final ¢classes (OPtioNal)oevvveviviiiiiiiieeeeeeeeeeeeeeeeeeeeeeee e 25

4.2. IMplementing INNEITANCEcci i e e eeeeas 25

4.3. Implementing equals() and hasNCOAE()c.vveeeriiiiie et 25

4.4. DYNAMIC MOUEIS ..ot e e e e e e e e e e e e e s et e e e e e e e e s s snntrreeeeeeas 26

5. BASIC O/R M@PPING -.teteeiiiieieeiiitee ettt e et e e et e e e e st e e e e e sn e e e e e s be e e e e anb et e e e anbreeenanbrneeean 28
5.1. MappinNg AECIAratioNcccciiiiiiiiiiiie e e e e et e e e e e e e e e e e e s s st e e e e e e e e s sentbreeeeeaaeeaaans 28
DL . DOCIYPE .o 29

5.1.2. hibernate-mappingccooeeieie e, 29

5.1.3. class, dyNamMIC-ClasScccoiiiiiiiiiiie et e e e e e s et ee e s 30

ST 0 T PR SURRR 32

I B0 1= 0 = (o O SSUPPPPPR 32

5.1.4.2. HI/IO @QOMtNM ...eeiiiiiiie ittt 33

5.1.4.3. UUID algorithimcooiiiiiiiie et 34

5.1.4.4. |dentity cOlUMNS 8N SEQUENCEScceiiuvrreeeiiiiieeaiiieee e et et siaee e 34

Hibernate 3.0a pha

HIBERNATE - Relational Persistence for |diomatic Java

5.1.4.5. ASSIgNE IAENTITIENSoviiiiiiiiie e 34

5.1.4.6. Primary keysassigned by triggersoocoiiieieiii e 34

5.1.5. COMPOSITETA ..ueeeiieeeite ettt e et e e et e e e e e e e e e e e e nees 34

oI IS0 o 1= o 011 7= (o PR 35
5.1.7. VErSiON (OPLIONAL) ..eeiiiiieieiiiiiiee ettt ettt e e 36
5.1.8. timestamp (OPLIONAD)cooieeeiieiiieii e e e e e eas 36
B, PIO Y coiieiee e 37
5.1.10. MANY-TO-0NE ...t et r e e e s e st r et e e e e s s s e et e e e e s s aanrrrneeeeeas 38
5,111 ONEEO-0NE ... 39
5.1.12. component, dynamiC-COMPONENToeuurreeriirreeeiiiireeeaibreeesrbrreessinreeeasnreeeeenees 40
5.1.13. SUBCIBSS ..ottt e e e e eeaens 41
5.1.14. JOINEO-SUDCIESScciiiiiiiiiiiiiie et 41
5.1.15. UNION-SUDCIBSSceieiiiiiiee ettt e e e e e e e et e e e e e e e e neneeeeeeeas 42

ST 0 0 o T o PP PRP T OPPRR 43

DA A7, KEY oottt n ettt n e n e 43
5.1.18. Map, Sat, liSt, DAG ..vvveieiiiiiiiicee e 44

5. L1, IMPOIT ettt e et e e e e e e e e e e e e e e nnes 44

5.2 HIDEINAIE TYPES ..o, 44
5.2.1 ENtIIES AN VAIUBS ...ttt e e 44
5.2.2. BASICVAIUBTYPES ...oeiiiiiiee ettt ettt et e s e e e e e 45
5.2.3. CUSIOM VAIUE TYPES ..veeeiiieeeiiiiiiiiie et e e e e s ettt e e e e e e ettt e e e e e e e s s st aa e e e e e e s s eentnraneeeaas 46
5.2.4. ANY tYPE MBPPINGS .. cuvteeeeiiuieeeeeaiteee e et e e e s st e e s e e e s asbe e e e s asbr e e e s anne e e e e annreeeeennes 46

5.3. SQL qUOLE IdENtITIENS ..vveiiee e e e e et e e e e e e e 47
5.4. Modular mappiNg filESeeiiiiiiii e 47
5.5.Using XDOClet Markupoooeeeeeeeeeeeeceee e, 48
SR @o! |- v g o a1 =TT o 11 T PSP P 50
6.1, PerSiStent COIHECIIONSciiiiiiiiiiiiie ettt e et e e e e e e s st e e e e e e e e s aansneneeeeaaeeaan 50
6.2. MappiNg @COHECLIONcoiieiiiiieeee e e e e e e e et eeaaaeeean 51
6.3. Collections of Vauesand Many-To-Many ASSOCILIONSeeeerrrrreeriiirieenniieeeessineeeens 52
6.4. ONE-TO-MaNy ASSOCIBLIONScc.vvveiieiieeiiiiiitiie e e e e e s e eeire e e e e e e e s s st e e e e eeesessanntbrareeeaaeeaans 54
6.5. Lazy INITIAlIZBIIONeeiiiiieiieeeieei ettt e st e e e s e e e e nnbneeeean 54
6.6. SOMEA COBCLIONSeeiiiiie et e e e e e e e s st e e e e e e e e e aannneeeeeeaaeeaans 55
B.7. USING @N <IADBO™oviiiieiiie e e e e e e e e e e e e raaaeeaans 56
6.8. Bidirectional ASSOCIBLIONScc.uuveiiiieeeiiiie e e e e s s ettt e e e e e e s s s st ar e e e e e e s s snntreneeeaaaeeeans 57
6.9. TErNArY ASSOCIBLIONS ...vvveiiieeeiiiiiiie et e e e e e e e et e e e e e e e s e e et e e e e ae e e s s st abraeeeeaeessaasntbrareeeaaeeaaans 58
6.10. HEterogeNEOUS ASSOCIBLIONSceeiiurreieeiiieeee e ettt ee e ettt e e st e e e st e e e s sbar e e e s annne e e e e annneeeean 58
6.11. Collection examples ... 58
7. COMPONENT MAPPING oottt e e et e e e st e e e e e sbb e e e e s be e e e e asbe e e e e annbeeeeaanbeeeeeans 61
A D= o= 0T (< g Ao o) = £SO 61
7.2. Collections of dependent ODJECEScoeiiiiiiiiiiei e 62
7.3. ComMPONENtS @S MaP INTICESoviieiiiiii et e e e e 63
7.4. Components as COMPOSItE IdENtITIErSooicviiiiiiie e 63
7.5. DYNAMIC COMPONENTSueeieieiiiieie e ettt e e sttt e e e ettt e et e e e s ibe e e e e e sbe e e e e snbbe e e e e annne e e e e annneeeeans 64
8. INheritanCeE MapPINg .o 66
8.1 TNE TIIEE SITALEJIES ... ettt ettt e e et e e st e e e s e e e e e snbeeeeean 66
o2 10 011 = (o] LSO 68
9. WOrking With PerSistent DALaAccceeeeiiiiiuiiiiiiiee e i cciiieeie e e e e s e e e e e e e s s esaraae e e e e e e e s s eanaanaeeaeas 70
9.1. Creating aPersiSteNt ODJECEvviiiiiiiee ettt e e s e e 70
9.2.L0ading @n OBJECEuviiiiiii e e aa e e e 70
SR RO 11= o/ oo PSP P PP PPPPPRPPUPPPN 71
0.3.1. SCA@ QUENTEScoeeeeeee e 72
0.3.2. The QUENY IMTEITACEeeiie e 72

Hibernate 3.0a pha

HIBERNATE - Relational Persistence for |diomatic Java

0.3.3. SCrollabl@ ItEraliONcccieeeiiiiiiiii e e e e e e aas 73
9.3.4. FIltering COIECHIONSccviieiiiiiieee e et as 73
O.3.5. ClITEITAGUENTESeeie ettt e et e et e e et e e e b e e s e e e e e annb e e e e nees 74
9.3.6. QueriesinNative SQLcooeeiiiiii 74

0.4, UPAating OBJECESeeeiiiiieiie ettt 74
9.4.1. Updating in the SAME SESSIONcoiiiiiiiiiiiiiiee et e e e e eeeens 75
9.4.2. Updating detaChed ObJECLSuviiiiie e ee s 75
9.4.3. Reattaching detached ODJECESevviiiii e 76

9.5. Deleting persiStent ODJECLScc.uiieiiiiiee e e e e e e s e e e e e e e e s s et b rr e e e e aaeeeans 76
0.6. FIUSN <. 7
0.7. ENAING @SESSION ..., 77
0.7.1. FIUShING the SESSIONeeiiiiiiiiie ettt 78
9.7.2. Committing the database tranSactioncccoveeiiiiiiiiiie e 78
0.7.3. ClOSING thE SESSION ...eiiiiiiiiiiciiiiee e e e e e e e e e s et raeeeaeas 78
0.7.4. EXCEPLION NANAITING ..ttt 78

9.8. Lifecylesand ODJECE Graphsuvuiiiiiiie e e e e et aa e e 79
9.9. Parameterized application VIeWS With fIlTersc.eoeiiiiiiii e 80
8 I O 1 g1 (0 o o= P 82
0.0, BEVENE SYSOIM oo 83
O.12. MEIAUALA AP ...ttt e e e e e e e e e st e e e e st e e e e e nae e e e e nnaeaeeennrneeeeans 84
10. TransactioNS AN CONCUITENCY .ovviieeiiiiciiiiee e e e e e e eeeit e e e e e e e e s st re e e e e e e e s s e stabaaeeeeeeessaanrsaaeeeeeas 85
10.1. Configurations, SesSioNS and FACIOMEScovieiiiiiiiiiiiiiie e r e e e e e e 85
10.2. Threads and CONMNECLIONSciieiiiieeeeiiiieeeseiiee e e et e e st e e e s s e e e s sntee e e s anneeeeaanneeeeeennes 85
10.3. Considering ODJECE IHENTITYeeeiiiieieeeiiii et 85
10.4. OptimistiC CONCUITENCY CONEIOuuiii s aannnnnnnnnnnnns 86
10.4.1. Long session With automatic VEIrSIONINGccceeeeiiiciviiiiieeee e esciiniee e e e e s eeivvrneee s 86
10.4.2. Many sessions With autOmatiC VEISIONINGevveeerrreeeiiieeeeaiieee e sieeee e e e 87
10.4.3. Application version Checkingccccciiiiiiiie e 87

10.5. SeSSION AISCONNECIION ... iiiieieieee e ettt e e e e r e e e e e e s et e e e e e e e e s snnnranereeaeeseannnnenes 87
10.6. PESSIMISHIC LOCKING .coiiiiiiiiiiiiiieee ettt e e et e e e e e e e e st r e e e e e e e e s ennneees 88
11. HQL: TheHibernate QUEry LAnQUAGEcocuureieiiiieieeiiiiiee sttt e e 90
= ST IS S Y SRR 90
11.2. TRETIOM CLAUSEeiie ittt e e e et e e s et e e s nab e e e e e 90
11.3. ASSOCIBLIONS BN JOINSeeiiiiiieeeeiieie e ettt e e et e e et e e s st e e s br e e e e s e e e e s e e e e aannreeeeennes 90
114, TRE SEIECE ClALSE ...eeiiiiiiii ettt e e et e e s et e e e e e e e e e e e 91
11.5. AQQregate fUNCLIONSccoiiiieieiiiiiie ettt ettt et e e st e e e e s e e e s e e e e nnes 92
11.6. POIYMOIPRIC QUETTES ... s nnnnnnnnnnnnnnns 92
10.7. TREWREIE ClAUSE ...eeeiiiie e ettt e e e e e e e e et e e e e e e e e s eantaaeeeaaeeesannnneees 93
G I o] = o SRR 94
11.9. The OFdEr DY ClAUSEoec e e e e e e e r e e e e e s e aaneees 96
11.10. TREQrOUP DY ClALISEeeiiiiiiii ettt e e e 96
S T oo 1= 1= SEPRR 97
11,12, HOQL EXAIMPIES ...eiieiiiiiieeiiiiee ettt e ettt e e et e e et e e e s et e e e e e e e e e e nnes 97
1213 TIPS & TTICKS e n s a s n s s nna s s nnansnsnsnsnsnnnnnnnnnnnnnnns 99
12, CriteriaQUENTES ..uiiiiiiiiiee e i i ettt e e e e ettt e e e e e e s s et e e e eeeessaa s tbreseeaaeeessansstaaeeaeaeessaanssrnneeaens 101
12.1. Creating @ CriteriaiNSIANCEciiiieeiiiiiiiei et e e e e e e e e e e e e e e e e e nnneees 101
12.2. Narrowing the rESUIT SELuviiiiiii e e e e e e e e e s s e e e e e e e e nnnneees 101
12.3. Ordering tNETESUILSeiieiiiiie ettt e e nree e e 102
12,4, ASSOCIBLIONS ...cueveieeeiiieee e ettt e e e sttt e e e sttt e e e et e e e sabe e e e e sbt e e e e e sbe e e e s anbbeeeesansbeaeeennbneeeeans 102
12.5. DynamicC assoCiation FEICHINGvereeeiiiiiee e e e 102
12.6. EXAMPIE QUEKTES ... annnnnannsnnnsnnnnnnnnnnnnnnns 103
T N P L= S SRR 104

Hibernate 3.0a pha

HIBERNATE - Relational Persistence for |diomatic Java

13.1. Creating @ SQL Dasetd QUETYcoouiiiiiiiiiie ettt e e 104
13.2. Alias and property FEFEIENCESccoiiiiiiiieiiee e e e e saeeees 104
13.3. NAMEA SOQL QUENTESeeeieiiiiiie ettt ettt et e et e e s st e e e annb e e e e e anbneeeeans 104
13.4. CuStOM SQL fOr CUD ...coiiiiiiiiie et ee ettt st e e e et e e s sneee e e e snsneeeeennsaeeeeans 105
13.5. Custom SQL fOr [0AAINGvveieiiiiiie it 106
14. IMProving PErFOrMANCEueiiiiiiiee it e e e e st e e e e e e e e e ettt e e e aaeesaasneneeeeaaeeesaanssneeeeeens 107
14.1. Understanding Collection performancecoooociieiiee e 107
JA.1. 1. TAXONOIMY ... nnnnnne 107
14.1.2. Lists, maps, idbags and sets are the most efficient collectionsto update 108
14.1.3. Bags and lists are the most efficient inverse collectionscccccovvvveeeiniieeeennne 108
I @ g T X oo e (= = S 108

14.2. Proxiesfor Lazy INItIaliZatioNoooiiuiiieiiiiiiec et 109
RGN U LS TaTo l o= (o g N = ol o oo PRSP 110
14.4. Using lazy property fFEIChINGcoooeoi i 111
14.5. OULEr JOIN FEICNING .ot e e e anbee e e 112
14.6. The SeCoNd LEVE CaChEueiiiiiiiiie ettt e e e nnnaee e 112
14.6.1. CaChE MAPPINGSuvveeeeeiiiiee ettt ettt e et e e st e e s e e e e e 113
14.6.2. Strategy: r€a ONIY ... nnnannnana 113
14.6.3. Strategy: rEa/WIITEcoo e e e 113
14.6.4. Strategy: NONSLICE FEAA/WIITEceiiiiiiieeiiiei et 113
14.6.5. Strategy: tranSactionalceeviieiiiiiiiiiiee e 113
14.7. Managing the SESSION CaCNEueiiiiiiiiie e 114
14.8. ThEe QUENY CACE ..o e e e aerees 114
T 0o = A o [SRR 116
15.1. SChEMA GENEIBLIONceeiiiieeee ettt e e e e e e e et e e e e e e e e st eeeeeeeeeeaennneees 116
15.1.1. Customizing the SCheM@Aooviii i 116
15.1.2. RUNNING tNETO0Ieeeieiiiie e 118
G T o]0 1= 1 1= PRSP 118
S I oo 1 o | RSP 119
15.1.5. Incremental SChEMAUPAALEScooiiiiiiiiiiiee e 119
15.1.6. Using Ant for incremental SChema updatesc.eeeeviieeeiiiiieee e 119

15.2. COUE GENEIELIONeeiiieeiiiiiiiieiee e e e e ettt e e e e e e ettt e e e e e e e e e e e e e e e e e e e s anneeneeeaaeeseaannnnees 120
15.2.1. The config file (OPtioNal)ccoviiiiiiiiiee e 120
15.2.2. The MEtA@LITDULEoeee e e e eeee e 121
15.2.3. BaSIC fiNAEr QENEXGIOLuvviiieiiee it e e e e e st eeeeas 123
15.2.4. Velocity based renderer/generatoroooiieeieeiiiieee e 123

15.3. Mapping File GENEIalioNccccciiiiiiiii s naanasnsnsnnnnnnnnnnnnnnns 124
15.3.1. RUNNING tNETO0Iveiieiiiiie e 125

16. Example: Parent/ChRildoeeiiiiiiii e e 127
16.1. A NOte @DOUL COITECLIONS ...t sbaee e 127
16.2. Bidirectional ONE-tO-MBENYccoiiiiiiiiiiiiie ettt e s e e e e e anrneeeeans 127
16.3. CasCading lIfECYCIEcoo i e anres 128
16.4. Using casCading UPOEAEE()veeeeiurereeeiiieiee ettt e e nnnne e e e 129
L16.5. CONCIUSION ...ttt ettt e e e e e s ettt e e e e e e e e s snnbetneeeaeeeeannnneees 131
17. Example: WebIog APPIICALIONco.uveiiiiiiiiii ettt e e 132
17. 1. PErSISIENT ClBSSES ...iiiiieiiieiiiiire e e ittt e e sssieee e e st ee e e st eeeaasaeeeeeaasteeeeeansseeeeaansseeeeeansnneeaans 132
17.2. HIBernate€ MapPiNgScoccviiiiiiiee ettt e e e et e e e e e e e e e e e e e e e s e st e e e e e e e e e e nnnnrees 133
G T o 1] o= 1 0 (= o L= RSP 134
18. EXxample: VariouS M apPPiNgSceeeeeeiiiiiiiiiieeiee e e e s eiiite e e e e e e s s estb e e e e e e e e s s statarereeaeesssnnnssrneneaens 138
18.1. EMPIOYEI/EMPIOYEReeiieiieiiie ettt ettt e st e e e e e enbne e e e 138
S A N 0 11 1o Y17 o SRR 139
18.3. CuStOME/OrdEr/PrOTUCTvviieiieeee it e e e e e r e e e e e e e s e e e e e e s e ennnnnees 141

Hibernate 3.0a pha

HIBERNATE - Relational Persistence for |diomatic Java

19. Best Practices

Hibernate 3.0a pha

Vi

Preface

Working with object-oriented software and a relational database can be cumbersome and time consuming in
today's enterprise environments. Hibernate is an object/rel ational mapping tool for Java environments. The term
object/relational mapping (ORM) refers to the technique of mapping a data representation from an object model
to arelational data model with a SQL-based schema.

Hibernate not only takes care of the mapping from Java classes to database tables (and from Java data types to
SQL data types), but also provides data query and retrieval facilities and can significantly reduce development
time otherwise spent with manual data handling in SQL and JDBC.

Hibernates goal is to relieve the developer from 95 percent of common data persistence related programming
tasks. Hibernate may not be the best solution for data-centric applications that only use stored-procedures to
implement the business logic in the database, it is most useful with object-oriented domain models and business
logic in the Java-based middle-tier. However, Hibernate can certainly help you to remove or encapsulate
vendor-specific SQL code and will help with the common task of result set translation from a tabular represent-
ation to agraph of objects.

If you are new to Hibernate and Object/Relational Mapping or even Java, please follow these steps:

1. Read Chapter 1, Quickstart with Tomcat for a 30 minute tutorial, using Tomcat.
2. Read Chapter 2, Architecture to understand the environments where Hibernate can be used.

3. Havealook at the eg/ directory in the Hibernate distribution, it contains a ssmple standal one application.
Copy your JDBC driver tothel i b/ directory and edit et c/ hi ber nat e. properti es, specifying correct val-
ues for your database. From a command prompt in the distribution directory, type ant eg (using Ant), or
under Windows, typebuil d eg.

4. Use this reference documentation as your primary source of information. Consider reading Hibernate in
Action (http://www.manning.com/bauer) if you need more help with application design or if you prefer a
step-by-step tutorial. Also visit http://caveatemptor.hibernate.org and download the example application
for Hibernate in Action.

5. FAQsare answered on the Hibernate website.
6. Third party demos, examples and tutorials are linked on the Hibernate website.

7. The Community Area on the Hibernate website is a good source for design patterns and various integra-
tion solutions (Tomcat, JBoss, Spring, Struts, EJB, etc.).

If you have questions, use the user forum linked on the Hibernate website. We also provide a JIRA issue track-
ings system for bug reports and feature requests. If you are interested in the development of Hibernate, join the
developer mailing list. If you are interested in translating this documentation into your language, contact us on
the developer mailing list.

Commercia development support, production support and training for Hibernate is available through JBoss
Inc. (see http://www.hibernate.org/SupportTraining/). Hibernate is a project of the JBoss Professional Open
Source product suite.

Hibernate 3.0a pha Vii

Chapter 1. Quickstart with Tomcat

1.1. Getting started with Hibernate

This tutorial explains a setup of Hibernate 3.0 with the Apache Tomcat servlet container for a web-based ap-
plication. Hibernate works well in a managed environment with all major J2EE application servers, or even in
standalone Java applications. The database system used in this tutorial is PostgreSQL 7.4, support for other
database is only a matter of changing the Hibernate SQL dialect configuration.

First, we have to copy al required libraries to the Tomcat installation. We use a separate web context
(webapps/ qui ckst art) for this tutorial, so we've to consider both the global library search path (TOMCAT/ com
non/ 1 i b) and the classloader at the context level in webapps/ qui ckstart/WeB-INF/1ib (for JAR files) and
webapps/ qui ckst art/ WEB- | NF/ cl asses. We refer to both classloader levels as the global classpath and the
context classpath.

Now, copy the libraries to the two classpaths:

1. Copy the IDBC driver for the database to the global classpath. This is required for the DBCP connection
pool software which comes bundled with Tomcat. Hibernate uses JDBC connections to execute SQL on
the database, so you either have to provide pooled JDBC connections or configure Hibernate to use one of
the directly supported pools (C3P0, Proxool). For this tutorial, copy the pg74j dbc3. j ar library (for Post-
greSQL 7.4 and JDK 1.4) to the global classloaders path. If you'd like to use a different database, smply
copy its appropriate JDBC driver.

2. Never copy anything else into the global classloader path in Tomcat, or you will get problems with various
tools, including Log4j, commons-logging and others. Always use the context classpath for each web ap-
plication, that is, copy libraries to Wes- 1 NF/ i b and your own classes and configuration/property files to
VEB- | NF/ ¢l asses. Both directories are in the context level classpath by default.

3. Hibernate is packaged as a JAR library. The hi bernate3.jar file should be copied in the context
classpath together with other classes of the application. Hibernate requires some 3rd party libraries at
runtime, these come bundled with the Hibernate distribution inthe 1 i b/ directory; see Table 1.1, “ Hibern-
ate 3rd party libraries”. Copy the required 3rd party libraries to the context classpath.

Table 1.1. Hibernate 3rd party libraries

Library Description
dom4j (required) Hibernate uses dom4j to parse XML configuration and XML mapping
metadata files.
CGLIB (required) Hibernate uses the code generation library to enhance classes at runtime

(in combination with Java reflection).

Commons Caollections, Commons Hibernate uses various utility libraries from the Apache Jakarta Com-
Logging (required) mons project.

EHCache (required) Hibernate can use various cache providers for the second-level cache.
EHCache is the default cache provider if not changed in the configura-
tion.

Log4j (optional) Hibernate uses the Commons Logging API, which in turn can use Log4j

Hibernate 3.0a pha 1

Quickstart with Tomcat

Library Description

as the underlying logging mechanism. If the Log4j library is available in
the context library directory, Commons Logging will use Log4j and the
| og4j . properties configuration in the context classpath. An example
properties file for Logd4j is bundled with the Hibernate distribution. So,
copy logdj.jar and the configuration file (from src/) to your context
classpath if you want to see whats going on behind the scenes.

Required or not? Have a look at the file Ii b/ READMVE. t xt in the Hibernate distribution.
This is an up-to-date list of 3rd party libraries distributed with Hibern-
ate. You will find all required and optional libraries listed there.

We now set up the database connection pooling and sharing in both Tomcat and Hibernate. This means Tomcat
will provide pooled JDBC connections (using its builtin DBCP pooling feature), Hibernate requests theses con-
nections through JNDI. Tomcat binds the connection pool to JNDI, we add a resource declaration to Tomcats
main configuration file, TOMCAT/ conf / server. xm :

<Cont ext path="/qui ckstart" docBase="quickstart">
<Resour ce nane="j dbc/ qui ckstart" scope="Shareabl e" type="javax. sql . Dat aSource"/ >
<Resour cePar ans nane="j dbc/ qui ckstart">
<par anet er >
<nane>f act or y</ name>
<val ue>or g. apache. cormons. dbcp. Basi cDat aSour ceFact or y</ val ue>
</ par anet er >

<l -- DBCP database connection settings -->
<par anet er >
<nane>ur | </ name>
<val ue>j dbc: post gresql : / /| ocal host/ qui ckst art </ val ue>
</ par anet er >
<par anet er >
<name>dri ver O assNane</ name><val ue>or g. post gresql . Dri ver </ val ue>
</ par anet er >
<par anet er >
<nane>user nane</ nane>
<val ue>qui ckst art </ val ue>
</ par anet er >
<par anet er >
<nanme>passwor d</ name>
<val ue>secret </ val ue>
</ par anet er >

<l -- DBCP connection pooling options -->

<par anet er >
<nane>maxWai t </ nane>
<val ue>3000</ val ue>

</ par anet er >

<par anet er >
<nane>nex| dl e</ nane>
<val ue>100</ val ue>

</ par anet er >

<par anet er >
<nane>maxAct i ve</ nane>
<val ue>10</ val ue>

</ par anet er >

</ Resour cePar ans>
</ Cont ext >

The context we configure in this example is named qui ckst art, its base is the TOVCAT/ webapp/ qui ckstart dir-
ectory. To access any servlets, call the path http: //1 ocal host : 8080/ qui ckstart in your browser (of course,
adding the name of the servlet as mapped in your web. xm). You may also go ahead and create a simple servlet
now that has an empty process() method.

Hibernate 3.0a pha 2

Quickstart with Tomcat

Tomcat provides connections now through JNDI at j ava: conp/ env/ j dbc/ qui ckst art . If you have trouble get-
ting the connection pool running, refer to the Tomcat documentation. If you get JDBC driver exception mes-
sages, try to setup JDBC connection pool without Hibernate first. Tomcat & JDBC tutorials are available on the
Web.

Your next step is to configure Hibernate. Hibernate has to know how it should obtain JDBC connections We
use Hibernates XML -based configuration. The other approach, using a properties file, is equivalent in features,
but doesn't offer any advantages. We use the XML configuration because it is usually more convenient. The
XML configuration file is placed in the context classpath (WEB- | NF/ cl asses), aShi ber nat e. cf g. xm :

<?xm version='"1.0" encodi ng='utf-8" ?>

<! DOCTYPE hi ber nat e-confi gurati on PUBLIC
"-//Hi bernate/ H bernate Configuration DTD//EN'
"http://hibernate.sourceforge. net/hi bernat e-configuration-3.0.dtd">

<hi ber nat e- confi gurati on>
<sessi on-factory>

<property nane="connecti on. dat asource">j ava: conp/ env/j dbc/ qui ckst art </ property>
<property nanme="show_sql ">fal se</property>
<property nane="di al ect">or g. hi ber nat e. di al ect. Post greSQ.Di al ect </ property>

<l-- Mapping files -->
<mappi ng resource="Cat.hbm xm "/ >

</ sessi on-factory>

</ hi ber nat e- confi gurati on>

We turn logging of SQL commands off and tell Hibernate what database SQL dialect is used and where to get
the JDBC connections (by declaring the INDI address of the Tomcat bound pool). The dialect is a required set-
ting, databases differ in their interpretation of the SQL "standard”. Hibernate will take care of the differences
and comes bundled with dialects for all major commercial and open source databases.

A Sessi onFact ory is Hibernate's concept of a single datastore, multiple databases can be used by creating mul-
tiple XML configuration files and creating multiple Confi gurati on and Sessi onFact ory objects in your ap-
plication.

The last element of the hi bernate. cf g. xri declares Cat . hbm xni as the name of a Hibernate XML mapping
file for the persistent class cat . This file contains the metadata for the mapping of the POJO class cat to a dat-
base table (or tables). We'll come back to that file soon. Let's write the POJO class first and then declare the
mapping metadata for it.

1.2. First persistent class

Hibernate works best with the Plain Old Java Objects (POJOs, sometimes called Plain Ordinary Java Objects)
programming model for persistent classes. A POJO is much like a JavaBean, with properties of the class ac-
cessible via getter and setter methods, shielding the internal representation from the publicly visible interface
(Hibernate can also access fields directly, if needed):

package org. hi bernat e. exanpl es. qui ckstart;
public class Cat {

private String id;
private String nare;
private char sex;
private float weight;

Hibernate 3.0a pha 3

Quickstart with Tomcat

public Cat() {
}

public String getld() {

return id;

}

private void setld(String id) {
this.id =id;

}

public String getNane() {
return nane;

}

public void setName(String nane) {
thi s. nane = nane;

}

public char getSex() {
return sex;
}

public void setSex(char sex) ({
this.sex = sex;
}

public float getWeight() {
return wei ght;
}

public void set Wi ght (float weight) {
this. wei ght = weight;
}

Hibernate is not restricted in its usage of property types, al Java JDK types and primitives (like St ri ng, char
and Dpat e) can be mapped, including classes from the Java collections framework. Y ou can map them as values,
collections of values, or associations to other entities. Thei d is a specia property that represents the database
identifer (primary key) of that class, it is highly recommended for entities like a cat . Hibernate can use identifi-
ersonly internally, but we would lose some of the flexibility in our application architecture.

No specia interface has to be implemented for persistent classes nor do you have to subclass from a specia
root persistent class. Hibernate also doesn't require any build time processing, such as byte-code manipulation,
it relies solely on Java reflection and runtime class enhancement (through CGLIB). So, without any depend-
ency of the POJO class on Hibernate, we can map it to a database table.

1.3. Mapping the cat

The cat . hbm xmi mapping file contains the metadata required for the object/relational mapping. The metadata
includes declaration of persistent classes and the mapping of properties (to columns and foreign key relation-
ships to other entities) to database tables.

<?xm version="1.0"?>

<! DOCTYPE hi ber nat e- mappi ng PUBLI C
"http://hibernate. sourceforge. net/hi bernat e- mappi ng-3. 0. dtd">

<hi ber nat e- mappi ng>

<cl ass nane="org. hi ber nat e. exanpl es. qui ckstart. Cat" tabl e="CAT">

Hibernate 3.0a pha 4

Quickstart with Tomcat

<I-- A 32 hex character is our surrogate key. It's automatically
generated by Hibernate with the UU D pattern. -->
<id name="id" type="string" unsaved-val ue="null" >
<col um nane="CAT_I D' sql -type="char(32)" not-null="true"/>
<generator class="uuid. hex"/>
</id>
<l-- A cat has to have a name, but it shouldn' be too long. -->
<property nanme="nanme">
<col um nane="NAME" | ength="16" not-null="true"/>

</ property>

<property name="sex"/>

<property name="weight"/>
</ cl ass>

</ hi ber nat e- mappi ng>

Every persistent class should have an identifer attribute (actually, only classes representing entities, not depend-
ent value-typed classes, which are mapped as components of an entity). This property is used to distinguish per-
sistent objects: Two cats are equal if cat A. get 1 d() . equal s(cat B. get 1d()) istrue, this concept is called data-
base identity. Hibernate comes bundled with various identifer generators for different scenarios (including nat-
ive generators for database sequences, hi/lo identifier tables, and application assigned identifiers). We use the
UUID generator (only recommended for testing, as integer surrogate keys generated by the database should be
prefered) and also specify the column cAT_I D of the table caT for the Hibernate generated identifier value (as a
primary key of the table).

All other properties of cat are mapped to the same table. In the case of the nane property, we mapped it with an
explicit database column declaration. Thisis especialy useful when the database schema is automatically gen-
erated (as SQL DDL statements) from the mapping declaration with Hibernate's SchemaExport tool. All other
properties are mapped using Hibernate's default settings, which is what you need most of the time. The table
CAT in the database |ooks like this:

Col um | Type | Modifiers
________ g
cat_id | character(32) | not nul
nanme | character varying(16) | not nul
sex | character(1)

wei ght | real
I ndexes: cat_pkey prinmary key btree (cat_id)

Y ou should now create this table in your database manually, and later read Chapter 15, Toolset Guide if you
want to automate this step with the hbrnddl tool. Thistool can create a full SQL DDL, including table defini-
tion, custom column type constraints, unique constraints and indexes.

1.4. Playing with cats

We're now ready to start Hibernate's Sessi on. It is the persistence manager, we use it to store and retrieve Cat S
to and from the database. But first, we've to get a Session (Hibernate's unit-of-work) from the
Sessi onFactory:

Sessi onFactory sessionFactory =
new Configuration().configure().buil dSessionFactory();

The call to confi gure() loads the hi ber nat e. cf g. xml configuration file and initializes the Conf i gurati on in-
stance. You can set other properties (and even change the mapping metadata) by accessing the Confi gurati on

Hibernate 3.0a pha 5

Quickstart with Tomcat

before you build the Sessi onFact ory (it is immutable). Where do we create the Sessi onFact ory and how can
we accessit in our application?

A SessionFactory is usually only build once, e.g. a startup with a load-on-startup servlet. This aso means
you should not keep it in an instance variable in your servlets, but in some other location. Furthermore, we need
some kind of Singleton, so we can access the Sessi onFact ory easily in application code. The approach shown
next solves both problems: startup configuration and easy accessto a Sessi onFact ory.

Weimplement aHi ber nateUti | helper class:

i mport org. hi bernate. *;
i mport org. hi bernate.cfg.*;

public class Hi bernateUtil ({
private static Log | og = LogFactory. get Log(H bernateUtil.cl ass);
private static final SessionFactory sessionFactory;

static {

try {
/1 Create the SessionFactory

sessionFactory = new Configuration().configure().buil dSessi onFactory();
} catch (Throwabl e ex) {

/1 Make sure you | og the exception, as it mght be swal |l owed

log.error("Initial SessionFactory creation failed.", ex);

throw new ExceptionlnlnitializerError(ex);

}

public static final ThreadLocal session = new ThreadLocal ();

public static Session currentSession() throws Hi bernateException {
Session s = (Session) session.get();
/1 Open a new Session, if this Thread has none yet
if (s == null) {
s = sessionFactory. openSessi on();
session. set(s);

}

return s;

}

public static void closeSession() throws Hi bernateException {
Session s = (Session) session.get();
session.set(null);
if (s !=null)
s.cl ose();

This class does not only take care of the Sessi onFact ory with its static initializer, but also has a Thr eadLocal
variable which holds the sessi on for the current thread. Make sure you understand the Java concept of a
thread-local variable before you try to use this helper. A more complex and powerful Hi ber nateUti | class can
be found in Caveat Enpt or , http://caveatemptor.hibernate.org/

A Sessi onFact ory isthreadsafe, many threads can access it concurrently and request Sessi onS. A Session isa
non-threadsafe object that represents a single unit-of-work with the database. Sessi ons are opened by a Ses-

si onFactory and are closed when all work is completed. An example in your servlet's process() method
might ook like this (sans exception handling):

Session session = Hi bernateUtil.currentSession();
Transaction tx = session. begi nTransaction();

Cat princess = new Cat();

Hibernate 3.0a pha 6

Quickstart with Tomcat

princess. set Name("Princess");
princess. setSex('F');
princess. set Wi ght (7. 4f);

sessi on. save(princess);
tx.commt();

H bernateltil.cl oseSession();

In a sessi on, every database operation occurs inside a transaction that isolates the database operations (even
read-only operations). We use Hibernates Tr ansact i on API to abstract from the underlying transaction strategy
(in our case, JDBC transactions). This allows our code to be deployed with container-managed transactions
(using JTA) without any changes.

Note that you may call Hi bernateUti| . current Session(); asmany times asyou like, you will always get the
current Sessi on of thisthread. Y ou have to make sure the Sessi on is closed after your unit-of-work completes,
either in your servlet code or in a servlet filter before the HTTP response is send. The nice side effect of the
second option is easy lazy initidization: the Sessi on is till open when the view is rendered, so Hibernate can
load unitialized objects while you navigate the current object graph.

Hibernate has various methods that can be used to retrieve objects from the database. The most flexible way is
using the Hibernate Query Language (HQL), which is an easy to learn and powerful object-oriented extension

to SQL.:
Transaction tx = session. begi nTransaction();

Query query = session.createQuery("select ¢ fromCat as ¢ where c.sex = :sex");
query. set Character("sex", '"F');
for (lterator it = query.iterate(); it.hasNext();) {

Cat cat = (Cat) it.next();

out.println("Female Cat: " + cat.getName());

}

tx.commt();

Hibernate also offers an object-oriented query by criteria API that can be used to formulate type-safe queries.
Hibernate of course uses prepar edSt at ement S and parameter binding for all SQL communication with the
database. You may aso use Hibernate's direct SQL query feature or get a plain JDBC connection from a Ses-
si on in rare cases.

1.5. Finally

We only scratched the surface of Hibernate in this small tutorial. Please note that we don't include any servlet
specific code in our examples. Y ou have to create a servlet yourself and insert the Hibernate code as you seefit.

Keep in mind that Hibernate, as a data access layer, istightly integrated into your application. Usually, all other
layers depent on the persistence mechanism. Make sure you understand the implications of this design.

For amore complex application design, see http://caveatemptor.hibernate.org/

Hibernate 3.0a pha 7

Chapter 2. Architecture

2.1. Overview

A (very) high-level view of the Hibernate architecture:

Application

Persistent Objects

HIBERNATE

st i

Database

This diagram shows Hibernate using the database and configuration data to provide persistence services (and
persistent objects) to the application.

We would like to show a more detailed view of the runtime architecture. Unfortunately, Hibernate is flexible
and supports several approaches. We will show the two extremes. The "lite" architecture has the application
provide its own JDBC connections and manage its own transactions. This approach uses a minimal subset of
Hibernate's APIs:

Transient Objects Application

Persistent
Objects

SessionFactory Session | JDBC| JNDI JTA

Database

The "full cream" architecture abstracts the application away from the underlying JDBC/JTA APls and lets Hi-

Hibernate 3.0a pha 8

Architecture

bernate take care of the details.

Transient Objects Application

Persistent
Objects

SessionFactory

Session | Transaction

TransactionFactory ConnectionProvider

JNDI JDBC JTA

Database

Heres some definitions of the objectsin the diagrams:

SessionFactory (or g. hi ber nat e. Sessi onFact ory)
A threadsafe (immutable) cache of compiled mappings for a single database. A factory for Sessi on and a
client of ConnectionProvider. Might hold an optional (second-level) cache of data that is reusable

between transactions, at a process- or cluster-level.

Session (or g. hi ber nat e. Sessi on)
A single-threaded, short-lived object representing a conversation between the application and the persistent
store. Wraps a JDBC connection. Factory for Transacti on. Holds a mandatory (first-level) cache of per-
sistent objects, used when navigating the object graph or looking up objects by identifier.

Persistent objects and collections
Short-lived, single threaded objects containing persistent state and business function. These might be ordin-
ary JavaBeans/POJOs, the only special thing about them is that they are currently associated with (exactly
one) Sessi on. As soon as the sessi on is closed, they will be detached and free to use in any application
layer (e.g. directly as datatransfer objectsto and from presentation).

Transient and detached objects and collections
Instances of persistent classes that are not currently associated with a Sessi on. They may have been instan-
tiated by the application and not (yet) persisted or they may have been instantiated by a closed Sessi on.

Transaction (or g. hi ber nat e. Transact i on)
(Optional) A single-threaded, short-lived object used by the application to specify atomic units of work.
Abstracts application from underlying JDBC, JTA or CORBA transaction. A Sessi on might span several
Transact i onSin some cases. However, transaction demarcation, either using the underlying APl or Tr ans-
acti on, ishever optional!

Hibernate 3.0a pha 9

Architecture

ConnectionProvider (or g. hi ber nat e. connect i on. Connect i onPr ovi der)
(Optional) A factory for (and pool of) JDBC connections. Abstracts application from underlying Dat a-
sour ce Or Dri ver Manager . Not exposed to application, but can be extended/implemented by the developer.

TransactionFactory (or g. hi ber nat e. Transact i onFact ory)
(Optional) A factory for Transaction instances. Not exposed to the application, but can be extended/
implemented by the devel oper.

Extension Interfaces
Hibernate offers many optional extension interfaces you can implement to customize the behavior of your
persistence layer. See the APl documentation for details.

Given a "lite" architecture, the application bypasses the Transacti on/Transacti onFact ory and/or Connec-
tionProvi der APIstotalk to JTA or JDBC directly.

2.2. Instance states

An instance of a persistent classes may be in one of three different states, which are defined with respect to a
persistence context. The Hibernate Sessi on object is the persistence context:

transient
The instance is not, and has never been associated with any persistence context. It has no persistent identity
(primary key value).

persistent
The instance is currently associated with a persistence context. It has a persistent identity (primary key
value) and, perhaps, a corresponding row in the database. For a particular persistence context, Hibernate
guarantees that persistent identity is equivalent to Java identity (in-memory location of the object).

detached
The instance was once associated with a persistence context, but that context was closed, or the instance
was serialized to another process. It has a persistent identity and, perhaps, a corrsponding row in the data-
base. For detached instances, Hibernate makes no guarantees about the relationship between persistent
identity and Javaidentity.

2.3. IMX Integration

JMX isthe J2EE standard for management of Java components. Hibernate may be managed viaa IMX stand-
ard MBean but because most application servers do not yet support IMX, Hibernate also affords some non-
standard configuration mechanisms.

Please see the Hibernate website for more information on how to configure Hibernate to run asa JIMX compon-
ent inside JBoss. Integration with other IMX containersis also possible.

TODO: More documentation about IMX integration.

2.4. JCA Support

Hibernate may also be configured as a JCA connector. Please see the website for more details. Please note that

Hibernate 3.0a pha 10

Architecture

Hibernate JCA support is till considered experimental.

TODO: More documentation about JCA integration.

Hibernate 3.0a pha

11

Chapter 3. Configuration

Because Hibernate is designed to operate in many different environments, there are alarge number of configur-
ation parameters. Fortunately, most have sensible default values and Hibernate is distributed with an example
hi bernat e. properties filein etc/ that shows the various options. You usually only have to put that file in
your classpath and customize it.

3.1. Programmatic configuration

An instance of org. hi bernate. cfg. Configuration represents an entire set of mappings of an application's
Javatypesto an SQL database. The Confi gurati on isused to build an (immutable) Sessi onFact ory. The map-
pings are compiled from various XML mapping files.

You may obtain a Confi gurati on instance by instantiating it directly. Heres an example of setting up a data-
store from mappings defined in two XML mapping files (in the classpath):

Configuration cfg = new Configuration()
.addFile("Item hbm xm ")
.addFi | e("Bi d. hbm xm ") ;

An aternative (sometimes better) way isto let Hibernate load a mapping file using get Resour ceAsSt r ean() :

Configuration cfg = new Configuration()
.addCl ass(org. hi bernate. auction.|tem cl ass)
. addd ass(org. hi bernate. aucti on. Bi d. cl ass);

Then Hibernate will look for mapping files named /org/ hibernate/auction/Itemhbmxn and /
or g/ hi ber nat e/ auct i on/ Bi d. hbm xm in the classpath. This approach eliminates any hardcoded filenames.

A Confi guration also specifies various optional properties:

Properties props = new Properties();

Configuration cfg = new Configuration()
.addd ass(org. hi bernate. auction.|tem cl ass)
.addd ass(org. hi bernate. aucti on. Bi d. cl ass)
.setProperties(props);

A Confi gurati on isintended as a startup-time object, to be discarded once a Sessi onFact ory is built.

Instead of adding mapping files and setting properties programatially, you may aso place Hibernate configura-
tion filesin your classpath, as you will see later.

3.2. Obtaining a SessionFactory

When all mappings have been parsed by the Confi gur at i on, the application must obtain a factory for Sessi on
instances. Thisfactory isintended to be shared by all application threads:

Sessi onFactory sessions = cfg. buil dSessi onFactory();

However, Hibernate does allow your application to instantiate more than one Sessi onFact ory. Thisis useful if
you are using more than one database.

Hibernate 3.0a pha 12

Configuration

3.3. User provided JDBC connection

A Sessi onFact ory may open a Sessi on 0n a user-provided JDBC connection. This design choice frees the ap-
plication to obtain JDBC connections wherever it pleases:

java. sql . Connecti on conn = dat asource. get Connection();
Sessi on session = sessi ons. openSessi on(conn);

/! do sone data access work

The application must be careful not to open two concurrent Sessi ons on the same JDBC connection!

We don't recommend user-provided JDBC connections, as Hibernate will disable caching (it doesn't know what
else you might have executed on the given connection) and one of the following options is usually more appro-
priate.

3.4. Hibernate provided JDBC connection

Alternatively, you can have the Sessi onFactory open connections for you. The Sessi onFact ory must be
provided with JDBC connection propertiesin one of the following ways:

1. Passaninstanceof java.util.Properties to Configuration.setProperties().
2. Placehi bernate. properties inaroot directory of the classpath.

3. Set systempropertiesusingj ava - Dproperty=val ue.

4. Include <property> elementsin hi ber nat e. cf g. xm (discussed later).

If you take this approach, opening a Sessi on isas simple as:

Sessi on session = sessions.openSession(); // open a new Session
/!l do sonme data access work, a JDBC connection will be used on denmand

All Hibernate property names and semantics are defined on the class or g. hi ber nat e. cf g. Envi ronnent . We
will now describe the most important settings for JDBC connection configuration.

Hibernate will obtain (and pool) connections using j ava. sql . Dri ver Manager if you set the following proper-
ties:

Table 3.1. Hibernate JDBC Properties

Property name Purpose

hi ber nat e. connect i on. dri ver _cl ass jdbc driver class

hi ber nat e. connect i on. url| jdbc URL

hi ber nat e. connect i on. user nane database user

hi ber nat e. connecti on. password database user password

hi ber nat e. connect i on. pool _si ze maxi mum number of pooled connections

Hibernate's own connection pooling algorithm is however quite rudimentary. It is intended to help you get star-
ted and is not intended for use in a production system or even for performance testing. Use a third party pool

Hibernate 3.0a pha 13

Configuration

for best performance and stability, i.e., replace the hi ber nat e. connecti on. pool _si ze property with connec-
tion pool specific settings. Thiswill turn off Hibernate's internal pool.

C3PO0 is an open source JDBC connection pool distributed along with Hibernate in the i b directory. Hibernate
will use its Cc3P0Connect i onProvi der for connection pooling if you set hi ber nat e. c3p0. * properties. If you'd
like to use Proxool refer to the packaged hi ber nat e. properti es and the Hibernate web site for more informa-
tion.

Thisis an example using C3PO0:

hi ber nat e. connecti on. driver_class = org. postgresql.Driver

hi ber nat e. connection.url = jdbc: postgresql://Iocal host/nydat abase
hi ber nat e. connecti on. user nane = nmyuser

hi ber nat e. connecti on. passwor d secret

hi ber nat e. ¢3p0. m n_si ze=5

hi ber nat e. ¢c3p0. max_si ze=20

hi ber nat e. ¢3p0. ti meout =1800

hi ber nat e. ¢c3p0. max_st at enent s=50

hi bernat e. di al ect = org. hi bernat e. di al ect. Post greSQ.Di al ect

For use inside an application server, Hibernate may obtain connections from a j avax. sql . Dat asource re-
gistered in INDI. Set the following properties:

Table 3.2. Hiber nate Datasour ce Properties

Propery name Purpose

hi ber nat e. connect i on. dat asour ce datasource JNDI name

hi bernate. j ndi . url URL of the JNDI provider (optional)

hi bernate. j ndi . cl ass class of the JNDI | ni ti al Cont ext Fact ory (optional)
hi ber nat e. connect i on. user name database user (optional)

hi ber nat e. connect i on. password database user password (optional)

Thisis an example using an application server provided JNDI datasource:

hi ber nat e. connecti on. dat asource = java:/conp/env/jdbc/ M/DB
hi bernate.transaction.factory_class =\

org. hi bernate. transacti on. JTATr ansacti onFactory
hi ber nat e. t ransacti on. manager _| ookup_cl ass =\

org. hi bernate. transacti on. JBossTransacti onManager Lookup
hi bernate. di al ect =\

or g. hi bernat e. di al ect. Post greSQ.Di al ect

JDBC connections obtained from a JNDI datasource will automatically participate in the container-managed
transactions of the application server.

Arbitrary connection properties may be given by prepending "hi ber nat e. connnecti on" to the property name.
For example, you may specify achar Set using hi ber nat e. connnecti on. char Set .

You may define your own plugin strategy for obtaining JDBC connections by implementing the interface
or g. hi ber nat e. connect i on. Connecti onProvi der. You may select a custom implementation by setting hi -
ber nat e. connecti on. provi der _cl ass.

Hibernate 3.0a pha 14

Configuration

3.5. Optional configuration properties

There are a number of other properties that control the behaviour of Hibernate at runtime. All are optional and
have reasonable default values.

System-level properties can only be set viaj ava - Dproperty=val ue or be defined in hi bernate. properties
and not with an instance of properties passed to the Confi guration. They are also not available in the hi -
bernate. cf g. xn file, discusse later.

Table 3.3. Hibernate Configuration Properties

Property name Purpose

hi ber nat e. di al ect The classname of a Hibernate bi al ect - enables cer-
tain platform dependent features.

€g. full.classnane. of . Di al ect

hi ber nat e. def aul t _schenma Qualify unqualified tablenames with the given
schemaltablespace in generated SQL.

€g. SCHEMA_NANE

hi ber nat e. def aul t _cat al og Qualify unqualified tablenames with the given cata-
log in generated SQL.

€g. CATALOG_NAMVE

hi ber nat e. sessi on_factory_nane The Sessi onFact ory will be automatically bound to
thisname in INDI after it has been created.

€J. j ndi / conposi t e/ name

hi ber nat e. max_f et ch_depth Set a maximum "depth" for the outer join fetch tree
for single-ended associations (one-to-one, many-
to-one). A o disables default outer join fetching.

€g. recommended values between 0 and 3

hi bernate. jdbc. fetch_size A non-zero value determines the JDBC fetch size
(calls st at enent . set Fet chSi ze()).

hi ber nat e. j dbc. bat ch_si ze A non-zero value enables use of JDBC2 batch up-
dates by Hibernate.

eg. recommended values between 5 and 30

hi ber nat e. j dbc. bat ch_ver si oned_dat a Set this property to true if your JDBC driver returns
correct row counts from execut eBat ch() (it is usu-
aly safe to turn this option on). Hibernate will then
use batched DML for automatically versioned data.
Defaultstof al se.

eg.true |fal se

hi bernate. jdbc. factory_cl ass Select a custom Bat cher . Most applications will not
need this configuration property.

Hibernate 3.0a pha 15

Configuration

Property name

Purpose

€d. cl assnane. of . Bat cher

hi bernat e. j dbc. use_scrol | abl e_resul t set

Enables use of JDBC2 scrollable resultsets by Hi-
bernate. This property is only necessary when using
user supplied JDBC connections, Hibernate uses con-
nection metadata otherwise.

€g.true |fal se

hi bernat e. jdbc. use_streans_for_binary

hi bernat e. j dbc. use_get _gener at ed_keys

hi bernate. cglib.use_reflection_optin zer

hi ber nat e. j ndi . <pr oper t yNane>

hi ber nat e. connection. i sol ation

hi ber nat e. connecti on. <propertyNanme>

hi ber nat e. connecti on. provi der _cl ass

hi ber nat e. cache. provi der _cl ass

hi ber nat e. cache. use_mi ni nal _puts

Use streams when writing/reading bi nary or seri al -
i zabl e typesto/from JDBC (system-level property).

€g.true |fal se

Enable use of JDBC3 Pr epar edSt at e-
ment . get Gener at edKeys() to retrieve natively gener-
ated keys after insert. Requires JDBC3+ driver and
JREL.4+, set to false if your driver has problems with
the Hibernate identifier generators. By default, triesto
determine the driver capabilites using connection
metadata.

€g.true| fal se

Enables use of CGLIB instead of runtime reflection
(System-level property). Reflection can sometimes be
useful when troubleshooting, note that Hibernate al-
ways requires CGLIB even if you turn off the optim-
izer. You can not set this property in hibern-
ate.cfg. xnm .

€g.true |fal se

Pass the property propertyName to the JNDI I ni -
ti al Cont ext Factory.

Set the JDBC transaction isolation level. Check
j ava. sql . Connecti on for meaningful values but note
that most databases do not support all isolation levels.

€g.1, 2, 4, 8

Pass the JDBC property proper t yNane t0 Dri ver Man-
ager . get Connection() .

The classname of a custom Connect i onPr ovi der .

€g. cl assnane. of . Connect i onProvi der

The classname of a custom CachePr ovi der .

€g. cl assnare. of . CachePr ovi der

Optimize second-level cache operation to minimize
writes, at the cost of more frequent reads (useful for
clustered caches).

Hibernate 3.0a pha

16

Configuration

Property name

Purpose

€gd.true| fal se

hi ber nat e. cache. use_query_cache

hi ber nat e. cache. query_cache_factory

hi ber nat e. cache. regi on_prefix

hi bernat e. transacti on.factory_cl ass

Enable the query cache, individual queries still have
to be set cachable.

€Jd.true| fal se

The classname of a custom Quer yCache interface, de-
faultsto the built-in st andar dQuer yCache.

€g. cl assnane. of . Quer yCache
A prefix to use for second-level cache region names.

€g. prefix

The classname of a Tr ansact i onFact ory to use with
Hibernate Transacti on APl (defaults to JDBCTr ans-
acti onFactory).

€g. cl assnane. of . Transacti onFactory

jta. UserTransaction

hi ber nat e. t ransacti on. manager _| ookup_cl ass

hi ber nat e. query. substitutions

A INDI name used by JTATransactionFactory to
obtain the JTA User Transacti on from the applica-
tion server.

€d. j ndi / conposi t e/ name

The classname of a Tr ansact i onManager Lookup - re-
quired when JVM-level caching is enabled in a JTA
environment.

€g. cl assnare. of . Transact i onManager Lookup

Mapping from tokens in Hibernate queries to SQL
tokens (tokens might be function or literal names, for
example).

€g. hgl Li teral =SQL_LI TERAL, hgl Func-
ti on=SQLFUNC

hi ber nat e. show_sql

Write all SQL statements to console.

eg.true |fal se

hi ber nat e. hbn2ddl . aut o

hi ber nat e. generate_statistics

Automatically export schema DDL to the database
when the Sessi onFactory is created. With creat e-
dr op, the database schema will be dropped when the
Sessi onFact ory is closed explicitly.

€g. updat e | create | creat e-drop

If enabled, Hibernate will collect statistics useful for
performance tuning.

eg.true |fal se

Hibernate 3.0a pha

17

Configuration

Property name

hi bernat e. use_i dentifer_rol | back

Purpose

If enabled, generated identifier properties will be re-
set to default values when objects are del eted.

eg.true |fal se

hi ber nat e. use_sqgl _coment s

If turned on, Hibernate will generate comments inside
the SQL, for easier debugging, defaultsto f al se.

€g.true |fal se

3.5.1. SQL Dialects

Y ou should always set the hi ber nat e. di al ect property to the correct or g. hi ber nat e. di al ect . Di al ect Sub-
class for your database. This is not strictly essential unless you wish to use nati ve or sequence primary key
generation or pessimistic locking (with, eg. Sessi on. 1 ock() OF Query. set LockMbde()). However, if you spe-
cify adialect, Hibernate will use sensible defaults for some of the other properties listed above, saving you the

effort of specifying them manually.

Table 3.4. Hibernate SQL Dialects (hi ber nat e. di al ect)
RDBMS Dialect
DB2 org. hi bernate. di al ect. DB2Di al ect
DB2 AS/400 or g. hi ber nat e. di al ect . DB2400Di al ect
DB2 OS390 or g. hi ber nat e. di al ect . DB2390Di al ect
PostgreSQL org. hi bernate. di al ect. Post greSQLDi al ect
MySQL org. hi bernate. di al ect. MySQLDi al ect
Oracle (any version) org. hi bernat e. di al ect. Oracl eDi al ect
Oracle 9/10g or g. hi ber nat e. di al ect. Or acl e9Di al ect
Sybase org. hi bernate. di al ect. SybaseDi al ect
Sybase Anywhere org. hi bernat e. di al ect. SybaseAnywher eDi al ect
Microsoft SQL Server org. hi bernate. di al ect. SQLSer ver Di al ect
SAPDB or g. hi ber nat e. di al ect. SAPDBDI al ect
Informix org. hi bernat e. di al ect. I nform xDi al ect
HypersonicSQL org. hi bernat e. di al ect. HSQLDi al ect
Ingres org. hi bernate. di al ect. I ngresDi al ect
Progress org. hi bernate. di al ect. ProgressDi al ect
Mckoi SQL org. hi bernat e. di al ect. Mckoi Di al ect
Interbase org. hi bernate. di al ect. | nterbaseD al ect
Pointbase or g. hi ber nat e. di al ect . Poi nt baseDi al ect

Hibernate 3.0a pha

18

Configuration

RDBMS Dialect
FrontBase or g. hi bernat e. di al ect. Front baseDi al ect
Firebird org. hi bernate. di al ect. Fi rebi rdDi al ect

3.5.2. Outer Join Fetching

If your database supports ANSI, Oracle or Sybase style outer joins, outer join fetching will often increase per-
formance by limiting the number of round trips to and from the database (at the cost of possibly more work per-
formed by the database itself). Outer join fetching allows a whole graph of objects connected by many-to-one,
one-to-many, many-to-many and one-to-one associations to be retrieved in asingle SQL SELECT.

By default, the fetched graph when loading an objects ends at leaf objects, collections, objects with proxies, or
where circularities occur in the case of *-to-one associations. Hibernate will however execute an immediate ad-
ditional seLECT for any persistent collection (we recommend that you turn on lazy loading for all collection

mappings).

For a particular association, fetching may be enabled or disabled (and the default behaviour overridden) by set-
ting the out er - j oi n attribute in the XML mapping.

Outer join fetching may be disabled globally by setting the property hi ber nat e. max_f et ch_dept h t0 0. A set-
ting of 1 or higher enables outer join fetching for all one-to-one and many-to-one associations, which are, also
by default, set to aut o outer join. However, one-to-many associations and collections are never fetched with an
outer-join, unless explicitly declared for each particular association. This behavior can also be overriden at
runtime with Hibernate queries. See the query chaptersin the documentation for more details.

3.5.3. Binary Streams

Oracle limits the size of byt e arrays that may be passed to/from its JDBC driver. If you wish to use large in-
stances of bi nary Or serial i zabl e type, you should enable hi ber nat e. j dbc. use_st reans_f or _bi nary. This
isa system-level setting only.

3.5.4. Second-level and query cache

The properties prefixed by hi ber nat e. cache allow you to use a process or cluster scoped second-level cache
system with Hibernate. See the "Performance" chapter for more details.

3.5.5. Transaction strategy configuration

If you wish to use the Hibernate Transacti on API instead of directly calling a particular transaction API, you
must specify a factory class for Transaction instances by setting the property hi bern-
ate.transaction. factory_cl ass. The Transacti on APl hides the underlying transaction mechanism and al-
lows Hibernate code to run in managed and non-managed environments.

There are two standard (built-in) choices.

org. hi bernate. transacti on. JDBCTr ansact i onFact ory

delegates to database (JDBC) transactions (default)

org. hi bernate.transacti on. JTATransacti onFactory

Hibernate 3.0a pha 19

Configuration

delegates to JTA (if an existing transaction is underway, the Sessi on performsits work in that context, oth-
erwise anew transaction is started)

Y ou may also define your own transaction strategies (for a CORBA transaction service, for example).

If you wish to use a second-level cache for mutable datain a JTA environment, you must specify a strategy for
obtaining the JTA Transact i onManager , Since J2EE does not standardize a single mechanism:

Table 3.5. JTA TransactionM anagers

Transaction Factory Application Server
org. hi bernate. transacti on. JBossTransacti onManager Lookup JBoss

org. hi bernate. transacti on. Wbl ogi cTr ansact i onManager Lookup Weblogic
org. hi bernate.transacti on. WbSpher eTransacti onManager Lookup WebSphere
org. hi bernate.transaction. Oi onTransacti onManager Lookup Orion

org. hi bernate. transacti on. Resi nTransact i onManager Lookup Resin

org. hi bernate. transacti on. JOTMIr ansact i onManager Lookup JOTM

org. hi bernate. transacti on. JONASTr ansact i onManager Lookup JOnAS

org. hi bernate. transacti on. JRun4Tr ansact i onManager Lookup JRun4

org. hi bernate. transacti on. BESTransact i onManager Lookup Borland ES

3.5.6. INDI-bound sessi onFact ory

A INDI bound Hibernate Sessi onFact ory can simplify the lookup of the factory and the creation of new Ses-
si ons. Note that thisis not related to a INDI bound Dat asour ce in @ managed environment.

If you wish to have the SessionFactory bound to a JNDI namespace, specify a name (eg.
j ava: hi ber nat e/ Sessi onFact ory) using the property hi ber nat e. sessi on_f act ory_nane. If this property is
omitted, the Sessi onFact ory will not be bound to JNDI. (Thisis especialy useful in environments with a read-
only INDI default implementation, eg. Tomcat.)

When binding the Sessi onFact ory to JNDI, Hibernate will use the values of hi bernate. jndi.url, hibern-
ate.jndi.class toinstantiate an initial context. If they are not specified, the default 1 ni ti al Cont ext will be
used.

Hibernate will automatically place the Sessi onFact ory in JNDI after you call cf g. bui | dSessi onFact ory() .
This means you will at least have this call in some startup code (or utility class) in your application.

If you use a JNDI Sessi onFact ory, an EJB or any other class may obtain the Sessi onFact ory using a JNDI
lookup. Note that this setup is not neccessary if you use the Hi ber nat eUt i | helper class introduced in chapter
1, which acts as a Singleton registry.

3.5.7. Query Language Substitution

Y ou may define new Hibernate query tokens using hi ber nat e. query. substi t uti ons. For example:

hi ber nat e. query. substitutions true=1, false=0

Hibernate 3.0a pha 20

Configuration

would cause the tokenst rue and f al se to be trandated to integer literalsin the generated SQL.

hi ber nat e. query. substituti ons tolLowercase=LONER

would allow you to rename the SQL LOWER function.

3.5.8. Hibernate statistics

If you enable hi bernat e. generate_stati stics, Hibernate will expose a number of metrics that are useful
when tuning arunning system via Sessi onFact ory. get St ati sti cs() . Hibernate can even be configured to ex-
pose these statistics via IMX (see the website for details).

3.6. Logging

Hibernate logs various events using A pache commons-logging.

The commons-logging service will direct output to either Apache Log4j (if you include | og4j .jar in your
classpath) or JDK1.4 logging (if running under JDK1.4 or above). You may download Log4j from ht -
tp://jakarta. apache. org. To use Logdj you will need to place al og4j . properti es filein your classpath, an
example propertiesfile is distributed with Hibernatein the src/ directory.

We strongly recommend that you familiarize yourself with Hibernate's log messages. A lot of work has been
put into making the Hibernate log as detailed as possible, without making it unreadable. It is an essentia
troubleshooting device. Also don't forget to enable SQL logging as described above (hi ber nat e. show_sql), it
isyour first step when looking for performance problems.

3.7. Implementing a Nani ngSt r at egy

Theinterface or g. hi ber nat e. cf g. Nami ngSt r at egy alows you to specify a"naming standard” for database ob-
jects and schema elements.

You may provide rules for automatically generating database identifiers from Java identifiers or for processing
"logical" column and table names given in the mapping file into "physical” table and column names. This fea-
ture helps reduce the verbosity of the mapping document, eliminating repetitive noise (TBL_ prefixes, for ex-
ample). The default strategy used by Hibernate is quite minimal.

You may specify a different strategy by calling Confi gurati on. set Nami ngStrat egy() before adding map-
pings:

Sessi onFactory sf = new Configuration()
. set Nami ngSt r at egy (| mpr ovedNani ngSt r at egy. | NSTANCE)
.addFile("Item hbm xm ")
.addFi | e("Bi d. hbm xni ")
. bui | dSessi onFactory();

org. hi bernat e. cf g. | nprovedNami ngSt r at egy iS a built-in strategy that might be a useful starting point for
some applications.

3.8. XML Configuration File

Hibernate 3.0a pha 21

Configuration

An aternative approach to configuration is to specify a full configuration in afile named hi ber nat e. cf g. xmi .
This file can be used as a replacement for the hi ber nat e. properti es file or, if both are present, to override
properties.

The XML configuration file is by default expected to be in the root 0 your CLASSPATH. Hereis an example:

<?xm version='"1.0" encodi ng='utf-8" ?>

<! DOCTYPE hi ber nat e- confi gurati on PUBLIC
"-// Hi bernate/ H bernate Configuration DTD//EN'
"http://hibernate. sourceforge. net/hi bernat e-confi guration-3.0.dtd">

<hi ber nat e- confi gurati on>

<l-- a SessionFactory instance listed as /jndi/nane -->
<session-factory
nane="j ava: hi ber nat e/ Sessi onFact ory" >

<l-- properties -->
<property nanme="connecti on. datasource">j ava:/ conp/ env/j dbc/ MyDB</ pr operty>
<property nane="di al ect">org. hi bernate. di al ect. MySQLDi al ect </ property>
<property nane="show_sql ">f al se</ property>
<property nane="transaction.factory_cl ass">
org. hi bernate. transacti on. JTATr ansacti onFactory
</ property>
<property name="jta. User Transacti on">j ava: conp/ User Tr ansact i on</ property>

<!-- mapping files -->
<mappi ng resour ce="or g/ hi bernat e/ auction/ltem hbm xm "/>
<mappi ng resour ce="or g/ hi ber nat e/ aucti on/ Bi d. hbm xm "/ >

</ sessi on-factory>

</ hi ber nat e- confi gurati on>

As you can see, the advantage of this approach is the externalization of the mapping file names to configura-
tion. The hi ber nat e. cf g. xn isa@so more convenient once you have to tune the Hibernate cache.

Configuring Hibernate is then as simple as

Sessi onFactory sf = new Configuration().configure().buil dSessionFactory();

Y ou can pick adifferent XML configuration file using

Sessi onFactory sf = new Configuration()
.configure("catdb.cfg.xm")
. bui | dSessi onFactory();

Hibernate 3.0a pha 22

Chapter 4. Persistent Classes

Persistent classes are classes in an application that implement the entities of the business problem (e.g. Custom-
er and Order in an E-commerce application). Persistent classes have, as the name implies, transient and also
persistent instance stored in the database.

Hibernate works best if these classes follow some simple rules, also known as the Plain Old Java Object
(POJO) programming model. However, Hibernate3 allows you to express a domain model in other ways: using
trees of Map instances, for example.

4.1. A simple POJO example

Most Java applications require a persistent class representing felines.

package eg;
import java.util. Set;
i mport java.util.Date;

public class Cat {
private Long id; // identifier

private Date birthdate,;
private Col or col or;
private char sex;
private float weight;
private int litterld;

private Cat nother;
private Set kittens = new HashSet();

private void setld(Long id) {
this.id=id;

}

public Long getld() {
return id;

}

voi d setBirthdate(Date date) {
bi rt hdate = date;
}

public Date getBirthdate() {
return birthdate;

}

voi d set Wei ght (fl oat wei ght) ({
thi s. wei ght = wei ght;

}
public float getWeight() {
return wei ght;

}

public Col or getColor() {
return col or;

}
voi d set Col or (Col or color) {
this.color = color;

}

voi d set Sex(char sex) {
t hi s. sex=sex;

public char getSex() {
return sex;

}

Hibernate 3.0a pha 23

Persistent Classes

void setLitterld(int id) {
this.litterld = id,
}

public int getLitterld() {
return litterld;
}

voi d set Mot her (Cat nother) {
t hi s. not her = not her;

}

public Cat getMther() {
return nother;

}

voi d setKittens(Set kittens) ({
this.kittens = kittens;

}

public Set getKittens() {
return kittens;

}

/1 addKitten not needed by Hi bernate
public void addKitten(Cat kitten) {
kitten.set Mot her(this);
kitten.setLitterld(kittens.size());
kittens.add(kitten);

There are four main rulesto follow here:

4.1.1. Declare accessors and mutators for persistent fields

cat declares accessor methods for all its persistent fields. Many other ORM tools directly persist instance vari-
ables. We believe it is far better to decouple this implementation detail from the persistence mechanism. Hi-
bernate persists JavaBeans style properties, and recognizes method names of the form get Foo, i sFoo and set -
Foo. You may however switch to direct field access for particular properties, if needed.

Properties need not be declared public - Hibernate can persist a property with a default, prot ect ed or private

get / set pair.

4.1.2. Implement a no-argument constructor

cat has a no-argument constructor. All persistent classes must have a default constructor (which may be non-
public) so Hibernate can instantiate them using Const r uct or . new nst ance() . We recommend having a con-
structor with at least package visibility for runtime proxy generation in Hibernate.

4.1.3. Provide an identifier property (optional)

cat has a property called i d. This property holds the primary key column of a database table. The property
might have been called anything, and its type might have been any primitive type, any primitive "wrapper"
type, j ava. lang. String Or java. util . Date. (If your legacy database table has composite keys, you can even
use a user-defined class with properties of these types - see the section on composite identifiers later.)

The identifier property is optional. Y ou can leave it off and let Hibernate keep track of object identifiers intern-
ally. However, for many applicationsit is still agood (and very popular) design decision.

What's more, some functionality is available only to classes which declare an identifier property:

Hibernate 3.0a pha 24

Persistent Classes

* Trangtive reattachment for detached objects (cascade update) - see "Lifecycle Objects’
* Session. saveOr Updat e()

We recommend you declare consistently-named identifier properties on persistent classes. We further recom-
mend that you use anullable (ie. non-primitive) type.

4.1.4. Prefer non-final classes (optional)

A central feature of Hibernate, proxies, depends upon the persistent class being either non-final, or the imple-
mentation of an interface that declares all public methods.

You can persist fi nal classes that do not implement an interface with Hibernate, but you won't be able to use
proxies for lazy associationfetching - which will limit your options for performance tuning.

4.2. Implementing inheritance

A subclass must also observe the first and second rules. It inherits its identifier property from the superclass,
Cat .

package eg;

public class DonmesticCat extends Cat {
private String namne;

public String getNane() {
return nane;
}

protected void set Nane(String nanme) {
t hi s. name=nane;
}

4.3. Implementing equal s() and hashCode()

Y ou have to override the equal s() and hashCode() methodsif you

e intend to put instances of persistent classesin a set (the recommended way to represent many-valued asso-
ciations) and
» intend to use reattachment of detached instances

Hibernate guarantees equivalence of persistent identity (database row) and Java identity only inside a particular
$ession scope. So as soon as we mix instances retrieved in different sessions, we must implement equal s() and
hashCode() if we wish to have meaningful semanticsfor Set s.

The most obvious way isto implement equal s() /hashCode() by comparing the identifier value of both objects.
If the value is the same, both must be the same database row, they are therefore equal (if both are added to a
set, we will only have one element in the set). Unfortunately, we can't use that approach with generated iden-
tifiers! Hibernate will only assign identifier values to objects that are persistent, a newly created instance will
not have any identifier value! We recommend implementing equal s() and hashCode() using Business key

equality.

Business key equality means that the equal s() method compares only the properties that form the business
key, akey that would identify our instance in the real world (a natural candidate key):

public class Cat {

Hibernate 3.0a pha 25

Persistent Classes

publ i c bool ean equal s(oj ect other) {
if (this == other) return true;
if (!'(other instanceof Cat)) return false;
final Cat cat = (Cat) other

if (!cat.getLitterld().equals(getLitterld())) return false;
if (!cat.getMther().equals(getMther())) return false;

return true;

}

public int hashCode() {
int result;
result = get Mt her().hashCode();
result = 29 * result + getLitterld();
return result;

}

4.4. Dynamic models

Hibernate also supports dynamic domain models, using Maps of maps. With this approach, you don't write per-
sistent classes, a Hibernate mapping file for each "entity" is sufficient:

<hi ber nat e- mappi ng>
<dynam c-cl ass entity-nanme="Test Map" >

<id nanme="id"

type="1ong"

colum="1D">

<gener at or cl ass="sequence"/>
</id>

<property nane="nanme"
col um=" NAME"
type="string"/>

<property nane="address"
col um=" ADDRESS"
type="string"/>

<many-t o-one nane="parent"
col um="PARENT | D'
cl ass="Test Map"/ >

<bag nanme="chil dren"
i nverse="true"
| azy="fal se"
cascade="al | ">
<key col um="PARENT_I D'/ >
<one-to-many cl ass="Test Map"/ >
</ bag>

</ dynam c-cl ass>

</ hi ber nat e- mappi ng>

At runtime, you just instantiate Hashvaps and use the Hibernate entity name to refer to a particular type.

Session s = openSession();
Transaction t = s. beginTransaction();

Hibernate 3.0a pha 26

Persistent Classes

Map parent = new HashMap()
par ent . put ("nane", "foo");
parent. put ("address", "bar");

Map child = new HashMap();

chil d. put ("name", "fooTwo");
chi | d. put ("address”, "barTwo");
child. put("parent", parent);

s. save(" Test Map", parent);
t.commt();
s.cl ose();

TODO: Document user-extension framework in the property and proxy package

Hibernate 3.0a pha

27

Chapter 5. Basic O/R Mapping

5.1. Mapping declaration

Object/relational mappings are defined in an XML document. The mapping document is designed to be read-
able and hand-editable. The mapping language is Java-centric, meaning that mappings are constructed around
persistent class declarations, not table declarations.

Note that, even though many Hibernate users choose to write the XML by hand, a number of tools exist to gen-
erate the mapping document, including XDaoclet, Middlegen and AndroMDA.

Letskick off with an example mapping:

<?xm version="1.0"?>
<! DOCTYPE hi ber nat e- mappi ng PUBLI C
"-// Hi bernat e/ H bernate Mappi ng DID 3. 0//EN'
"http://hibernate. sourceforge. net/hi bernat e- mappi ng-3. 0. dtd">

<hi ber nat e- mappi ng package="eg">

<cl ass nane="Cat"
t abl e="cat s"
di scri m nat or-val ue="C"'>

<id name="id">
<generator class="native"/>
</id>

<di scri m nat or col unm="subcl ass"
type="character"/>

<property name="wei ght"/>

<property name="birt hdate"
type="dat e"
not - nul I ="true"
updat e="f al se"/ >

<property nane="col or"
type="eg. types. Col or User Type"
not-nul | ="true"
updat e="f al se"/ >

<property nanme="sex"
not-nul | ="true"
updat e="f al se"/ >

<property nane="litterld"
colum="litterld"
updat e="f al se"/ >

<many-t o- one nane="not her"
col um="not her _i d"
updat e="f al se"/ >

<set name="kittens"
i nverse="true"
order-by="litter_id">
<key col um="not her _i d"/>
<one-to-nmany class="Cat"/>
</ set>

<subcl ass nanme="Donesti cCat"
di scri m nator-val ue="D"'>

Hibernate 3.0a pha 28

Basic O/R Mapping

<property nanme="nane"
type="string"/>

</ subcl ass>
</ cl ass>

<cl ass nane="Dog" >
<l-- mapping for Dog could go here -->
</ cl ass>

</ hi ber nat e- mappi ng>

We will now discuss the content of the mapping document. We will only describe the document elements and
attributes that are used by Hibernate at runtime. The mapping document also contains some extra optional at-
tributes and elements that affect the database schemas exported by the schema export tool. (For example the
not - nul | attribute.)

5.1.1. Doctype

All XML mappings should declare the doctype shown. The actual DTD may be found at the URL above, in the
directory hi ber nat e- x. x. x/ src/ org/ hi bernate Of in hi bernat e3. j ar. Hibernate will aways look for the
DTD inits classpath first.

5.1.2. hibernate-mapping

This element has several optional attributes. The schema and cat al og attributes specify that tables referred to in
this mapping belong to the named schema and/or catalog. If specified, tablenames will be qualified by the given
schema and catalog names. If missing, tablenames will be unqualified. The def aul t - cascade attribute specifies
what cascade style should be assumed for properties and collections which do not specify a cascade attribute.
Theaut o-i nport attribute lets us use unqualified class names in the query language, by default.

<hi ber nat e- mappi ng

schema="schemaNange" (1)
cat al og="cat al ogNane" (2)
def aul t - cascade="none| save- updat e" (3)
defaul t-access="fiel d| property| d assNane" (4)
default-1azy="true|fal se" (5)
aut o-i mport="true|fal se" (6)
package="package. nane" (7)

/>

(1) schema (optiona): The name of a database schema.

(2) catal og (optional): The name of adatabase catal og.

(3) defaul t-cascade (optiona - defaultsto none): A default cascade style.

(4) defaul t-access (optional - defaults to property): The strategy Hibernate should use for accessing all
properties. Can be a custom implementation of PropertyAccessor.

(5) defaul t-1azy (optiona - defaultsto t rue): The default value for unspecifed | azy attributes of class and
collection mappings.

(6) auto-inport (optional - defaults to true): Specifies whether we can use unqualified class names (of
classes in this mapping) in the query language.

(7) package (optional): Specifies a package prefix to assume for unqualified class names in the mapping doc-
ument.

If you have two persistent classes with the same (unqualified) name, you should set aut o- i nport ="fal se". Hi-

Hibernate 3.0a pha 29

Basic O/R Mapping

bernate will throw an exception if you attempt to assign two classes to the same "imported” name.

5.1.3. class, dynamic-class

Y ou may declare a persistent class using the cl ass element:

<cl ass
nane="C assNane" (1)
tabl e="t abl eNane" (2)
di scri m nat or-val ue="di scri m nat or _val ue" (3)
mut abl e="true| fal se” (4)
schema="owner" (5)
cat al og="cat al og" (6)
proxy="Proxyl nterface" (7)
dynami c- updat e="true| f al se" (8)
dynami c-insert="true|fal se" (9)
sel ect - bef or e- updat e="true| f al se" (10)
pol ynor phi sm"inplicit|explicit" (12)
where="arbitrary sql where condition" (12)
persi ster="Persisterd ass" (13)
bat ch-si ze="N" (14)
optimstic-lock="none|version|dirty|all" (15)
lazy="true| fal se" (16)
entity-nanme="EntityNanme" (17)
cat al og="cat al og" (18)
check="arbitrary sql check condition" (19)
row d="TODO' (20)
subsel ect =" TODO' (21)
abstract ="true|fal se" (22)
/>

(1
(2)
(3)

(4
(5)
(6)
(N

(9)

(10)

(11)

(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)

name: The fully qualified Java class name of the persistent class (or interface).

t abl e (optional - defaults to the unqualified class name): The name of its database table.

di scrimi nator-val ue (optional - defaults to the class name): A value that distiguishes individual sub-
classes, used for polymorphic behaviour. Acceptable valuesincludenul | and not nul I .

nut abl e (optional, defaultsto t r ue): Specifies that instances of the class are (not) mutable.

schema (optional): Override the schema name specified by the root <hi ber nat e- mappi ng> element.

cat al og (optional): Override the catalog name specified by the root <hi ber nat e- mappi ng> €lement.

proxy (optional): Specifies an interface to use for lazy initializing proxies. You may specify the name of
the classitsalf.

dynani c- updat e (optional, defaults to f al se): Specifies that uPDATE SQL should be generated at runtime
and contain only those columns whose values have changed.

dynani c-i nsert (optional, defaultsto f al se): Specifies that | NSERT SQL should be generated at runtime
and contain only the columns whose values are not null.

sel ect - bef or e- updat e (optional, defaults to f al se): Specifies that Hibernate should never perform an
SQL UPDATE unlessit is certain that an object is actually modified. In certain cases (actually, only when a
transient object has been associated with a new session using updat e()), this means that Hibernate will
perform an extra SQL SELECT to determine if an UPDATE is actually required.

pol ynor phi sm(optional, defaultstoi npl i ci t): Determines whether implicit or explicit query polymorph-
ismis used.

wher e (optional) specify an arbitrary SQL WHERE condition to be used when retrieving objects of this class
persi ster (optional): Specifiesacustom d assPersi ster.

bat ch-si ze (optional, defaultsto 1) specify a"batch size" for fetching instances of this class by identifier.
optimistic-1ock (optional, defaultsto ver si on): Determines the optimistic locking strategy.

| azy (optional): Lazy fetching may be completely disabled by setting | azy="f al se".

entity-nane (optional): TODO

cat al og (optional): The name of a database catalog used for this class and its table.

check (optional): A SQL expression used to generate a multi-row check constraint for automatic schema

Hibernate 3.0a pha 30

Basic O/R Mapping

generation.
(20) rowi d (optional): TODO
(21) subsel ect (optional): TODO
(22) abstract (optional): Used to mark abstract superclassesin <uni on- subcl ass> hierarchies.

It is perfectly acceptable for the named persistent class to be an interface. Y ou would then declare implement-
ing classes of that interface using the <subcl ass> element. Y ou may persist any static inner class. Y ou should
specify the class name using the standard form ie. eg. Foo$Bar .

Immutable classes, nut abl e="f al se", may not be updated or deleted by the application. This alows Hibernate
to make some minor performance optimizations.

The optional proxy attribute enables lazy initialization of persistent instances of the class. Hibernate will ini-
tially return CGLIB proxies which implement the named interface. The actual persistent object will be loaded
when a method of the proxy isinvoked. See "Proxiesfor Lazy Initialization” below.

Implicit polymorphism means that instances of the class will be returned by a query that names any superclass
or implemented interface or the class and that instances of any subclass of the class will be returned by a query
that names the class itself. Explicit polymorphism means that class instances will be returned only be queries
that explicitly name that class and that queries that name the class will return only instances of subclasses
mapped inside this <cl ass> declaration as a <subcl ass> 0Or <j oi ned- subcl ass>. FOr most purposes the defaullt,
pol yrmor phi sme"inplicit", iS appropriate. Explicit polymorphism is useful when two different classes are
mapped to the same table (this alows a"lightweight" class that contains a subset of the table columns).

The persi st er attribute lets you customize the persistence strategy used for the class. You may, for example,
specify your own subclass of or g. hi ber nat e. persi st er. Enti t yPersi ster or you might even provide a com-
pletely new implementation of the interface or g. hi ber nat e. per si st er. d assPer si st er that implements per-
sistence via, for example, stored procedure calls, seridization to flat files or LDAP. See
org. hi bernat e. t est . Cust onPer si st er for asimple example (of "persistence" to a Hasht abl e).

Note that the dynani c- updat e and dynami c-i nsert Settings are not inherited by subclasses and so may aso be
specified on the <subcl ass> Of <j oi ned- subcl ass> elements. These settings may increase performance in
some cases, but might actually decrease performance in others. Use judicioudly.

Use of sel ect - bef or e- updat e Will usually decrease performance. It is very useful to prevent a database update
trigger being called unnecessarily.

If you enable dynani c- updat e, you will have a choice of optimistic locking strategies:

e version check the version/timestamp columns

al | check all columns
e dirty check the changed columns
* none do not use optimistic locking

We very strongly recommend that you use version/timestamp columns for optimistic locking with Hibernate.
Thisisthe optimal strategy with respect to performance and is the only strategy that correctly handles modific-
ations made to detached instances (ie. when Sessi on. updat e() isused).

TODO: Document entity name and dynamic class

TODO: Document subselect and and synchronize for view simulation

Hibernate 3.0a pha 31

Basic O/R Mapping

514.id

Mapped classes must declare the primary key column of the database table. Most classes will also have a Java-
Beans-style property holding the unique identifier of an instance. The <i d> element defines the mapping from
that property to the primary key column.

<id
nanme="pr opert yNane" (1)
type="t ypenane" (2)
col um="col unm_nane" (3)
unsaved- val ue="nul | | any| none| undef i ned| i d_val ue" (4)
access="fiel d| property| Cl assNanme" > (5)
<gener ator class="generatorC ass"/>

</id>

(1) nare (optiona): The name of the identifier property.

(2) type (optiona): A name that indicates the Hibernate type.

(3) col um (optional - defaults to the property name): The name of the primary key column.

(4) unsaved-val ue (optional - defaults to a "sensible" value): An identifier property value that indicates that
an instance is newly instantiated (unsaved), distinguishing it from detached instances that were saved or
loaded in a previous session.

(5) access (optional - defaults to property): The strategy Hibernate should use for accessing the property
value.

If the nane attributeis missing, it isassumed that the class has no identifier property.

The unsaved- val ue attribute isimportant! If the identfier property of your class does not default to the normal
Java default value (null or zero), then you should specify the actual default.

There is an aternative <conposi t e-i d> declaration to allow access to legacy data with composite keys. We
strongly discourage its use for anything else.

5.1.4.1. generator

The required <gener at or > child element names a Java class used to generate unique identifiers for instances of
the persistent class. If any parameters are required to configure or initialize the generator instance, they are
passed using the <par an»> €l ement.

<id name="id" type="long" colum="cat_id">
<generator class="org. hibernate.id. Tabl eH LoGenerator">
<par am nane="t abl " >ui d_t abl e</ par an>
<par am nane="col umm" >next _hi _val ue_col utm</ par an»
</ gener at or >
</id>

All generators implement the interface or g. hi bernate. i d. I denti fi er Generator. Thisis avery simple inter-
face; some applications may choose to provide their own specialized implementations. However, Hibernate
provides arange of built-in implementations. There are shortcut names for the built-in generators:

i ncrenent
generates identifiers of typel ong, short orint that are unique only when no other process is inserting data
into the same table. Do not use in a cluster.

identity
supports identity columns in DB2, MySQL, MS SQL Server, Sybase and HypersonicSQL. The returned

Hibernate 3.0a pha 32

Basic O/R Mapping

identifier is of typel ong, short oOrint.

sequence
uses a sequence in DB2, PostgreSQL, Oracle, SAP DB, McKoi or a generator in Interbase. The returned
identifier isof typel ong, short Orint

hilo
uses a hi/lo algorithm to efficiently generate identifiers of type 1 ong, short or int, given a table and
column (by default hi ber nat e_uni que_key and next _hi respectively) as a source of hi values. The hi/lo al-
gorithm generates identifiers that are unique only for a particular database. Do not use this generator with
connections enlisted with JTA or with a user-supplied connection.

seghil o
uses a hi/lo algorithm to efficiently generate identifiers of type | ong, short ori nt, given a named database
sequence.

uui d
uses a 128-bit UUID agorithm to generate identifiers of type string, unique within a network (the IP ad-
dressisused). The UUID is encoded as a string of hexadecimal digits of length 32.

gui d
uses a database-generated GUID string on MS SQL Server and MySQL.

native
picksi dentity, sequence Or hi | o depending upon the capabilities of the underlying database.

assi gned
lets the application to assign an identifier to the object before save() iscalled.

sel ect
retrieves a primary key assigned by a database trigger by selecting the row by some unique key and retriev-
ing the primary key value.

foreign
uses the identifier of another associated object. Usually used in conjunction with a <one- t o- one> primary
key association.

5.1.4.2. Hi/lo algorithm

The hi | o and seqhi | o generators provide two alternate implementations of the hi/lo algorithm, a favorite ap-
proach to identifier generation. The first implementation requires a "specia" database table to hold the next
available "hi" value. The second uses an Oracle-style sequence (where supported).

<id name="id" type="long" colum="cat_id">
<generator class="hilo">
<param nane="t abl " >hi _val ue</ par anr
<par am nanme="col um" >next _val ue</ par an»
<par am nane="max_| 0" >100</ par an»
</ gener at or >
</id>

<id name="id" type="long" colum="cat _id">
<generator class="seqghil o">
<par am nanme="sequence" >hi _val ue</ par anp
<par am nane="nmax_| 0" >100</ par an>
</ gener at or >
</id>

Hibernate 3.0a pha 33

Basic O/R Mapping

Unfortunately, you can't use hi | o when supplying your own Connect i on to Hibernate, or when Hibernate is us-
ing an application server datasource to obtain connections enlisted with JTA. Hibernate must be able to fetch
the "hi" value in a new transaction. A standard approach in an EJB environment is to implement the hi/lo al-
gorithm using a statel ess session bean.

5.1.4.3. UUID algorithm

The UUID contains: |P address, startup time of the VM (accurate to a quarter second), system time and a
counter value (unique within the JVM). It's not possible to obtain a MAC address or memory address from Java
code, so thisisthe best we can do without using JNI.

5.1.4.4. Identity columns and sequences

For databases which support identity columns (DB2, MySQL, Sybase, MS SQL), you may usei dentity key
generation. For databases that support sequences (DB2, Oracle, PostgreSQL, Interbase, McKoi, SAP DB) you
may use sequence style key generation. Both these strategies require two SQL queriesto insert a new object.

<id name="id" type="long" columm="person_id">
<generator class="sequence">
<par am nane="sequence" >per son_i d_sequence</ par anr
</ gener at or >
</id>

<id name="id" type="long" colum="person_id" unsaved-val ue="0">
<generator class="identity"/>
</id>

For cross-platform development, the native strategy will choose from the identity, sequence and hilo
strategies, dependant upon the capabilities of the underlying database.

5.1.4.5. Assigned identifiers

If you want the application to assign identifiers (as opposed to having Hibernate generate them), you may use
the assi gned generator. This specia generator will use the identifier value already assigned to the object's iden-
tifier property. This generator is used when the primary key is anatura key instead of a surrogate key.

Choosing the assi gned generator makes Hibernate use unsaved- val ue="undef i ned", forcing Hibernate to go
to the database to determine if an instance istransient or detached, unless there is aversion or timestampe prop-
erty, or you define i ntercept or . i sUnsaved().

5.1.4.6. Primary keys assignhed by triggers
For legacy schemas only (Hibernate does not generate DDL with triggers).

<id name="id" type="long" columm="person_id">
<generator class="select">
<par am nane="key" >soci al Securit yNunber </ par an>
</ gener at or >
</id>

In the above example, there is a unique valued property named soci al Securi t yNunber defined by the class, as
anatural key, and a surrogate key named per son_i d whose value is generated by atrigger.

5.1.5. composite-id

Hibernate 3.0a pha 34

Basic O/R Mapping

<conposite-id
nane="propert yNane"
cl ass="C assNane"
unsaved- val ue="undef i ned| any| none"
access="fiel d| property| C assNanme" >

<key- property nanme="propertyNane" type="typenane" col um="col um_nane"/>
<key- many-t o- one nane="propertyNane cl ass="d assNane" col um="col utm_nane"/>

</ conposi te-id>

For a table with a composite key, you may map multiple properties of the class as identifier properties. The
<conposi te-i d> element accepts <key- property> property mappings and <key- many-t o- one> Mappings as
child elements.

<conposite-id>
<key- property nanme="medi car eNunber"/>
<key- property nane="dependent"/>

</ conposi te-id>

Your persistent class must override equal s() and hashCode() to implement composite identifier equality. It
must also implements Seri al i zabl e.

Unfortunately, this approach to composite identifiers means that a persistent object is its own identifier. There
is no convenient "handle" other than the object itself. Y ou must instantiate an instance of the persistent class it-
self and populate its identifier properties before you can | oad() the persistent state associated with a composite
key. We will describe a much more convenient approach where the composite identifier is implemented as a
seperate class in Section 7.4, “ Components as composite identifiers’. The attributes described below apply only
to this alternative approach:

* nane (optional): A property of component type that holds the composite identifier (see next section).

* class (optiona - defaults to the property type determined by reflection): The component class used as a
composite identifier (see next section).

* unsaved-val ue (optional - defaults to undefi ned): Indicates that transient instances should be considered
newly instantiated, if set to any, or detached, if set to none. It is best to leave the default value in all cases.

5.1.6. discriminator

The <di scri i nat or > element is required for polymorphic persistence using the table-per-class-hierarchy map-
ping strategy and declares a discriminator column of the table. The discriminator column contains marker val-
ues that tell the persistence layer what subclass to instantiate for a particular row. A restricted set of types may
be used: string, character, i nteger, byte, short, bool ean, yes_no, true_f al se.

<di scri m nat or

col um="di scri m nat or _col um" (1)
type="di scri m nator _type" (2)
force="true|fal se” (3)
insert="true|fal se" (4)
formul a="arbitrary sql expression” (5)

/>

(1) col um (optional - defaultsto cl ass) the name of the discriminator column.

(2) type (optiona - defaultsto st ri ng) aname that indicates the Hibernate type

(3) force (optional - defaultsto f al se) "force" Hibernate to specify allowed discriminator values even when
retrieving all instances of the root class.

(4) insert (optional - defaultstotrue) set thistof al se if your discriminator column is also part of a mapped
composite identifier. (Tells Hibernate to not include the column in SQL | NSERTS.)

Hibernate 3.0a pha 35

Basic O/R Mapping

(5) formula (optional) an arbitrary SQL expression that is executed when atype has to be evaluated. Allows
content-based discrimination.

Actual values of the discriminator column are specified by the di scri mi nat or - val ue attribute of the <cl ass>
and <subcl ass> elements.

The force attribute is (only) useful if the table contains rows with "extra' discriminator values that are not
mapped to a persistent class. Thiswill not usually be the case.

Using the f or nul a attribute you can declare an arbitrary SQL expression that will be used to evaluate the type
of arow:

<di scri m nator formul a="case when CLASS TYPE in ('a'", 'b', '"c') then 0 else 1 end" type="integer"/>

5.1.7. version (optional)

The <ver si on> element is optional and indicates that the table contains versioned data. Thisis particularly use-
ful if you plan to use long transactions (see below).

<version
col um="ver si on_col utm" (1)
nane="pr opertyNane" (2)
type="t ypenane" (3)
access="fiel d| property| C assNane" (4)
unsaved- val ue="nul | | negati ve| undef i ned" (5)
/>

(1) col um (optional - defaults to the property name): The hame of the column holding the version number.

(2) nane: The name of a property of the persistent class.

(3) type (optional - defaultstoi nt eger): The type of the version number.

(4) access (optional - defaults to property): The strategy Hibernate should use for accessing the property
value.

(5) unsaved-val ue (optional - defaultsto undefi ned): A version property value that indicates that an instance
is newly instantiated (unsaved), distinguishing it from detached instances that were saved or loaded in a
previous session. (undef i ned specifies that the identifier property value should be used.)

Version numbers may be of typel ong, i nt eger, short, ti mestanp Or cal endar.

A version or timestamp property should never be null for a detached instance, so Hibernate will detact any in-
stance with a null version or timestamp as transient, no matter what other unsaved- val ue Strategies are spe-
cified. Declaring a nullable version or timestamp property is an easy way to avoid any problems with transitive
reattachment in Hibernate, especially useful for people using assigned identiifers or composite keys!

5.1.8. timestamp (optional)

The optional <ti nmest anp> element indicates that the table contains timestamped data. Thisisintended as an al-
ternative to versioning. Timestamps are by nature a less safe implementation of optimistic locking. However,
sometimes the application might use the timestamps in other ways.

<ti mest anp

col um="ti nest anp_col um" (1)
nane="pr opert yNane" (2)
access="fi el d| property| assNane" (3)
unsaved- val ue="nul | | undefi ned" (4)

/>

Hibernate 3.0a pha 36

Basic O/R Mapping

(1
(2)
(3)

col urm (optional - defaults to the property name): The name of a column holding the timestamp.

name: The name of a JavaBeans style property of Javatype Dat e or Ti mest anp of the persistent class.
access (optional - defaults to property): The strategy Hibernate should use for accessing the property
value.

unsaved- val ue (optiona - defaults to nul 1): A version property value that indicates that an instance is
newly instantiated (unsaved), distinguishing it from detached instances that were saved or loaded in a pre-
vious session. (undef i ned specifies that the identifier property value should be used.)

Note that <t i mest anp> isequivalent to <ver si on type="ti mestanp">.

5.1.9. property

The <pr oper t y> element declares a persistent, JavaBean style property of the class.

<property
nane="pr opertyNane" (1)
col utm="col um_nane" (2)
type="t ypenane" (3)
updat e="true| fal se" (4)
insert="true|fal se" (4)

/>

(D
(2)

(3)
(4

(6)

(N

(8)

(9)
(10)

formul a="arbitrary SQL expression" (5)
access="fi el d| property| Cl assNane" (6)

| azy="true| fal se" (7)
uni que="true| f al se" (8)
not - nul | ="true| f al se" (9)
optimstic-lock="true|fal se" (10)

name: the name of the property, with an initial lowercase letter.

col um (optional - defaults to the property name): the name of the mapped database table column. This
may also be specified by nested <col um> element(s).

t ype (optional): a name that indicates the Hibernate type.

update, insert (optiona - defaultsto true) : specifies that the mapped columns should be included in
SQL upPDATE and/or | NSERT statements. Setting both to fal se allows a pure "derived" property whose
value is initialized from some other property that maps to the same colum(s) or by atrigger or other ap-
plication.

fornul a (optional): an SQL expression that defines the value for a computed property. Computed proper-
ties do not have a column mapping of their own.

access (optional - defaults to property): The strategy Hibernate should use for accessing the property
value.

| azy (optional - defaultsto f al se): Specifies that this property should be fetched lazily when the instance
variable isfirst accessed (requires build-time bytecode instrumentation).

uni que (optional): Enable the DDL generation of a unique constraint for the columns. Also, alow thisto
bethetarget of aproperty-ref.

not - nul | (optional): Enable the DDL generation of a nullability constraint for the columns.
optimistic-lock (optional - defaultsto t r ue): Specifies that updates to this property do or do not require
acquisition of the optimistic lock. In other words, define if a version check should be made if this property
isdirty.

typename could be:

1

The name of a Hibernate basic type (eg. i nteger, string, character, date, tinestanp, float,
bi nary, serializable, object, bl ob).

The name of a Java class with a default basic type (eg. int, float, char, java.lang.String,
java.util.Date, java.lang.|nteger, java.sql.d ob).

The name of a serializable Java class.

Hibernate 3.0a pha 37

Basic O/R Mapping

4. The class name of acustom type (eg. com i || fl ow. type. MyCust onilype).

If you do not specify atype, Hibernate will use reflection upon the named property to take a guess at the correct
Hibernate type. Hibernate will try to interpret the name of the return class of the property getter using rules 2, 3,
4 in that order. However, thisis not aways enough. In certain cases you will till need the t ype attribute. (For
example, to distinguish between Hi ber nat e. DATE and Hi ber nat e. TI MESTAMP, Or 10 Specify a custom type.)

The access attribute lets you control how Hibernate will access the property at runtime. By default, Hibernate
will call the property get/set pair. If you specify access="fi el d", Hibernate will bypass the get/set pair and ac-
cess the field directly, using reflection. You may specify your own strategy for property access by naming a
class that implements the interface or g. hi ber nat e. property. PropertyAccessor .

TODO: Document the nested column formula="" attribute with an example

5.1.10. many-to-one

An ordinary association to another persistent class is declared using a many-t o- one element. The relational
model is a many-to-one association. (Itsreally just an object reference.)

<nany-t o- one

nane="pr opertyNane" (1)
col um="col um_nange" (2)
cl ass="d assNane" (3)
cascade="al | | none| save- updat e| del et " (4)
fetch="joi n| sel ect" (5)
updat e="true| fal se" (6)
insert="true|fal se" (6)
property-ref="propertyNameFromAssoci at edd ass" (7)
access="fi el d| property| Cl assNane" (8)
uni que="true| fal se" (9)
not-null ="true|fal se" (10)
optimstic-lock="true]|fal se" (12)

/>

(1) nane: The name of the property.
(2) col um (optional): The name of the foreign key column. This may also be specified by nested <col urm>

element(s).

(3) class (optional - defaults to the property type determined by reflection): The name of the associated
class.

(4) cascade (optional): Specifies which operations should be cascaded from the parent object to the associ-
ated object.

(5) join (optiona - defaultsto sel ect): Chooses between outer-join fetching or sequential select fetching.

(6) update, insert (optional - defaults to true) specifies that the mapped columns should be included in
SQL UPDATE and/or | NSERT statements. Setting both to f al se alows a pure "derived" association whose
value is initialized from some other property that maps to the same colum(s) or by a trigger or other ap-
plication.

(7) property-ref: (optional) The name of a property of the associated class that is joined to this foreign key.
If not specified, the primary key of the associated classis used.

(8) access (optional - defaults to property): The strategy Hibernate should use for accessing the property
value.

(9) uni que (optional): Enable the DDL generation of a unique constraint for the foreign-key column. Also, al-
low thisto be the target of aproperty-ref.

(10) not-nul | (optional): Enable the DDL generation of anullability constraint for the foreign key columns.

(11) optinistic-1ock (optional - defaultsto t rue): Specifies that updates to this property do or do not require
acquisition of the optimistic lock. In other words, define if aversion check should be made if this property
isdirty.

Hibernate 3.0a pha 38

Basic O/R Mapping

The cascade attribute permits the following values: al | , save- updat e, del et e, none. Setting a value other than
none Will propagate certain operations to the associated (child) object. See "Lifecycle Objects' below.

A typical many-t o- one declaration looks as simple as

<many-t o- one name="product" cl ass="Product" col um="PRODUCT_I D'/ >

Theproperty-ref attribute should only be used for mapping legacy data where aforeign key refersto a unique
key of the associated table other than the primary key. Thisis an ugly relational model. For example, suppose
the Product class had a unique serial number, that is not the primary key. (The uni que attribute controls Hi-
bernate's DDL generation with the SchemaExport tool.)

<property nanme="seri al Nunber" uni que="true" type="string" col um="SERI AL_NUMBER'/ >

Then the mapping for o der I t emmight use:

<many-t o- one nanme="product" property-ref="serial Nunber" col um="PRODUCT_SERI AL_NUMBER'/ >

Thisis certainly not encouraged, however.

If the referenced unique key comprises multiple properties of the associated entity, you should map the refer-
enced properties inside a named <pr oper t i es> element.

5.1.11. one-to-one

A one-to-one association to another persistent classis declared using aone- t o- one €lement.

<one-t o0-one

nanme="pr opertyNane" (1)
cl ass="C assNane" (2)
cascade="al | | none| save- updat e| del et e" (3)
constrai ned="true| fal se" (4)
fetch="joi n| sel ect" (5)
property-ref="propertyNameFromAssoci at edd ass" (6)
access="fiel d| property| Cl assNane" (7)

/>

(1) nare: The name of the property.

(2) class (optiona - defaults to the property type determined by reflection): The name of the associated
class.

(3) cascade (optional) specifies which operations should be cascaded from the parent object to the associated
object.

(4) constrained (optional) specifies that aforeign key constraint on the primary key of the mapped table ref-
erences the table of the associated class. This option affects the order in which save() and del ete() are
cascaded (and is also used by the schema export tool).

(5) fetch (optional - defaultsto sel ect): Chooses between outer-join fetching or sequentia select fetching.

(6) property-ref: (optiona) The name of a property of the associated class that is joined to the primary key
of this class. If not specified, the primary key of the associated classis used.

(7) access (optional - defaults to property): The strategy Hibernate should use for accessing the property
value.

There are two varieties of one-to-one association:

* primary key associations

Hibernate 3.0a pha 39

Basic O/R Mapping

e unique foreign key associations

Primary key associations don't need an extra table column; if two rows are related by the association then the
two table rows share the same primary key value. So if you want two objects to be related by a primary key as-
sociation, you must make sure that they are assigned the same identifier value!

For aprimary key association, add the following mappings to Enpl oyee and Per son, respectively.

<one-t o- one name="person" class="Person"/>
<one-t o- one name="enpl oyee" cl ass="Enpl oyee" constrai ned="true"/>

Now we must ensure that the primary keys of related rows in the PERSON and EMPLOY EE tables are equal.
We use a special Hibernate identifier generation strategy called f or ei gn:

<cl ass name="person" tabl e=" PERSON" >
<id name="id" col um="PERSON | D'>
<generator class="foreign">
<par am nane="property" >enpl oyee</ par anr
</ gener at or >
</id>

<one-t o- one name="enpl oyee"
cl ass="Enpl oyee"
constrai ned="true"/>
</ cl ass>

A newly saved instance of Per son is then assigned the same primar key value as the Enpl oyee instance refered
with the enpl oyee property of that Per son.

Alternatively, aforeign key with a unique constraint, from Enpl oyee t0 Per son, may be expressed as:

<many-t o- one nane="person" class="Person" col um="PERSON | D' uni que="true"/>

And this association may be made bidirectional by adding the following to the Per son mapping:

<one-t o0-one nane"enpl oyee" class="Enpl oyee" property-ref="person"/>

5.1.12. component, dynamic-component

The <conponent > element maps properties of a child object to columns of the table of a parent class. Compon-
ents may, in turn, declare their own properties, components or collections. See "Components' below.

<conponent
nanme="pr opert yNane" (1)
cl ass="cl assNane" (2)
insert="true|fal se" (3)
upate="true| f al se" (4)
access="fi el d| property| d assNane" (5)
| azy="true|fal se" (6)
optimstic-lock="true|fal se" (7)
>
<property />
<many-to-one />

</ conponent >

(1) nare: The name of the property.

Hibernate 3.0a pha 40

Basic O/R Mapping

(2) class (optional - defaults to the property type determined by reflection): The name of the component
(child) class.

(3) insert: Do the mapped columns appear in SQL | NSERTS?

(4) updat e: Do the mapped columns appear in SQL UPDATES?

(5) access (optional - defaults to property): The strategy Hibernate should use for accessing the property
value.

(6) lazy (optiona - defaults to f al se): Specifies that this component should be fetched lazily when the in-
stance variable isfirst accessed (requires build-time bytecode instrumentation).

The child <pr oper t y> tags map properties of the child class to table columns.

The <conponent > element allows a <par ent > subelement that maps a property of the component class as a ref-
erence back to the containing entity.

The <dynani c- conponent > element allows a Map to be mapped as a component, where the property names refer
to keys of the map.

5.1.13. subclass

Finally, polymorphic persistence requires the declaration of each subclass of the root persistent class. For the
(recommended) table-per-class-hierarchy mapping strategy, the <subcl ass> declaration is used.

<subcl ass
name="C assNane" (1)
di scri m nator-val ue="di scri m nat or _val ue" (2)
proxy="Proxyl nterface" (3)
| azy="true| fal se" (4)

dynami c- updat e="true| f al se"
dynam c-insert="true|fal se">

<property [>

</ subcl ass>

(1) nane: Thefully qualified class name of the subclass.

(2) discrimnator-val ue (optional - defaults to the class name): A value that distiguishes individual sub-
classes.

(3) proxy (optional): Specifiesaclass or interface to use for lazy initializing proxies.

(4) lazy (optional, defaultstot rue): Setting | azy="f al se" disablesthe use of lazy fetching.

Each subclass should declare its own persistent properties and subclasses. <ver si on> and <i d> properties are
assumed to be inherited from the root class. Each subclass in a heirarchy must define a unique di scri ni nat or -
val ue. If noneis specified, the fully qualified Java class nameis used.

5.1.14. joined-subclass

Alternatively, each subclass may be mapped to its own table (table-per-subclass mapping strategy). Inherited
state isretrieved by joining with the table of the superclass. We use the <j oi ned- subcl ass> element.

<j oi ned- subcl ass

nanme="C assNane" (1)
tabl e="t abl enane" (2)
proxy="Proxyl nterface" (3)
| azy="true|fal se" (4)

dynam c- updat e="true| f al se"
dynami c-insert="true|fal se"
schema="schema"

cat al og="cat al og"

Hibernate 3.0a pha 41

Basic O/R Mapping

ext ends=" Super cl assNane"
per si st er =" C assNane"
subsel ect =" TODO' >

<key >

<property [>

</ j oi ned- subcl ass>

(1) nane: Thefully qualified class name of the subclass.

(2) tabl e: The name of the subclass table.

(3) proxy (optional): Specifiesaclass or interface to use for lazy initializing proxies.

(4) 1azy (optional, defaultstot rue): Setting | azy="f al se" disablesthe use of lazy fetching.

TODO

No discriminator column is required for this mapping strategy. Each subclass must, however, declare a table
column holding the object identifier using the <key> element. The mapping at the start of the chapter would be
re-written as:

<?xm version="1.0"?>

<! DOCTYPE hi ber nat e- mappi ng PUBLI C
"-// Hi bernat e/ H bernate Mappi ng DTD/ / EN'
"http://hibernate. sourceforge. net/hi bernat e- mappi ng-3. 0. dtd">

<hi ber nat e- mappi ng package="eg">
<cl ass nanme="Cat" tabl e="CATS">

<id name="id" colum="uid" type="Ilong">
<generator class="hilo"/>

</id>

<property nane="birthdate" type="date"/>
<property nane="color" not-null="true"/>
<property nane="sex" not-null="true"/>

<property nane="wei ght"/>
<many-t o- one name="nate"/>
<set nanme="kittens">
<key col um="MOTHER'/ >
<one-to-nmany class="Cat"/>
</set>
<j oi ned- subcl ass nane="Donesti cCat" tabl e="DOVESTI C_CATS" >
<key col um="CAT"/ >
<property nanme="nane" type="string"/>
</ j oi ned- subcl ass>
</ cl ass>

<cl ass nane="eg. Dog" >
<l-- mapping for Dog could go here -->
</ cl ass>

</ hi ber nat e- mappi ng>

5.1.15. union-subclass

A third option is to map only the concrete classes of an inheritance hierarchy to tables, (the table-
per-concrete-class strategy) where each table defines all persistent state of the class, including inherited state. In
Hibernate, it is not absolutely necessary to explicitly map such inheritance hierarchies. You can simply map
each class with a separate <cl ass> declaration. However, if you wish use polymorphic associations, you need
to use the <uni on- subcl ass> mapping.

<uni on- subcl ass
nanme="C assNane" (1)

Hibernate 3.0a pha 42

Basic O/R Mapping

tabl e="t abl enane" (2)
proxy="Proxyl nterface" (3)
| azy="true|fal se" (4)
dynam c- updat e="true| f al se" (5)
dynami c-insert="true|fal se" (6)
schema="schema" (7)
cat al og="cat al og" (8)
ext ends=" Super cl assNange" (9)
abstract="true|fal se" (10)
persi st er="C assNange" (11)
subsel ect =" TODO' > (12)
<property [>

</ uni on- subcl ass>

(1
(2)
(3)
(4

nane: The fully qualified class name of the subclass.

t abl e: The name of the subclasstable.

proxy (optional): Specifies a class or interface to use for lazy initializing proxies.

| azy (optional, defaultstotrue): Setting | azy="f al se" disablesthe use of lazy fetching.

TODO

No discriminator column or key column is required for this mapping strategy.

5.1.16. join

Using the <j oi n> element, it is possible to map properties of one classto several tables.

<join
t abl e="t abl enane" (1)
schema="owner" (2)
cat al og="cat al og" (3)
fetch="joi n| sel ect" (4)
i nverse="true|fal se" (5)
optional ="true| fal se"> (6)
<key ... />
<property ... [>

</joi n>

(1)
(2)
(3)
(4

(5)

(6)

t abe: The name of the joined table.

schema (optional): Override the schema name specified by the root <hi ber nat e- mappi ng> element.

cat al og (optional): Override the catalog name specified by the root <hi ber nat e- mappi ng> €lement.
fetch (optional - defaultstoj oi n): If set to sel ect for ajoin defined on a subclass, then rather than join-
ing, asequential select will beissued only if arow turns out to represent an instance of the subclass.

i nverse (optional - defaultsto f al se): If enabled, Hibernate will not try to insert or update the properties
defined by thisjoin.

optional (optional - defaults to fal se): If enabled, Hibernate will insert a row only if the properties
defined by thisjoin are non-null .

TODO: Document join with an example

5.1.17. key

We've seen the <key> element crop up a few times now. It appears anywhere the parent mapping element

Hibernate 3.0a pha 43

Basic O/R Mapping

defines ajoin to a new table, and defines the foreign key in the joined table, that references the primary key of
the original table.

<key
col um="col umnange" (1)
on- del et e="noacti on| cascade" (2)
property-ref="propertyNane" (3)
/>

(1) col um (optional): The name of the foreign key column. This may also be specified by nested <col um>
element(s).

(2) on-del ete (optional, defaults to noacti on): Specifies whether the foreign key constraint has database-
level cascade delete enabled.

(3) property-ref (optiona): Specifies that the foreign key refers to columns that are not the primary key of
the orginal table. (Provided for legacy data.)

We recommend that for systems where delete performance is important, all keys should be defined on- de-
| et e="cascade", and Hibernate will use a database-level ON CASCADE DELETE constraint, instead of many indi-
vidual DELETE statements. Be aware that this feature bypasses Hibernate's usual optimistic locking strategy for
versioned data.

5.1.18. map, set, list, bag

Collections are discussed | ater.

5.1.19. import

Suppose your application has two persistent classes with the same name, and you don't want to specify the fully
qualified (package) name in Hibernate queries. Classes may be "imported” explicitly, rather than relying upon
aut o-i nport ="true". You may even import classes and interfaces that are not explicitly mapped.

<i nport cl ass="java.l ang. Obj ect" rename="Universe"/>

<i nport
cl ass="d assNane" (1)
r ename=" Shor t Nanme" (2)
/>

(1) class: Thefully qualified class name of of any Javaclass.
(2) renanme (optional - defaults to the unqualified class name): A name that may be used in the query lan-

guage.
5.2. Hibernate Types

5.2.1. Entities and values

To understand the behaviour of various Java language-level objects with respect to the persistence service, we
need to classify them into two groups:

An entity exists independently of any other objects holding references to the entity. Contrast this with the usual
Java model where an unreferenced object is garbage collected. Entities must be explicitly saved and deleted
(except that saves and deletions may be cascaded from a parent entity to its children). Thisis different from the

Hibernate 3.0a pha 44

Basic O/R Mapping

ODMG model of object persistence by reachablity - and corresponds more closely to how application objects
are usually used in large systems. Entities support circular and shared references. They may also be versioned.

An entity's persistent state consists of references to other entities and instances of value types. Vaues are prim-
itives, collections, components and certain immutable objects. Unlike entities, values (in particular collections
and components) are persisted and deleted by reachability. Since value objects (and primitives) are persisted
and deleted along with their containing entity they may not be independently versioned. Values have no inde-
pendent identity, so they cannot be shared by two entities or collections.

All Hibernate types except collections support null semantics.

Up until now, we've been using the term "persistent class' to refer to entities. We will continue to do that.
Strictly speaking, however, not all user-defined classes with persistent state are entities. A component is a user
defined class with value semantics.

5.2.2. Basic value types

The basic types may be roughly categorized into

i nteger, long, short, float, double, character, byte, bool ean, yes_no, true_false
Type mappings from Java primitives or wrapper classes to appropriate (vendor-specific) SQL column
types. boolean, vyes_no and true_false are al alternative encodings for a Java bool ean oOr
j ava. | ang. Bool ean.

string
A type mapping fromj ava. | ang. St ri ng t0 VARCHAR (or Oracle VARCHAR?).

date, tine, tinmestanp
Type mappings from j ava. uti |l . Dat e and its subclasses to SQL types DATE, TI ME and TI MESTAMP (Or equi-
valent).

cal endar, cal endar_date
Type mappingsfromj ava. uti| . Cal endar to SQL types TI MESTAVP and DATE (or equivalent).

bi g_deci nal
A type mapping from j ava. mat h. Bi gDeci mal t0 NUMERI C (or Oracle NUVBER).

| ocal e, tinezone, currency
Type mappings from j ava. util. Local e, java. util.Ti meZone and j ava. util. Currency t0 VARCHAR (Or
Oracle VARCHAR?). Instances of Local e and cur r ency are mapped to their SO codes. Instances of Ti nezone
are mapped to their 1 D.

cl ass
A type mapping from j ava. | ang. G ass t0 VARCHAR (or Oracle VARCHAR?2). A Cl ass iS mapped to its fully
qualified name.

bi nary

Maps byte arrays to an appropriate SQL binary type.

t ext
Maps long Java strings to a SQL CLOB or TEXT type.

serializable

Maps serializable Java types to an appropriate SQL binary type. Y ou may also indicate the Hibernate type

Hibernate 3.0a pha 45

Basic O/R Mapping

seri al i zabl e with the name of a serializable Java class or interface that does not default to a basic type.

cl ob, blob
Type mappings for the JDBC classesj ava. sql . G ob and j ava. sql . Bl ob. These types may be inconveni-
ent for some applications, since the blob or clob object may not be reused outside of a transaction.
(Furthermore, driver support is patchy and inconsistent.)

Unique identifiers of entities and collections may be of any basic type except binary, bl ob and cl ob.
(Composite identifiers are a so allowed, see below.)

The basic value types have corresponding Type constants defined on or g. hi ber nat e. Hi ber nat e. For example,
Hi ber nat e. STRI NG representsthe st ri ng type.

5.2.3. Custom value types

It isrelatively easy for developers to create their own value types. For example, you might want to persist prop-
erties of type j ava. | ang. Bi gl nt eger t0 VARCHAR columns. Hibernate does not provide a built-in type for this.
But custom types are not limited to mapping a property (or collection element) to a single table column. So, for
example, you might have a Java property get Nane() /set Name() Of typej ava.lang. String that is persisted to
the columns FI RST_NAME, | NI TI AL, SURNANME.

To implement a custom type, implement either or g. hi ber nat e. User Type or
or g. hi ber nat e. Conposi t eUser Type and declare properties using the fully qualified classname of the type.
Check out or g. hi ber nat e. t est . Doubl eSt ri ngType to see the kind of things that are possible.

<property nane="twoStrings" type="org. hi bernate.test.Doubl eStringType">
<col um name="first_string"/>
<col um nane="second_string"/>

</ property>

Notice the use of <col unm> tags to map a property to multiple columns.

Even though Hibernate's rich range of built-in types and support for components means you will very rarely
need to use a custom type, it is nevertheless considered good form to use custom types for (non-entity) classes
that occur frequently in your application. For example, a Monet or yAnount class is a good candidate for a com

posi t eUser Type, even though it could easily be mapped as a component. One mativation for thisis abstraction.
With a custom type, your mapping documents would be future-proofed against possible changes in your way of
representing monetory values.

5.2.4. Any type mappings

There is one further type of property mapping. The <any> mapping element defines a polymorphic association
to classes from multiple tables. This type of mapping always requires more than one column. The first column
holds the type of the associated entity. The remaining columns hold the identifier. It isimpossible to specify a
foreign key constraint for this kind of association, so thisis most certainly not meant as the usual way of map-
ping (polymorphic) associations. You should use this only in very specia cases (eg. audit logs, user session
data, etc).

The net a- t ype altribute lets the application specify a custom type that maps database column values to persist-
ent classes which have identifier properties of the type specified by i d-t ype. You must specify the mapping
from values of the meta-type to class names.

<any nane="bei ng" id-type="long" neta-type="string">
<met a- val ue val ue="TBL_AN MAL" cl ass="Ani mal "/>
<net a- val ue val ue="TBL_HUMAN' cl ass="Human"/>

Hibernate 3.0a pha 46

Basic O/R Mapping

<met a- val ue val ue="TBL_ALI EN' cl ass="Alien"/>
<col um nane="t abl e_nane"/ >
<col um nane="id"/>

</ any>
<any
nane="pr opert yNane" (1)
i d-type="idtypenane" (2)
nmet a- t ype="net at ypenane" (3)
cascade="none| al | | save- updat e" (4)
access="fi el d| property| Cl assNane" (5)
optimstic-lock="true|false" (6)
>
<nmeta-value ... />
<meta-value ... />
<colum />
<colum />
</ any>

(1) nane: the property name.

(2) id-type:theidentifier type.

(3) neta-type (optional - defaultsto st ri ng): Any typethat is allowed for a discriminator mapping.

(4) cascade (optional- defaultsto none): the cascade style.

(5) access (optional - defaults to property): The strategy Hibernate should use for accessing the property
value.

(6) optinistic-1ock (optional - defaultsto t rue): Specifies that updates to this property do or do not require
acquisition of the optimistic lock. In other words, define if aversion check should be made if this property
isdirty.

5.3. SQL quoted identifiers

Y ou may force Hibernate to quote an identifier in the generated SQL by enclosing the table or column name in
backticks in the mapping document. Hibernate will use the correct quotation style for the SQL bi al ect (usually
double quotes, but brackets for SQL Server and backticks for MySQL).

<cl ass nanme="Linelten table=""Line Item">

<id name="id" colum=""Item |d "/><generator class="assigned"/></id>
<property nane="itenmNunber" colum=""Item# "/>
</ cl ass>

5.4. Modular mapping files

It is possible to define subcl ass and j oi ned- subcl ass mappings in seperate mapping documents, directly be-
neath hi ber nat e- mappi ng. This allows you to extend a class hierachy just by adding a new mapping file. You
must specify an ext ends attribute in the subclass mapping, naming a previously mapped superclass. Note: Pre-
vioudly this feature made the ordering of the mapping documents important. Since Hibernate 3, the ordering of
mapping files does not matter when using the extends keyword. The ordering inside a single mapping file still
needs to be defined as superclasses before subclasses.

<hi ber nat e- mappi ng>
<subcl ass nane="eg. subcl ass. Donesti cCat" extends="eg.Cat" discri m nator-val ue="D">
<property nanme="nane" type="string"/>
</ subcl ass>

Hibernate 3.0a pha a7

Basic O/R Mapping

</ hi ber nat e- mappi ng>

5.5. Using XDoclet markup

Many Hibernate users prefer to embed mapping information directly in sourcecode using XDoclet
@i bernat e. t ags. We will not cover this approach in this document, since strictly it is considered part of
XDoclet. However, we include the following example of the cat class with XDoclet mappings.

package eg;
i mport java.util. Set;
import java.util.Date;

/**

* @i bernate.class

* tabl e="CATS"

*/

public class Cat {
private Long id; // identifier
private Date birthdate;
private Cat nother;
private Set kittens
private Col or col or;
private char sex;
private float weight;

/**
* @i bernate.id

* generator-class="native"
* col um="CAT_I D"

*/

public Long getld() {
return id;

}

private void setld(Long id) {
this.id=id,;

}

/**

* @i bernat e. many-t o- one
* col um="PARENT I D'
=
public Cat getMother() {
return nother;
}

voi d set Mot her (Cat not her) {
thi s. not her = not her;
}

/**
* @i bernate. property
* col um=" Bl RTH_DATE"
=
public Date getBirthdate() ({
return birthdate;
}

voi d setBirthdate(Date date) {
birthdate = date;
}
/**
* @i bernate. property
* col umm="\WEl GHT"
*/
public float getWight() {
return wei ght;
}

voi d set Wei ght (fl oat wei ght) {

Hibernate 3.0a pha 48

Basic O/R Mapping

this.weight = weight;
}
/**
* @i bernate. property
* col um="COLOR"
* not-null="true"
=
public Col or getColor() {
return col or;
}

voi d set Col or (Col or color) {
this.color = color;

*

}
/
@i ber nat e. set

i nverse="true"

or der - by="BI RTH_DATE"
@i ber nat e. col | ecti on-key

col um="PARENT I D'
@i ber nat e. col | ecti on-one-t o- many

L S T

~

public Set getKittens() {
return kittens;
}

voi d setKittens(Set kittens) {
this.kittens = kittens;

}

/1 addKi tten not needed by Hi bernate

public void addKitten(Cat kitten) ({
kittens. add(kitten);

}

/**

* @i bernate. property
* col um=" SEX"

* not-null="true"
* update="fal se"
=[]

public char getSex() {
return sex;
}

voi d set Sex(char sex) {
t hi s. sex=sex;
}

See the Hibernate web site for more examples of XDoclet and Hibernate.

Hibernate 3.0a pha

Chapter 6. Collection Mapping

6.1. Persistent Collections

This section does not contain much example Java code. We assume you already know how to use Java's collec-
tions framework. If so, there's not really anything more to know - with a single caveat, you may use Java col-
lections the same way you always have.

Hibernate can persist instances of java.util.Map, java.util.Set, java.util.SortedMap,
java.util.SortedSet, java.util.List, and any array of persistent entities or values. Properties of type
java.util.Col l ectionoOrjava.util.List may also be persisted with "bag" semantics.

Now the caveat: persistent collections do not retain any extra semantics added by the class implementing the
collection interface (eg. iteration order of a Li nkedHashSet). The persistent collections actually behave like
HashMap, HashSet, TreeMap, TreeSet and ArrayLi st respectively. Furthermore, the Java type of a property
holding a collection must be the interface type (ie. Map, Set Or Li st ; never HashMap, TreeSet OF Arrayli st).
This restriction exists because, when you're not looking, Hibernate sneakily replaces your instances of Map, Set
and Li st with instances of its own persistent implementations of Map, Set or Li st . (So aso be careful when us-
ing == on your collections.)

Cat cat = new DonesticCat();
Cat kitten = new DonesticCat();

Set kittens = new HashSet ();

kittens. add(kitten);

cat.setKittens(kittens);

sessi on. save(cat);

kittens = cat.getKittens(); //Ckay, kittens collection is a Set
(HashSet) cat.getKittens(); //Error!

Collections obey the usual rules for value types: no shared references, created and deleted along with contain-
ing entity. Due to the underlying relational model, they do not support null value semantics; Hibernate does not
distinguish between anull collection reference and an empty collection.

Coallections are automatically persisted when referenced by a persistent object and automatically deleted when
unreferenced. If a collection is passed from one persistent object to another, its elements might be moved from
one table to another. You shouldn't have to worry much about any of this. Just use Hibernate's collections the
same way you use ordinary Java collections, but make sure you understand the semantics of bidirectional asso-
ciations (discussed later) before using them.

Collection instances are distinguished in the database by a foreign key to the owning entity. This foreign key is
referred to as the collection key . The collection key is mapped by the <key> element. If you have a foreign-key
constraint set in the database, and have chosen the ON DELETE CASCADE option, always use the on- del et e at-
tribute on your <key> mappings:

<key colum="CH LD I D' on-del et e="cascade"/ >

Coallections may contain aimost any other Hibernate type, including all basic types, custom types, entity types
and components. This is an important definition: An object in a collection can either be handled with "pass by
value" semantics (it therefore fully depends on the collection owner) or it can be a reference to another entity
with an own lifecycle. Collections may not contain other collections. The contained type is referred to as the
collection element type. Collection elements are mapped by <el enent>, <conposite-element>,
<one- t 0- mANy>, <mANy- t 0- mAny> Of <many-t o- any>. The first two map elements with value semantics, the oth-

Hibernate 3.0a pha 50

Collection Mapping

er three are used to map entity associations.

All collection types except set and bag have an index column - a column that maps to an array or Li st index or
vap key. The index of a Map may be of any basic type, an entity type or even a composite type (it may not be a
collection). The index of an array or list is dways of type int eger. Indexes are mapped using <i ndex>,
<i ndex- many-t o- many>, <conposi t e- i ndex> Or <i ndex- many-t o- any>.

There are quite a range of mappings that can be generated for collections, covering many common relational
models. We suggest you experiment with the schema generation tool to get a feeling for how various mapping
declarations trans ate to database tables.

6.2. Mapping a Collection

Collections are declared by the <set >, <list>, <map>, <bag>, <array> and <prinitive-array> elements.
<map> IS representative:

<n’ap
nanme="pr opert yNane" (1)
tabl e="t abl e_nane" (2)
schema="schena_nane" (3)
| azy="true|fal se" (4)
i nverse="true| fal se" (5)
cascade="al | | none| save- updat e| del et e| al | - del et e- or phan" (6)
sort="unsort ed| nat ural | conpar at or d ass" (7)
or der - by="col utm_nane asc| desc" (8)
where="arbitrary sql where condition" (9)
fetch="j oi n| sel ect" (10)
bat ch-si ze="N" (11)
access="fiel d| property| Cl assNane" (12)

>
<key />
<index />
<elenent />

</ map>

(1) nane the collection property name

(2) table (optiona - defaults to property name) the name of the collection table (not used for one-to-many
associ ations)

(3) schena (optional) the name of atable schemato override the schema declared on the root element

(4) lazy (optiona - defaultstot r ue) enable lazy initidization (not available for arrays)

(5) inverse (optional - defaultsto f al se) mark this collection as the "inverse" end of a bidirectional associ-
ation

(6) cascade (optional - defaultsto none) enable operations to cascade to child entities

(7) sort (optional) specify a sorted collection with nat ur al sort order, or a given comparator class

(8) order-by (optional, JDK1.4 only) specify a table column (or columns) that define the iteration order of
the Map, Set or bag, together with an optional asc or desc

(9) where (optional) specify an arbitrary SQL WHERE condition to be used when retrieving or removing the
collection (useful if the collection should contain only a subset of the available data)

(10) fetch (optional, defaultsto sel ect) Choose between outer-join fetching and fetching by sequential select.
Only one collection may be fetched by outer join per SQL SELECT.

(11) bat ch-si ze (optional, defaultsto 1) specify a"batch size" for lazily fetching instances of this collection.

(12) access (optional - defaults to property): The strategy Hibernate should use for accessing the property
value.

The mapping of a List or array requires a seperate table column holding the array or list index (the i in
foo[i]). If your relational model doesn't have an index column, e.g. if you're working with legacy data, use an

Hibernate 3.0a pha 51

Collection Mapping

unordered set instead. This seems to put people off who assume that Li st should just be a more convenient
way of accessing an unordered collection. Hibernate collections strictly obey the actual semantics attached to
the set, Li st and mvap interfaces. Li st elements don't just spontaneously rearrange themselves!

On the other hand, people who planned to use the Li st to emulate bag semantics have a legitimate grievance
here. A bag is an unordered, unindexed collection which may contain the same element multiple times. The
Java collections framework lacks a Bag interface, hence you have to emulate it with a Li st . Hibernate lets you
map properties of type Li st or Col | ecti on with the <bag> element. Note that bag semantics are not really part
of the col 1 ect i on contract and they actually conflict with the semantics of the Li st contract (however, you can
sort the bag arbitrarily, discussed later in this chapter).

Note: Large Hibernate bags mapped with i nver se="f al se" are inefficient and should be avoided; Hibernate
can't create, delete or update rows individualy, because there is no key that may be used to identify an indi-
vidual row.

6.3. Collections of Values and Many-To-Many Associations

A collection table is required for any collection of values and any collection of references to other entities
mapped as a many-to-many association (the natural semantics for a Java collection). The table requires
(foreign) key column(s), element column(s) and possibly index column(s).

The foreign key from the collection table to the table of the owning classis declared using a <key> element.

<key col um="col utm_nane"/ >

(1) col um (required): The name of the foreign key column.

For indexed collections like maps and lists, we require an <i ndex> element. For lists, this column contains se-
guential integers numbered from zero. Make sure that your index really starts from zero if you have to deal with
legacy data. For maps, the column may contain any values of any Hibernate type.

<i ndex
col um="col unm_nane" (1)
type="t ypenane" (2)
/>

(1) col um (required): The name of the column holding the collection index values.
(2) type (optional, defaultstoi nt eger): The type of the collection index.

Alternatively, amap may be indexed by objects of entity type. We use the <i ndex- many- t o- many> element.

<i ndex- many-t o- many
col um="col unmm_nane" (1)
cl ass="C assNane" (2)
/>

(1) col um (required): The name of the foreign key column for the collection index values.
(2) class (required): The entity class used as the collection index.

For acollection of values, we use the <el enent > tag.

<el enent
col um="col umm_nange" (1)
type="t ypenane" (2)
/>

Hibernate 3.0a pha 52

Collection Mapping

(1) col um (required): The name of the column holding the collection element values.
(2) type (required): The type of the collection element.

A collection of entities with its own table corresponds to the relational notion of many-to-many association. A
many to many association is the most natural mapping of a Java collection but is not usually the best relational
model.

<many- t o- many

col um="col unm_nane" (1)
cl ass="d assNane" (2)
outer-join="true|fal se| aut 0" (3)

/>

(1) col um (required): The name of the element foreign key column.

(2) class (required): The name of the associated class.

(3) outer-join (optiona - defaults to aut 0): enables outer-join fetching for this association when hi ber n-
ate.use_outer _joiniSset

Some examples, first, a set of strings:

<set nanme="nanes" tabl e=" NAMES" >

<key col umm="GROUPI D'/ >

<el ement col um="NAME" type="string"/>
</set>

A bag containing integers (with an iteration order determined by the or der - by attribute):

<bag nanme="si zes" tabl e="S|ZES" order-by="S| ZE ASC'>
<key col um="0OMER'/ >
<el enent col um="SI ZE' type="integer"/>

</ bag>

An array of entities - in this case, a many to many association (note that the entities are lifecycle objects, cas-
cade="al | "):

<array name="foos" tabl e="BAR FOOS" cascade="all">
<key col um="BAR | D'/ >

<i ndex col um="1"/>
<many-t o- many col um="FOO_|I D' cl ass="org. hi ber nat e. Foo"/ >
</ array>

A map from string indices to dates:

<map name="hol i days" tabl e="hol i days" schema="dbo" order-by="hol nane asc">
<key col um="id"/>
<i ndex col um="hol _nanme" type="string"/>
<el enent col um="hol _date" type="date"/>

</ map>

A list of components (discussed in the next chapter):

<l i st nane="car Conponent s" tabl e="car_conponents">
<key col um="car _i d"/>
<i ndex col um="posn"/>
<conposi te-el ement cl ass="org. hi bernat e. car. Car Conponent " >
<property nanme="price" type="float"/>
<property nane="type" type="org. hi bernate. car.Conponent Type"/>
<property nane="seri al Nunber" col um="seri al _no" type="string"/>
</ conposi te-el enent >
</list>

Hibernate 3.0a pha 53

Collection Mapping

6.4. One-To-Many Associations

A one to many association links the tables of two classes directly, with no intervening collection table. (This
implements a one-to-many relational model.) This relational model 1oses some of the semantics of Java collec-
tions:

* No null values may be contained in amap, set or list
* Aninstance of the contained entity class may not belong to more than one instance of the collection
e Aninstance of the contained entity class may not appear at more than one value of the collection index

An association from Foo to Bar reguires the addition of akey column and possibly an index column to the table
of the contained entity class, Bar . These columns are mapped using the <key> and <i ndex> elements described
above.

The <one-t o- many> tag indicates a one to many association.

<one-to-many cl ass="Cl assNanme"/>

(1) class (required): The name of the associated class.
Example:

<set nanme="bars">

<key colum="foo_id"/>

<one-to-many cl ass="org. hi bernate. Bar"/>
</set>

Notice that the <one-t o- many> element does not need to declare any columns. Nor isit necessary to specify the
t abl e name anywhere.

Very Important Note: If the <key> column of a <one-t o- many> association is declared NOT NULL, Hibernate
may cause constraint violations when it creates or updates the association. To prevent this problem, you must
use a bidirectional association with the many valued end (the set or bag) marked asi nverse="true". See the
discussion of bidirectional associations later in this chapter.

6.5. Lazy Initialization

Coallections (other than arrays) may be lazily initialized, meaning they load their state from the database only
when the application needs to access it. Initiaization of collections owned by persistent instances happens
transparently to the user, so the application would not normally need to worry about this (in fact, transparent
lazy initialization is the main reason why Hibernate needs its own collection implementations). However, if the
application tries something like this:

S = sessions. openSession();

User u = (User) s.find("from User u where u.nanme=?", userNanme, Hi bernate. STRI NG .get(0);
Map perm ssions = u. getPerm ssions();

s.connection().comit();

s.cl ose();

I nt eger accesslLevel = (Integer) perm ssions.get("accounts"); // Error!
It could be in for a nasty surprise. Since the permissions collection was not initialized when the Sessi on was

closed, the collection will not be able to load its state. Hibernate does not support lazy initialization for de-
tached objects. The fix is to move the line that reads from the collection to just before the commit. (There are

Hibernate 3.0a pha 54

Collection Mapping

other more advanced ways to solve this problem, however.)

It's possible to use a non-lazy collection. However, it is intended that lazy initiaization be used for aimost all
collections, especially for collections of entities, and is now the default. If you define too many non-lazy associ-
ations in your object model, Hibernate will end up needing to fetch the entire database into memory in every
transaction!

Exceptions that occur while lazily initializing a collection are wrapped in aLazyl ni ti al i zat i onExcept i on.

In some application architectures, particularly where the code that accesses data using Hibernate, and the code
that usesit are in different application layers, it can be a problem to ensure that the Sessi on is open when a col-
lectionisinitialized. They are two basic ways to deal with thisissue:

* In aweb-based application, a servlet filter can be used to close the Sessi on only at the very end of a user
request, once the rendering of the view is complete. Of course, this places heavy demands upon the correct-
ness of the exception handling of your application infrastructure. It is vitally important that the Sessi on is
closed and the transaction ended before returning to the user, even when an exception occurs during render-
ing of the view. The servlet filter has to be able to access the sessi on for this approach. We recommend
that a ThreadLocal variable be used to hold the current Sessi on (see chapter 1, Section 1.4, “Playing with
cats’, for an example implementation).

* Inan application with a seperate business tier, the business logic must "prepare” all collections that will be
needed by the web tier before returning. This means that the business tier should load all the data and return
al the data already initialized to the presentation/web tier that is required for a particular use case. Usualy,
the application calls Hi bernate.initialize() for each collection that will be needed in the web tier (this
call must occur before the session is closed) or retrieves the collection eagerly using a Hibernate query with
aFETCH clause.

e You may also attach a previously loaded object to a hew Sessi on with updat e() or 1 ock() before access-
ing unitialized collections (or other proxies). Hibernate can not do this automatically, as it would introduce
ad hoc transaction semantics!

Y ou can use a collection filter to get the size of a collection without initializing it:

((Integer) s.createFilter(collection, "select count(*)").list().get(0)).intValue()

ThecreateFilter() method is also used to efficiently retrieve subsets of a collection without needing to ini-
tialize the whole collection. (And the new <fi | t er > functionality is a more powerful approach.)

6.6. Sorted Collections

Hibernate supports collections implementing j ava. uti | . SortedMap and j ava. uti | . Sort edSet . YOu must spe-
cify acomparator in the mapping file:

<set nane="al i ases" tabl e="person_aliases" sort="natural ">
<key col um="person"/>
<el ement col um="nane" type="string"/>

</set>

<map nanme="hol i days" sort="ny. custom Hol i dayConpar at or " >
<key colum="year _id"/>
<i ndex col um="hol _nanme" type="string"/>
<el ement col um="hol _date" type="date"/>

</ map>

Hibernate 3.0a pha 55

Collection Mapping

Allowed values of the sort attribute are unsorted, natural and the name of a class implementing
java.util . Conparator.

Sorted collections actually behave likej ava. util. TreeSet Of j ava. util. TreeMap.

If you want the database itself to order the collection elements use the or der - by attribute of set, bag or map
mappings. This solution is only available under JDK 1.4 or higher (it is implemented using Li nkedHashSet Or
Li nkedHashMap). This performs the ordering in the SQL query, not in memory.

<set nanme="al i ases" tabl e="person_aliases" order-by="nane asc">
<key col um="person"/>
<el enent col um="nane" type="string"/>

</ set>

<map nane="hol i days" order-by="hol date, hol nane">
<key col um="year _id"/>
<i ndex col um="hol _nanme" type="string"/>
<el ement col um="hol _date type="date"/>

</ map>

Note that the value of the or der - by attributeis an SQL ordering, not aHQL ordering!
Associations may even be sorted by some arbitrary criteriaat runtime using afilter().

sortedUsers = s.filter(group.getUsers(), "order by this.nanme");

6.7. Using an <i dbag>

If you've fully embraced our view that composite keys are a bad thing and that entities should have synthetic
identifiers (surrogate keys), then you might find it a bit odd that the many to many associations and collections
of values that we've shown so far al map to tables with composite keys! Now, this point is quite arguable; a
pure association table doesn't seem to benefit much from a surrogate key (though a collection of composite val-
ues might). Nevertheless, Hibernate provides a feature that allows you to map many to many associations and
collections of values to atable with a surrogate key.

The <i dbag> element letsyou map aLi st (or Col | ect i on) with bag semantics.

<i dbag nane="| overs" tabl e="LOVERS">
<col l ection-id colum="I1D" type="long">
<generator cl ass="sequence"/>
</coll ection-id>
<key col unm="PERSONL"/ >
<many-t o- many col umm="PERSON2" cl ass="eg. Person" outer-join="true"/>
</i dbag>

As you can see, an <i dbag> has a synthetic id generator, just like an entity class! A different surrogate key is
assigned to each collection row. Hibernate does not provide any mechanism to discover the surrogate key value
of aparticular row, however.

Note that the update performance of an <i dbag> is much better than a regular <bag>! Hibernate can locate indi-
vidua rows efficiently and update or delete them individually, just like alist, map or set.

In the current implementation, the nat i ve identifier generation strategy is not supported for <i dbag> collection
identifiers.

Hibernate 3.0a pha 56

Collection Mapping

6.8. Bidirectional Associations

A bidirectional association allows navigation from both "ends"' of the association. Two kinds of bidirectional
association are supported:

one-to-many
set or bag valued at one end, single-valued at the other

many-to-many
set or bag valued at both ends

Please note that Hibernate does not support bidirectional one-to-many associations with an indexed collection
(list, map or array) as the "many" end, you have to use a set or bag mapping.

Y ou may specify a bidirectional many-to-many association simply by mapping two many-to-many associations
to the same database table and declaring one end as inverse (which one is your choice). Here's an example of a
bidirectional many-to-many association from a class back to itself (each category can have many items and
each item can be in many categories):

<cl ass nane="org. hi bernat e. aucti on. Cat egory" >
<id name="id" colum="I1D"/>

<bag nanme="itens" tabl e="CATEGORY_| TEM' >
<key col umm="CATEGORY_I D'/ >
<many-to- many cl ass="org. hi bernate. auction.|ten colum="1TEM |D"'/>
</ bag>
</ cl ass>

<cl ass nane="org. hi bernate. auction.ltent>
<id name="id" colum="1D"/>

<I-- inverse end -->
<bag nane="cat egori es" tabl e="CATEGORY_| TEM' inverse="true">
<key colum="1TEM | D'/ >
<many-t o- many cl ass="org. hi bernate. aucti on. Cat egory" col um="CATEGORY_I| D'/ >
</ bag>
</ cl ass>

Changes made only to the inverse end of the association are not persisted. This means that Hibernate has two
representations in memory for every bidirectional association, one link from A to B and another link from B to
A. Thisis easier to understand if you think about the Java object model and how we create a many-to-many re-
lationship in Java:

category.getltens().add(item; /'l The category now "knows" about the relationship
i tem get Cat egori es().add(category); /1 The item now "knows" about the relationship
sessi on. update(item; /1l No effect, nothing will be saved!

sessi on. updat e(cat egory); /1l The relationship will be saved

The non-inverse side is used to save the in-memory representation to the database. We would get an unnec-
cessary INSERT/UPDATE and probably even aforeign key violation if both would trigger changes! The same
is of course also true for bidirectional one-to-many associations.

Y ou may map a bidirectional one-to-many association by mapping a one-to-many association to the same table
column(s) as a many-to-one association and declaring the many-valued end i nver se="true".

<cl ass name="eg. Parent" >

Hibernate 3.0a pha 57

Collection Mapping

<id name="id" colum="id"/>

<set nane="children" inverse="true">
<key col um="parent _id"/>
<one-to-many cl ass="eg. Child"/>
</ set>
</ cl ass>

<cl ass nane="eg. Chi | d">
<id name="id" colum="id"/>

<many-t o-one nane="parent" class="eg.Parent" colum="parent id"/>
</ cl ass>

Mapping one end of an association with i nver se="true" doesn't affect the operation of cascades, both are dif-
ferent concepts!

6.9. Ternary Associations

There are three possible approaches to mapping a ternary association. One approach is to use composite ele-
ments (discussed below). Another isto use a vap with an association asits index:

<map nanme="contracts">
<key col um="enpl oyer _id"/>
<i ndex- many-t o- many col utmm="enpl oyee_i d" cl ass="Enpl oyee"/>
<one-to-many col um="contract _id" class="Contract"/>

</ map>

<map name="connections">
<key col um="nodel_id"/>
<i ndex- many-t o- many col utm="node2_i d" cl ass="Node"/>
<many-t o- many col um="connection_i d" cl ass="Connecti on"/>
</ map>

A fina alternative is to smply remodel the association as an entity class. This is the approach we use most
commonly.

6.10. Heterogeneous Associations

The <many-t o-any> and <i ndex- many- t o- any> elements provide for true heterogeneous associations. These
mapping el ements work in the same way as the <any> element - and should also be used rarely, if ever.

6.11. Collection examples

The previous sections are pretty confusing. So lets ook at an example. This class:

package eg;
import java.util. Set;

public class Parent {
private long id;
private Set children

public long getld() { return id; }
private void setld(long id) { this.id=id; }

private Set getChildren() { return children; }

Hibernate 3.0a pha 58

Collection Mapping

private void setChildren(Set children) { this.children=children; }

has a collection of eg. chi | d instances. If each child has at most one parent, the most natural mapping is a one-
to-many association:

<hi ber nat e- mappi ng>

<cl ass nane="eg. Parent">
<id name="id">
<generator class="sequence"/>
</id>
<set nanme="children">
<key col um="parent _id"/>
<one-to-nmany cl ass="eg. Child"/>
</ set>
</ cl ass>

<cl ass nane="eg. Chi | d">
<id name="id">
<generator cl ass="sequence"/>
</id>
<property nane="nane"/>
</ cl ass>

</ hi ber nat e- mappi ng>

This maps to the following table definitions:

create table parent (id bigint not null primary key)
create table child (id bigint not null primry key, nane varchar(255), parent_id bigint)
alter table child add constraint childfkO (parent_id) references parent

If the parent is required, use a bidirectional one-to-many association:

<hi ber nat e- mappi ng>

<cl ass nane="eg. Parent">
<id name="id">
<gener ator cl ass="sequence"/>
</id>
<set name="children" inverse="true">
<key col um="parent _id"/>
<one-to-nmany cl ass="eg. Child"/>
</set>
</cl ass>

<cl ass nane="eg. Chil d">
<id name="id">
<gener at or cl ass="sequence"/>

</id>

<property name="name"/>

<many-t o-one nane="parent" class="eg.Parent" colum="parent _id" not-null="true"/>
</ cl ass>

</ hi ber nat e- mappi ng>

Notice the NOT NULL constraint:

create table parent (id bigint not null primary key)
create table child (id bigint not nul

primary key,

nane var char (255),

Hibernate 3.0a pha 59

Collection Mapping

parent _id bigint not null)
alter table child add constraint childfkO (parent_id) references parent

On the other hand, if a child might have multiple parents, a many-to-many association is appropriate:

<hi ber nat e- mappi ng>

<cl ass nane="eg. Parent">
<id name="id">
<generator class="sequence"/>
</id>
<set nane="children" tabl e="chil dset">
<key col um="parent _id"/>
<many-t o- many cl ass="eg. Child" colum="child_id"/>
</set>
</ cl ass>

<cl ass nane="eg. Chi | d">
<id name="id">
<gener ator cl ass="sequence"/>
</id>
<property nane="nane"/>
</ cl ass>

</ hi ber nat e- mappi ng>

Table definitions:

create table parent (id bigint not null primary key)
create table child (id bigint not null primry key, nanme varchar(255))
create table childset (parent_id bigint not null

child_id bigint not null,

primary key (parent_id, child_id))
alter table childset add constraint childsetfkO (parent_id) references parent
alter table childset add constraint childsetfkl (child_id) references child

Hibernate 3.0a pha

60

Chapter 7. Component Mapping

The notion of a component isre-used in several different contexts, for different purposes, throughout Hibernate.

7.1. Dependent objects

A component is a contained object that is persisted as a value type, not an entity. The term "component" refers
to the object-oriented notion of composition (not to architecture-level components). For example, you might
model aperson like this:

public class Person {
private java.util.Date birthday;
private Name name;
private String key;
public String getKey() {
return key;
}

private void setKey(String key) {
t hi s. key=key;
}

public java.util.Date getBirthday() {
return birthday;

}

public void setBirthday(java.util.Date birthday) {
this.birthday = birthday;

}

public Name get Nanme() ({
return nane;

}

public void set Nane(Nanme nane) ({
thi s. nane = nane;

public class Name {
char initial;
String first;
String |ast;
public String getFirst() {
return first;
}

void setFirst(String first) {
this.first = first;

}

public String getlLast() {
return | ast;

}

voi d setlLast(String last) {
this.last = | ast;

public char getlnitial () {
return initial;

}

void setlnitial (char initial) {
this.initial = initial;

}

Now Name may be persisted as a component of Per son. Notice that Nane defines getter and setter methods for
its persistent properties, but doesn't need to declare any interfaces or identifier properties.

Hibernate 3.0a pha 61

Component Mapping

Our Hibernate mapping would look like:

<cl ass nane="eg. Person" tabl e="person">
<i d name="Key" col um="pid" type="string">
<generator class="uuid. hex"/>

</id>
<property nane="birthday" type="date"/>
<conmponent name="Nane" cl ass="eg. Name"> <!-- class attribute optional -->

<property nane="initial"/>
<property nanme="first"/>
<property nane="last"/>
</ conponent >
</ cl ass>

The person table would have the columns pi d, bi rt hday, initial,first andl ast.

Like al value types, components do not support shared references. The null value semantics of a component
are ad hoc. When reloading the containing object, Hibernate will assume that if all component columns are
null, then the entire component is null. This should be okay for most purposes.

The properties of a component may be of any Hibernate type (collections, many-to-one associations, other
components, etc). Nested components should not be considered an exotic usage. Hibernate is intended to sup-
port avery fine-grained object model.

The <conponent > element alows a <par ent > subelement that maps a property of the component class as a ref-
erence back to the containing entity.

<cl ass nane="eg. Person" tabl e="person">
<id name="Key" colum="pid" type="string">
<generator class="uuid. hex"/>
</id>
<property nane="birthday" type="date"/>
<conponent nanme="Nanme" cl ass="eg. Nane">
<par ent nanme="nanedPerson"/> <!-- reference back to the Person -->
<property nane="initial"/>
<property nane="first"/>
<property nane="|ast"/>
</ conponent >
</ cl ass>

7.2. Collections of dependent objects

Coallections of components are supported (eg. an array of type Nane). Declare your component collection by re-
placing the <el ement > tag with a<conposi t e- el enent > tag.

<set nanme="soneNanes" tabl e="sone_nanes" |azy="true">
<key col um="id"/>
<conposi te-el enent cl ass="eg. Nane"> <!-- class attribute required -->
<property nane="initial"/>
<property nane="first"/>
<property nane="last"/>
</ conposi t e- el enent >
</set>

Note: if you define a set of composite elements, it is very important to implement equal s() and hashCode()
correctly.

Composite elements may contain components but not collections. If your composite element itself contains
components, use the <nest ed- conposi t e- el ement > tag. Thisis a pretty exotic case - a collection of compon-

Hibernate 3.0a pha 62

Component Mapping

ents which themselves have components. By this stage you should be asking yourself if a one-to-many associ-
ation is more appropriate. Try remodelling the composite element as an entity - but note that even though the
Javamodel is the same, the relational model and persistence semantics are still slightly different.

Please note that a composite element mapping doesn't support null-able properties if you're using a <set >. Hi-
bernate has to use each columns value to identify a record when deleting objects (there is no separate primary
key column in the composite element table), which is not possible with null values. Y ou have to either use only
not-null propertiesin a composite-element or choose a<l i st >, <map>, <bag> Or <i dbag>.

A specia case of a composite element is a composite element with a nested <many- t o- one> element. A map-
ping like this allows you to map extra columns of a many-to-many association table to the composite element
class. The following is a many-to-many association from order to |tem where purchasebDate, price and
quant ity are properties of the association:

<cl ass name="eg. Order" >

<set name="purchasedltens" tabl e="purchase_itens" |azy="true">
<key col um="order _id">
<conposi te-el ement cl ass="eg. Purchase" >
<property name="purchaseDate"/>
<property nane="price"/>
<property name="quantity"/>
<many-to-one nane="iten'' class="eg.lten/> <!-- class attribute is optional -->
</ conposi t e- el enent >
</ set>
</ cl ass>

Even ternary (or quaternary, etc) associations are possible:

<cl ass nane="eg.Order" >

<set name="purchasedltens" tabl e="purchase_itens" |azy="true">
<key col um="order _id">
<conposi te-el ement cl ass="eg. O derLi ne">
<many-t o- one name="purchaseDetails cl ass="eg. Purchase"/>
<many-to-one nanme="itent class="eg.lten/>
</ conposi t e- el emrent >
</set>
</cl ass>

Composite elements may appear in queries using the same syntax as associations to other entities.

7.3. Components as Map indices

The <conposi t e-i ndex> element lets you map a component class as the key of a vap. Make sure you override
hashCode() and equal s() correctly on the component class.

7.4. Components as composite identifiers

Y ou may use a component as an identifier of an entity class. Y our component class must satisfy certain require-
ments:

e Itmustimplementjava.io. Serializabl e.
e It must re-implement equal s() and hashCode() , consistently with the database's notion of composite key

equality.

You can't usean | dentifier Generat or t0 generate composite keys. Instead the application must assign its own

Hibernate 3.0a pha 63

Component Mapping

identifiers.

Since a composite identifier must be assigned to the object before saving it, we can't use unsaved- val ue of the
identifier to distinguish between newly instantiated transient instances and detached instances from a previous
session.

So, if you wish to use transitive reattachment (you don't have to), you must either implement I nt er cept -
or.isUnsaved() or definetheunsaved- val ue of a<versi on> Or <ti nest anp> €lement.

Use the <conposi t e- i d> tag (with nested <key- pr oper t y> elements) in place of the usual <i d> declaration:

<cl ass nanme="eg. Foo" tabl e" FOOS" >
<conposi te-id nanme="conpl d* cl ass="eg. FooConpositel D'>
<key- property name="string"/>
<key- property nane="short"/>
<key-property nanme="date" colum="date_" type="date"/>
</ conposite-id>
<property name="name"/>

</ cl ass>

Now, any foreign keys into the table FOos are also composite. Y ou must declare this in your mappings for other
classes. An association to Foo would be declared like this:

<many-t o-one nanme="fo00" class="eg. Foo">

<l-- the "class" attribute is optional, as usual -->
<col um nanme="foo_string"/>
<col um nane="foo_short"/>
<col um nane="foo _date"/>

</ many-t o- one>

This new <col um> tag is also used by multi-column custom types. Actualy it is an alternative to the col um at-
tribute everywhere. A collection with elements of type Foo would use:

<set nanme="foos">
<key col um="owner _id"/>
<many-t o- many cl ass="eg. Foo" >
<col um nanme="foo_string"/>
<col um nane="foo_short"/>
<col um nane="f oo_date"/ >
</ many-t o- many>
</set>

On the other hand, <one- t o- rany>, as usual, declares no columns.
If Foo itself contains collections, they will also need a composite foreign key.

<cl ass nane="eg. Foo">

<set nanme="dates" |azy="true">
<key> <I-- a collection inherits the conposite key type -->
<col um nane="foo_string"/>
<col um nanme="foo_short"/>
<col um nane="foo_date"/>
</ key>
<el enent col um="foo_date" type="date"/>
</set>
</ cl ass>

7.5. Dynamic components

Hibernate 3.0a pha 64

Component Mapping

Y ou may even map a property of type Map:

<dynami c- conponent nanme="userAttri butes">

<property nane="foo" col um="FQO'/>

<property nane="bar" col um="BAR'/>

<many-t o- one nane="baz" cl ass="eg. Baz" col um="BAZ"/>
</ dynam c- conponent >

The semantics of a <dynani c- conponent > mapping are identical to <cormponent >. The advantage of this kind of
mapping is the ability to determine the actual properties of the bean at deployment time, just by editing the
mapping document. Runtime manipulation of the mapping document is also possible, using a DOM parser.
Even better, you can access (and change) Hibernate's configuration-time metamodel viathe Confi gur ati on ob-
ject.

Hibernate 3.0a pha 65

Chapter 8. Inheritance Mapping

8.1. The Three Strategies
Hibernate supports the three basic inheritance mapping strategies.
* table per class hierarchy

e table per subclass

» table per concrete class (some limitations)

It is even possible to use different mapping strategies for different branches of the same inheritance hierarchy,
but the same limitations apply as apply to table-per-concrete class mappings. Hibernate does not support mix-
ing <subcl ass> Mappings and <j oi ned- subcl ass> Mappings inside the same <cl ass> element. However, it is

possible to use a <j oi n> element to map this.

Suppose we have an interface Payrent , with implementors Cr edi t Car dPaynent , CashPaynent , ChequePaynent .

The table-per-hierarchy mapping would look like:

<cl ass nane="Paynent" tabl e=" PAYMENT" >
<id name="id" type="long" col um="PAYMENT | D'>
<generator class="native"/>
</id>
<di scri m nator col um="PAYMENT_TYPE" type="string"/>
<property nane="anount" col utm="AMOUNT"/ >

<subcl ass nane="Credi t Car dPaynent" di scri m nator-val ue="CREDI T" >

</ subcl ass>
<subcl ass nane="CashPaynent" di scri m nator-val ue=" CASH'>

</ subcl ass>
<subcl ass nane="ChequePaynent" di scri m nator-val ue=" CHEQUE" >

</ subcl ass>
</cl ass>

Exactly onetable is required. Thereis one big limitation of this mapping strategy: columns declared by the sub-

classes may not have NOT NULL constraints.
A table-per-subclass mapping would look like:

<cl ass nane="Paynent" tabl e=" PAYMENT" >
<id name="id" type="long" col um="PAYMENT_| D">
<generator class="native"/>
</id>
<property nane="anmount" col um="AMOUNT"/ >

<j oi ned- subcl ass nane="Credi t Car dPaynent" tabl e=" CREDI T_PAYMENT" >

<key col um="PAYMENT_I D'/ >

</ j oi ned- subcl ass>
<j oi ned- subcl ass nane="CashPaynent" tabl e=" CASH_PAYNMENT" >
<key col um="PAYMENT_I D"/ >

</ j oi ned- subcl ass>
<j oi ned- subcl ass nane="ChequePaynent" tabl e=" CHEQUE_PAYMENT" >
<key col um="PAYMENT | D'/ >

Hibernate 3.0a pha

66

Inheritance Mapping

</ j oi ned- subcl ass>
</ cl ass>

Four tables are required. The three subclass tables have primary key associations to the superclass table (so the
relational model is actually a one-to-one association).

Note that Hibernate's implementation of table-per-subclass requires no discriminator column. Other abject/
relational mappers use a different implementation of table-per-subclass which requires a type discriminator
column in the superclass table. The approach taken by Hibernate is much more difficult to implement but argu-
ably more correct from arelational point of view.

TODO: document usage of join for discriminators in table-per-subclass
TODO: document usage of join for mixing inheritance mapping strategies

For either of these two mapping strategies, a polymorphic association to Payment iS mapped using
<many-t o- one>.

<many-t o- one nane="paynent"
col um=" PAYMENT"
cl ass="Paynent "/ >

The table-per-concrete-class strategy is very different.

<cl ass nanme="Credit CardPaynent" tabl e=" CREDI T_PAYMENT" >
<id name="id" type="long" colum="CRED T_PAYMENT | D"'>
<generator class="native"/>
</id>
<property nane="anount" col um="CREDI T_AMOUNT"/ >

</ cl ass>
<cl ass nanme="CashPaynent" tabl e=" CASH _PAYMENT" >
<id name="id" type="long" colum="CASH PAYMENT | D'>
<generator class="native"/>

</id>
<property nane="anmount" col utm="CASH_AMOUNT"/ >

</ cl ass>
<cl ass nane="ChequePaynent" tabl e=" CHEQUE PAYMENT" >
<id name="id" type="long" col um="CHEQUE PAYMENT | D"'>
<generator class="native"/>

</id>
<property nane="anmount" col um="CHEQUE AMOUNT"/ >

</ cl ass>

Three tables were required. Natice that nowhere do we mention the Paynent interface explicitly. Instead, we
make use of Hibernate's implicit polymorphism. Also notice that properties of Payment are mapped in each of
the subclasses.

In this case, a polymorphic association to Paynent iSmapped using <any>.

<any nane="paynent"
met a- t ype="cl ass”
i d-type="1ong">
<col um name="PAYMENT_CLASS"/ >
<col um nane="PAYMENT | D'/ >
</ any>

Hibernate 3.0a pha 67

Inheritance Mapping

It would be better if we defined a User Type as the net a- t ype, to handle the mapping from type discriminator
strings to Payrment subclass.

<any nanme="paynent"
net a- t ype=" Paynent Met aType"
i d-type="1ong">
<col um nane="PAYMENT TYPE"/> <!-- CREDI T, CASH or CHEQUE -->
<col um nane="PAYMENT_I| D'/ >
</ any>

There is one further thing to notice about this mapping. Since the subclasses are each mapped in their own
<cl ass> element (and since Paynent isjust an interface), each of the subclasses could easily be part of another
table-per-class or table-per-subclass inheritance hierarchy! (And you can still use polymorphic queries against
the Payrent interface.)

<cl ass name="Credit CardPaynent" tabl e="CRED T_PAYMENT" >
<id name="id" type="long" colum="CRED T_PAYMENT | D"'>
<generator class="native"/>
</id>
<di scri m nator col um="CRED T_CARD' type="string"/>
<property nane="anmount" col um="CREDI T_AMOUNT"/ >

<subcl ass nane="Mast er Car dPaynent" di scri m nator-val ue="MDC'/ >
<subcl ass nane="Vi saPaynent" di scri m nator-val ue="VI SA"/ >
</ cl ass>

<cl ass nane="Nonel ectroni cTransacti on" tabl e="NONELECTRONI C_TXN'>
<id name="id" type="long" colum="TXN_|ID"'>
<generator class="native"/>
</id>

<j oi ned- subcl ass nane="CashPayment" tabl e=" CASH _PAYMENT" >
<key col umm="PAYMENT | D'/ >
<property name="anount" col utm="CASH AMOUNT"/ >

</ j oi ned- subcl ass>

<j oi ned- subcl ass nane="ChequePaynent" tabl e=" CHEQUE_PAYMENT" >
<key col um="PAYMENT | D'/ >
<property nane="anmount" col um="CHEQUE AMOUNT"/ >

</ j oi ned- subcl ass>
</ cl ass>

Once again, we don't mention Payrent explicitly. If we execute a query against the Paynent interface - for ex-
ample, from Paynent - Hibernate automatically returns instances of O edi t Car dPayment (a@nd its subclasses,
since they also implement Paynent), CashPaynent and ChequePayment but not instances of Nonel ect roni c-
Transacti on.

TODO: Document union-subclass for polymorphic-tabl e-per-concrete-class mappings

8.2. Limitations

There are certain limitations to the "implicit polymorphism” approach to the table-per-concrete-class mapping
strategy. There are somewhat |ess restrictive limitations to <uni on- subcl ass> mappings. (TODO)

The following table shows the limitations of table-per-concrete-class mappings, and of implicit polymorphism,
in Hibernate.

Table 8.1. Features of inheritance mappings

Hibernate 3.0a pha 68

Inheritance Mapping

Inherit- Poly- Poly- Poly- Poly- Poly- Poly- Poly-

ance mor phic mor phic mor phic mor phic mor phic mor phic mor phic

strategy many- one-to-one one- many- | oad()/get queries joins

to-one to-many to-many 0

table- <many-to-o <one-to0-on | <one-to-ma <many-to-m s.get(Paym from Pay- from O der

per- ne> e> ny> any> ent.class, nment p o join

class- i d) 0. payment

hierarchy p

table- <many-to-o <one-to0-on | <one-to-ma <many-to-m s.get(Paym from Pay- from O der

per- ne> e> ny> any> ent.class, nent p o join

subclass i d) 0. payment
p

table- <any> not suppor- | Not SUppor- <many-to-a Useaquery from Pay- | NOt suppor-

per- ted ted ny> ment p ted

concrete-

class

(implicit

polymorph-

ism)

table- <nmany-to-0 | <one-to-on <one-to-ma <many-to-m s.get(Paym from Pay- from O der

per- ne> e> ny> (for any> ent.class, ment p ojoin

concrete- in- id) 0. paynment

class verse="tru p

(union-subc e" only)

|ass)

Hibernate 3.0a pha 69

Chapter 9. Working with Persistent Data

9.1. Creating a persistent object

Newly instantiated instances of a a persistent class are considered transient by Hibernate. We can make a tran-
sient instance persistent by associating it with a session:

DonmesticCat fritz = new DonmesticCat();
fritz.setCol or(Col or. d NGER) ;
fritz.setSex('M);

fritz.setNane("Fritz");

Long generatedld = (Long) sess.save(fritz);

If cat has a generated identifier, the identifier is generated and assigned to the cat when save() is caled. If
cat has an assi gned identifier, or a composite key, the identifier should be assigned to the cat instance before
caling save() .

Alternatively, you may assign the identifier using an overloaded version of save() .

Donesti cCat pk = new DonesticCat();
pk. set Col or (Col or. TABBY) ;

pk. set Sex(' F');

pk. set Name(" PK") ;

pk. setKittens(new HashSet());
pk.addKitten(fritz);

sess. save(pk, new Long(1234));

Associated objects may be made persistent in any order you like unless you have a NOT NULL constraint upon a
foreign key column. There is never arisk of violating foreign key constraints. However, you might violate a
NOT NULL constraint if you save() the objectsin the wrong order.

If you enable cascade save on your associations, even NOT NULL constraint violations are impossible - Hibernate
will take care of everything.

9.2. Loading an object

The oad() methods of Sessi on give you away to retrieve a persistent instance if you already know its identi-
fier. 1 oad() takesaclass object and will load the state into a newly instantiated instance of that class.

Cat fritz = (Cat) sess.l|load(Cat.class, generatedld);

/1 you need to wap primtive identifiers
| ong pkld = 1234;
Donesti cCat pk = (DomesticCat) sess.load(Cat.class, new Long(pkld));

Alternatively, you can load state into a given instance:

Cat cat = new DonesticCat();

/1 load pk's state into cat

sess. | oad(cat, new Long(pkld));
Set kittens = cat.getKittens();

Note that 1 oad() will throw an unrecoverable exception if there is no matching database row. If the class is
mapped with aproxy, | oad() just returns an uninitialized proxy and does not actually hit the database until you

Hibernate 3.0a pha 70

Working with Persistent Data

invoke a method of the proxy. This behaviour is very useful if you wish to create an association to an aobject
without actually loading it from the database. It also alows multiple instances to be loaded as a batch if bat ch-
si ze isdefined for the class mapping.

If you are not certain that a matching row exists, you should use the get () method, which hits the database im-
mediately and returns null if there is no matching row.

Cat cat = (Cat) sess.get(Cat.class, id);
if (cat==null) {

cat = new Cat();

sess. save(cat, id);

}

return cat;

You may even load an object using an SQL SELECT ... FOR UPDATE. See the next section for a discussion of
Hibernate LockMbdes.

Cat cat = (Cat) sess.get(Cat.class, id, LockMde. UPGRADE);

Note that any associated instances or contained collections are not selected FOR UPDATE.

It is possible to re-load an object and all its collections at any time, using ther ef resh() method. Thisis useful
when database triggers are used to initialize some of the properties of the object.

sess. save(cat);
sess. flush(); //force the SQ I NSERT
sess.refresh(cat); //re-read the state (after the trigger executes)

9.3. Querying

If you don't know the identifiers of the objects you are looking for, you need a query. Hibernate supports an
easy-to-use but powerful object oriented query language.

Li st cats = session. createQuery(
"from Cat as cat where cat.birthdate < ?")
.setDate(0, date)
dist();

Li st nmothers = session. creat eQuery(
"sel ect nother fromCat as cat join cat.nother as nother where cat.nanme = ?")
.setString(0, nane)
dist();

Li st kittens = session. createQuery(
"from Cat as cat where cat.mother = ?")
.setEntity(0, pk)
dist();

Cat nother = (Cat) session.createQery(
"sel ect cat.nother from Cat as cat where cat = ?")
.setEntity(0, izi)
.uni queResul t () ;

The call to cr eat eQuer y() returns an instance of or g. hi ber nat e. Quer y which may be used to bind arguments
to the 2 parameter placeholders. (which map to IN parameters of a JDBC Pr epar edSt at enent). Just as in JD-
BC, you should always use this binding mechanism in preference to string manipulation.

A query is usually executed by invoking i st ().

Hibernate 3.0a pha 71

Working with Persistent Data

Occasionally, you might be able to achieve better performance by executing the query using the i terat e()
method. This will only usually be the case if you expect that the actual entity instances returned by the query
will aready be in the session or second-level cache. If they are not already cached, i terate() will be slower
than find() and might require many database hits for a simple query.

Hibernate queries sometimes return tuples of objects, in which case each tuple is returned as an array:

Iterator kittensAndMothers = sess. createQuery(
"select kitten, nother fromCat kitten join kitten.nother nother")
list()
.iterator();

while (kittensAndMWot hers. hasNext ()) {
oj ect[] tuple = (Object[]) kittensAndMothers. next();
Cate kittem = tuple[0]; Cat nother = tuple[l];

9.3.1. Scalar queries

Queries may specify a property of aclassin the sel ect clause. They may even call SQL aggregate functions.
Properties or aggregates are considered "scalar” results.

Iterator results = sess.createQuery(
"select cat.color, min(cat.birthdate), count(cat) fromCat cat " +
"group by cat.color")
list()
.iterator();

while (results.hasNext()) {
oj ect[] row = results. next();
Col or type = (Color) row0];
Date ol dest = (Date) row 1];
I nteger count = (Integer) row 2];

Li st results = sess. createQuery(
"sel ect cat.type, cat.birthdate, cat.nane from DonesticCat cat")
dist();

9.3.2. The Query interface

If you need to specify bounds upon your result set (the maximum number of rows you want to retrieve and / or
the first row you want to retrieve) you should use methods of the Query interface:

Query g = sess.createQuery("from DonmesticCat cat");
g. set Fi rst Resul t (20);

g. set MaxResul t s(10) ;

List cats = qg.list();

You may even define a named query in the mapping document. (Remember to use a CDATA section if your
query contains characters that could be interpreted as markup.)

<query nane="eg. Donesti cCat. by. nane. and. m ni num wei ght " ><! [CDATA[
from eg. Donesti cCat as cat
where cat.nanme = ?
and cat.weight > ?
1 1></query>

Hibernate 3.0a pha 72

Working with Persistent Data

Query g = sess. get NamedQuery("eg. Donesti cCat . by. nane. and. mi ni nrum wei ght ") ;
g.setString(0, nane);

g.setlnt(1, mnWight);

List cats = qg.list();

The query interface supports the use of named parameters. Named parameters are identifiers of the form : nane
in the query string. There are methods on Quer y for binding values to named parameters or JDBC-style ? para-
meters. Contrary to JDBC, Hibernate numbers parameters from zero. The advantages of named parameters
are:

* named parameters are insensitive to the order they occur in the query string
e they may occur multiple times in the same query
e they are self-documenting

/I named paraneter (preferred)
Query g = sess.createQuery("from Donmesti cCat cat where cat.nane = :nane");
g.setString("nane", "Fritz");
Iterator cats = g.iterate();

// positional paraneter

Query g = sess.createQuery("from DonesticCat cat where cat.nane = ?");
g-setString(0, "lzi");

Iterator cats = qg.iterate();

[/ named paraneter |ist

Li st nanes = new ArraylList();

nanes. add("1zi");

nanmes. add("Fritz");

Query g = sess.createQuery("from DonesticCat cat where cat.nane in (:nanesList)");
g. set Par anet er Li st (" nanesLi st", nanes);

List cats = qg.list();

9.3.3. Scrollable iteration

If your JDBC driver supports scrollable Resul t Set s, the Query interface may be used to obtain a Scrol | a-
bl eResul t s which allows more flexible navigation of the query results.

Query g = sess.createQuery("sel ect cat.name, cat from DonmesticCat cat " +
"order by cat.nane");

Scrol | abl eResults cats = q.scroll();

if (cats.first()) {

/1 find the first name on each page of an al phabetical l|ist of cats by nane
firstNanesCOf Pages = new Arraylist();
do {

String nane = cats.getString(0);
firstNanesOf Pages. add(nane) ;

}
while (cats.scroll (PAGE_SI ZE));

/1l Now get the first page of cats

pageOf Cats = new Arraylist();

cats. beforeFirst();

int i=0;

while((PAGE_SIZE > i ++) && cats.next()) pageO Cats.add(cats.get(1l));

9.3.4. Filtering collections

Hibernate 3.0a pha 73

Working with Persistent Data

A collection filter is a special type of query that may be applied to a persistent collection or array. The query
string may refer to t hi s, meaning the current collection element.

Col | ection bl ackKittens = session.createFilter(
pk. getKittens(),
"where this.color = ?")
.set Paranet er (Col or. BLACK, Hi bernate. custon{Col or User Type. cl ass))
ist()

The returned collection is considered a bag.

Observe that filters do not require af r omclause (though they may have one if required). Filters are not limited
to returning the collection elements themselves.

Col I ection bl ackKittenMates = session.createFilter(
pk. getKittens(),
"select this.mate where this.color = eg.Col or. BLACK. i nt Val ue")
dist();

9.3.5. Criteria queries

HQL is extremely powerful but some people prefer to build queries dynamically, using an object oriented API,
rather than embedding strings in their Java code. For these people, Hibernate provides an intuitive Criteri a
query APIL.

Criteria crit = session.createCriteria(Cat.class);
crit.add(Expression.eq("color"”, eg.Color.BLACK));
crit.set MaxResul ts(10);

List cats = crit.list();

If you are uncomfortable with SQL-like syntax, this is perhaps the easiest way to get started with Hibernate.
This APl is a'so more extensible than HQL. Applications might provide their own implementations of the cri -
teri on interface.

9.3.6. Queries in native SQL

You may expressaquery in SQL, using cr eat eSQLQuer y() . You must enclose SQL aliasesin braces.

Li st cats = session. createSQ.Query(
"SELECT {cat.*} FROM CAT {cat} WHERE ROANUM<10",
"cat”,
Cat . cl ass

). list();

Li st cats = session. createSQLQuery(
"SELECT {cat}.ID AS {cat.id}, {cat}.SEX AS {cat.sex}, " +
"{cat}. MATE AS {cat.mate}, {cat}.SUBCLASS AS {cat.class}, ... " +
"FROM CAT {cat} WHERE ROMNUM<10",
"cat",
Cat.cl ass

). list()

SQL queries may contain named and positional parameters, just like Hibernate queries.

9.4. Updating objects

Hibernate 3.0a pha 74

Working with Persistent Data

9.4.1. Updating in the same Session

Transactional persistent instances (ie. objects loaded, saved, created or queried by the Sessi on) may be manip-
ulated by the application and any changes to persistent state will be persisted when the Sessi on is flushed
(discussed later in this chapter). So the most straightforward way to update the state of an object isto | oad() it,
and then manipulate it directly, while the Sessi on is open:

DonesticCat cat = (DonesticCat) sess.load(Cat.class, new Long(69));
cat.set Nane("PK");
sess.flush(); // changes to cat are automatically detected and persisted

Sometimes this programming model is inefficient since it would require both an SQL SELECT (to load an ob-
ject) and an SQL UPDATE (to persist its updated state) in the same session. Therefore Hibernate offers an altern-
ate approach.

9.4.2. Updating detached objects

Many applications need to retrieve an object in one transaction, send it to the Ul layer for manipulation, then
save the changes in a new transaction. (Applications that use this kind of approach in a high-concurrency envir-
onment usually use versioned data to ensure transaction isolation.) This approach requires a slightly different
programming model to the one described in the last section. Hibernate supports this model by providing for
reattachment of detached instances using the the method Sessi on. updat e() .

/1 in the first session

Cat cat = (Cat) firstSession.|load(Cat.class, catld);
Cat potential Mate = new Cat ();
firstSession.save(potential Mate);

/1 in a higher tier of the application
cat.set Mate(pot enti al Mate);

// later, in a new session
secondSessi on. update(cat); // update cat
secondSessi on. update(mate); // update mate

If the cat with identifier cat | d had already been loaded by secondSessi on when the application tried to update
it, an exception would have been thrown.

The application should individually updat e() detached instances reachable from the given detached instance if
and only if it wants their state also updated. (Except for lifecycle objects, discussed later.)

Hibernate users have requested a general purpose method that either saves a transient instance by generating a
new identifier or update the persistent state associated with its current identifier. The saveOr Updat e() method
now implements this functionality.

Hibernate distinguishes "new" transient instances from detached instances by the value of the identifier (or ver-
sion, or timestamp) property. The unsaved- val ue attribute of the <i d> (or <versi on>, Or <ti nest anp>) map-
ping specifies which values should be interpreted as representing a new transient instance.

<id name="id" type="long" colum="uid" unsaved-val ue="nul | ">
<generator class="hilo"/>
</id>

The allowed values of unsaved- val ue are;

e any - dways save
e none - dways update

Hibernate 3.0a pha 75

Working with Persistent Data

* null -savewhen identifier isnull (thisisthe default)
» valididentifier value - save when identifier is null or the given value
* undefi ned - the default for ver si on or ti mest anp, then identifier check is used

/1l in the first session
Cat cat = (Cat) firstSession.|load(Cat.class, catlD);

/1 in a higher tier of the application
Cat mate = new Cat ();
cat.setMate(mate);

Il later, in a new session
secondSessi on. saveOr Updat e(cat) ; /] update existing state (cat has a non-null id)
secondSessi on. saveOr Update(mate); // save the new instance (mate has a null id)

The usage and semantics of saveOr Updat e() Seems to be confusing for new users. Firstly, so long as you are
not trying to use instances from one session in another new session, you should not need to use updat e() or
saveOr Updat e() . Some whole applications will never use either of these methods.

Usually updat e() or saveOr Updat e() are used in the following scenario:

» the application loads an object in the first session

« theobject is passed up to the Ul tier

« some modifications are made to the object

e theobject is passed back down to the business logic tier

« the application persists these modifications by calling updat e() in a second session

saveOr Updat e() doesthe following:

e if the object is already persistent in this session, do nothing

e if the object has no identifier property, save() it

« if the object's identifier matches the criteria specified by unsaved- val ue, save() it

« if the object is versioned (ver si on oOr ti nest anp), then the version will take precedence to identifier check,
unless the versions unsaved- val ue="undef i ned" (default value)

» if another object associated with the session has the same identifier, throw an exception

The last case can be avoided by using saveOr Updat eCopy(Qbj ect o) . This method copies the state of the given
object onto the persistent object with the same identifier. If there is no persistent instance currently associated
with the session, it will be loaded. The method return the persistent instance. If the given instance is unsaved or
does not exist in the database, Hibernate will save it and return it as a newly persistent instance. Otherwise, the
given instance does not become associated with the session. In most applications with detached objects, you
need both methods, saveOr Updat e() and saveOr Updat eCopy() .

9.4.3. Reattaching detached objects

Thel ock() method allows the application to reassociate an unmodified object with a new session.

/ljust reassoci ate:

sess. lock(fritz, LockMbde. NONE);

//do a version check, then reassociate:

sess. |l ock(izi, LockMbdde. READ);

//do a version check, using SELECT ... FOR UPDATE, then reassoci ate:
sess. | ock(pk, LockMbde. UPGRADE) ;

9.5. Deleting persistent objects

Hibernate 3.0a pha 76

Working with Persistent Data

Sessi on. del et e() will remove an object’s state from the database. Of course, your application might still hold
areferencetoit. So it's best to think of del et e() as making a persistent instance transient.

sess. del ete(cat);

Y ou may also delete many objects at once by passing a Hibernate query string to del et e() .

Y ou may now delete objects in any order you like, without risk of foreign key constraint violations. Of course,
it isstill possible to violate aNoT NULL constraint on a foreign key column by deleting objects in the wrong or-
der.

9.6. Flush

From time to time the Sessi on will execute the SQL statements needed to synchronize the JDBC connection's
state with the state of objects held in memory. This process, flush, occurs by default at the following points

* from someinvocationsof fi nd() oriterate()
e fromorg. hi bernate. Transacti on. commi t ()
e from Session. fl ush()

The SQL statements are issued in the following order

al entity insertions, in the same order the corresponding objects were saved using Sessi on. save()

all entity updates

al collection deletions

al collection element deletions, updates and insertions

al collection insertions

all entity deletions, in the same order the corresponding objects were deleted using Sessi on. del et e()

oSk wbdhrE

(An exception isthat objectsusing nat i ve |D generation are inserted when they are saved.)

Except when you explicity f1 ush(), there are absolutely no guarantees about when the Sessi on executes the
JDBC cdlls, only the order in which they are executed. However, Hibernate does guarantee that the Ses-
si on. find(..) methodswill never return stale data; nor will they return the wrong data.

It is possible to change the default behavior so that flush occurs less frequently. The FI ushmode class defines
three different modes. This is most useful in the case of "readonly” transactions, where it might be used to
achieve a (very) slight performance increase.

sess = sf.openSession();

Transaction tx = sess. begi nTransaction();

sess. set Fl ushMbde(Fl ushMbde. COM T); //allow queries to return stale state
Cat izi = (Cat) sess.load(Cat.class, id);

i zi.setNanme(iznizi);

/| execute some queries....

sess.find("from Cat as cat |left outer join cat.kittens kitten");

//change to izi is not flushed!

tx.commit(); //flush occurs

9.7. Ending a Session

Ending a session involves four distinct phases:

Hibernate 3.0a pha 77

Working with Persistent Data

e flush the session

* commit the transaction
e closethe session

¢ handle exceptions

9.7.1. Flushing the Session

If you happen to be using the Transacti on API, you don't need to worry about this step. It will be performed
implicitly when the transaction is committed. Otherwise you should call Sessi on. flush() to ensure that all
changes are synchronized with the database.

9.7.2. Committing the database transaction

If you are using the Hibernate Tr ansact i on API, thislookslike:

tx.commt(); // flush the Session and commit the transaction

If you are managing JDBC transactions yourself you should manually commi t () the JDBC connection.

sess. flush();
sess. connection().commt(); // not necessary for JTA datasource

If you decide not to commit your changes:

tx.rol |l back(); // rollback the transaction

or:

/1 not necessary for JTA datasource, inportant otherw se
sess. connection().rollback();

If you rollback the transaction you should immediately close and discard the current session to ensure that Hi-
bernate'sinternal stateis consistent.

9.7.3. Closing the Session

A call to Sessi on. cl ose() marksthe end of a session. The main implication of cl ose() isthat the JIDBC con-
nection will be relinquished by the session.

tx.commt();
sess. cl ose();

sess. flush();
sess. connection().commt(); // not necessary for JTA datasource
sess. cl ose();

If you provided your own connection, cl ose() returns areferenceto it, so you can manually closeit or return it
to the pool. Otherwisecl ose() returnsit to the pool.

9.7.4. Exception handling

If the Sessi on throws an exception (including any SQLExcept i on), you should immediately rollback the trans-
action, call Sessi on. cl ose() and discard the Sessi on instance. Certain methods of Sessi on will not leave the

Hibernate 3.0a pha 78

Working with Persistent Data

Session in aconsistent state.
The following exception handling idiom is recommended:

Sessi on sess = factory. openSession();
Transaction tx = null;
try {

tx = sess. begi nTransaction();

/1 do sone work

tx.commt();
}
catch (Exception e) {
if (tx!'=null) tx.rollback();

throw e;
}
finally {

sess. cl ose();
}

Or, when manually managing JDBC transactions:

Session sess = factory. openSession();

try {
/! do sone work

sess. flush();
sess. connection().commt();
}
catch (Exception e) {
sess. connection().roll back();

throw e;
}
finally {

sess. cl ose();
}

Or, when using a datasource enlisted with JTA:

User Transaction ut = ;
Sessi on sess = factory. openSession();

try {
/1l do sone work

sess. flush();
}
catch (Exception e) {
ut . set Rol | backOnl y();

throw e;
}
finally {

sess. cl ose();
}

9.8. Lifecyles and object graphs

To save or update al objects in agraph of associated objects, you must either

e save(), saveO Updat e() Or updat e() each individual object OR
e map associated objects using or cascade="save-update", cascade="all" OF cas-
cade="al | - del et e- or phan”.

Likewise, to delete all objectsin agraph, either

Hibernate 3.0a pha 79

Working with Persistent Data

e delete() eachindividua object OR
* map associated objectsusing cascade="al | ", cascade="al | - del et e- or phan" Of cascade="del et e".

Recommendation:

< If the child object's lifespan is bounded by the lifespan of the of the parent object make it a lifecycle object
by specifying cascade="al | .

* Otherwise, save() and del ete() it explicitly from application code. If you really want to save yourself
some extratyping, use cascade="save- updat e" and explicit del et e() .

Mapping an association (many-to-one, or collection) with cascade="al | " marks the association as a parent/
child style relationship where save/update/deletion of the parent results in save/update/deletion of the
child(ren). Futhermore, a mere reference to a child from a persistent parent will result in save / update of the
child. The metaphor is incomplete, however. A child which becomes unreferenced by its parent is not automat-
icaly deleted, except in the case of a<one- t o- many> association mapped with cascade="al | - del et e- or phan".
The precise semantics of cascading operations are as follows:

» |f aparentissaved, al children are passed to saveOr Updat e()

e |If aparent ispassed to updat e() Or saveOr Updat e() , al children are passed to saveOr Updat e()

e If atransient or detached child becomes referenced by a persistent parent, it is passed to saveOr Updat e()

e |If aparentisdeleted, al children are passed to del et e()

« If achild is dereferenced by a persistent parent, nothing special happens (the application should explicitly
delete the child if necessary) unless cascade="al | - del et e- or phan", in which case the "orphaned" child is
deleted.

Hibernate does not fully implement "persistence by reachability”, which would imply (inefficient) persistent
garbage collection. However, due to popular demand, Hibernate does support the notion of entities becoming
persistent when referenced by another persistent object. Associations marked cascade="save- updat e* behave
in thisway. If you wish to use this approach throughout your application, its easier to specify the def aul t - cas-
cade attribute of the <hi ber nat e- mappi ng> €lement.

9.9. Parameterized application views with filters

Hibernate3 adds the ability to pre-define filter criteria and attach those filters at both a class and a collection
level. A filter criteria is the ability to define a restriction clause very similiar to the existing "where" attribute
available on the class and various collection elements. Except these filter conditions can be parameterized. The
application can then make the decision at runtime whether given filters should be enabled and what their para-
meter values should be. Filters can be used like database views, but parameterized inside the application.

In order to use filters, they must first be defined and then attached to the appropriate mapping elements. To
define afilter, usethe<fil t er- def/ > element within a<hi ber nat e- mappi ng/ > element:

<filter-def name="nyFilter">
<filter-param name="nyFilterParan type="string"/>
</filter-def>

Then, thisfilter can be attached to aclass:

<cl ass nanme="nyd ass" ...>

<filter name="nyFilter" condition=":nyFilterParam = MY_FI LTERED COLUWN'/ >
</ cl ass>

or, to acollection:

Hibernate 3.0a pha 80

Working with Persistent Data

<set ...>
<filter nane="nyFilter" condition=":nyFilterParam = MY_FI LTERED COLUWN'/ >
</ set>

or, even to both (or multiples of each) at the same time.

The methods on Sessi on are: enabl eFilter(String filterNane), get Enabl edFilter(String filterNane),
and di sabl eFil ter(String filterName). By default, filters are not enabled for a given session; they must be
explcitly enabled through use of the Sessi on. enabl edFi | t er () method, which returns an instance of the Fi | -
ter interface. Using the simple filter defined above, thiswould look like:

session.enableFilter("nyFilter").setParaneter("nyFilterParant, "some-value");

Note that methods on the org.hibernate.Filter interface do allow the method-chaining common to much of Hi-
bernate.

A full example, using temporal datawith an effective record date pattern:

<filter-def name="effectiveDate">
<filter-param nane="asCf Date" type="date"/>
</filter-def>

<cl ass nane="Enpl oyee" ...>

<many-t o- one name="departnent" col um="dept_id" class="Departnent"/>
<property nane="effectiveStartDate" type="date" colum="eff_start_dt"/>
<property nane="effecti veEndDat e" type="date" colum="eff_end_dt"/>

<l--
Note that this assumes non-term nal records have an eff_end_dt set to
a max db date for sinplicity-sake
-->
<filter nane="effectiveDate"
condi ti on=":asCf Date BETWEEN eff_start_dt and eff_end_dt"/>
</ cl ass>

<cl ass nane="Departnent" ...>

<set name="enpl oyees" |azy="true">
<key col um="dept _id"/>
<one-to-many cl ass="Enpl oyee"/>
<filter nane="effectiveDate"
condi ti on=":asCf Dat e BETWEEN eff_start_dt and eff_end_dt"/>
</ set>
</ cl ass>

Then, in order to ensure that you always get back currently effective records, simply enable the filter on the ses-
sion prior to retrieving employee data:

Sessi on session = ...;

sessi on. enabl edFi l ter("effectiveDate"). setParaneter("asO Date", new Date());

Li st results = session.createQuery("from Enpl oyee as e where e.salary > :targetSalary")
.setLong("target Sal ary", new Long(1000000))
dist();

In the HQL above, even though we only explicitly mentioned a salary constraint on the results, because of the
enabled filter the query will return only currently active employees who have a salary greater than a million
dollars.

Note: if you plan on using filters with outer joining (either through HQL or load fetching) be careful of the dir-
ection of the condition expression. Its safest to set this up for left outer joining; in general, place the parameter

Hibernate 3.0a pha 81

Working with Persistent Data

first followed by the column name(s) after the operator.

9.10. Interceptors

The nt er cept or interface provides callbacks from the session to the application alowing the application to in-
spect and / or manipulate properties of a persistent object before it is saved, updated, deleted or loaded. One
possible use for this is to track auditing information. For example, the following I nt er cept or automatically
setsthe cr eat eTi nest anp when an Audi t abl e is created and updates the | ast Updat eTi nest anp property when
an Audi t abl e is updated.

package org. hi bernate.test;

import java.io.Serializable;
i mport java.util.Date;
import java.util.lterator;

i mport org. hi bernate.|nterceptor;
i mport org. hi bernate.type. Type;

public class Auditlnterceptor inplenments Interceptor, Serializable {

private int updates;
private int creates;

public void onDel ete(Object entity,
Serializable id,
oj ect[] state,
String[] propertyNanes,
Type[] types) {
/1 do not hi ng
}

publ i c bool ean onFl ushDirty(Object entity,
Serializable id,
Ooj ect[] currentState,
Cbj ect[] previousState,
String[] propertyNanes,

Type[] types) {

if (entity instanceof Auditable) {
updat es++;
for (int i=0; i < propertyNames.length; i++) {
if ("lastUpdateTi nestanp". equal s(propertyNames[i])) {
currentState[i] = new Date();
return true;

}
}

return fal se;

}

publ i c bool ean onLoad(Chject entity,
Serializable id,
Cbj ect[] state,
String[] propertyNanes,
Type[] types) {
return fal se;

}

publ i c bool ean onSave((Obj ect entity,
Serializable id,
oj ect[] state,
String[] propertyNanes,

Type[] types) {

if (entity instanceof Auditable) {

Hibernate 3.0a pha 82

Working with Persistent Data

creat es++
for (int i=0; i<propertyNames.length; i++) {
if ("createTimestanp". equal s(propertyNanes[i])) {
state[i] = new Date();
return true

}
}

return false

}

public void postFlush(lterator entities) {
Systemout.println("Creations: " + creates + ", Updates: " + updates);
}

public void preFlush(lterator entities) {
updat es=0;
creates=0

The interceptor would be specified when a session is created.

Session session = sf.openSession(new Auditlnterceptor());

Y ou may also set an interceptor on aglobal level, using the Conf i gur ati on:

new Configuration().setlnterceptor(new Auditlnterceptor());

9.11. Event system

If you have to react to particular events in your persistence layer, you may also use the Hibernate3 event archi-
tecture. The event system can be used in addition or as a replacement for interceptors.

Essentially all of the methods of the Session interface correlate to an event. You have a LoadEvent, a
Fl ushEvent , efc (consult the XML configuration-file DTD or the or g. hi ber nat e. event package for the full
list of defined event types). When a request is made of one of these methods, the Hibernate Sessi on generates
an appropriate event and passes it to the configured event listener for that type. Out-of-the-box, these listeners
implement the same processing in which those methods always resulted. However, you are free to implement a
customization of one of the listener interfaces (i.e., the LoadEvent is processed by the registered implemenation
of the LoadEvent Li st ener interface), in which case their implementation would be responsible for processing
any | oad() requests made of the sessi on.

The listeners should be considered effectively singletons, meaning, they are shared between requests, and thus
should not save any state as instance variables. The event objects themselves, however, do hold alot of the con-
text needed for processing as they are unique to each request. Custom event listeners may also make use of the
event's context for storage of any needed processing variables. The context is a simple map, but the default
listeners don't use the context map at all, so don't worry about over-writing internally required context vari-
ables.

A custom listener should implement the appropriate interface for the event it wants to process and/or extend
one of the convenience base classes (or even the default event listeners used by Hibernate out-of-the-box as
these are declared non-final for this purpose). Custom listeners can either be registered programatically through
the Confi gur ati on object, or specified in the Hibernate configuration XML (declarative configuration through

Hibernate 3.0a pha 83

Working with Persistent Data

the propertiesfile is not supported). Here's an example of a custom load event listener:

public class MyLoadLi stener extends Defaul t LoadEventLi stener {
/1 this is the single nethod defined by the LoadEventLi stener interface
public Object onLoad(LoadEvent event, LoadEventLi stener.LoadType | oadType)
t hrows Hi bernat eException {
if (!'MySecurity.isAuthorized(event.getEntityNane(), event.getEntityld())) {
throw MySecurityException("Unaut horized access");
}

return super.onLoad(event, |oadType);

Y ou also need a configuration entry telling Hibernate to use the listener instead of the default listener:

<hi ber nat e- confi gurati on>
<session-factory>

<listener type="load" class="MLoadLi stener"/>
</ sessi on-factory>
</ hi ber nat e- conf i gurati on>

Instead, you may register it programatically:

Configuration cfg = new Configuration();
cf g. get Sessi onEvent Li st ener Confi g(). set LoadEvent Li st ener (new MyLoadLi stener());

Listeners registered declaratively cannot share instances. If the same class name is used in multiple
<l'i st ener/ > elements, each reference will result in a seperate instance of that class. If you need the capability
to share listener instances between listener types you must use the programatic registration approach.

Why implement an interface and define the specific type during configuration? Well, a listener implementation
could implement multiple event listener interfaces. Having the type additionally defined during registration
makes it easier to turn custom listeners on or off during configuration.

9.12. Metadata API

Hibernate requires a very rich meta-level model of al entity and value types. From time to time, this model is
very useful to the application itself. For example, the application might use Hibernate's metadata to implement
a"smart" deep-copy agorithm that understands which objects should be copied (eg. mutable value types) and
which should not (eg. immutable value types and, possibly, associated entities).

Hibernate exposes metadata via the d assMet adat a and Col | ect i onMet adat a interfaces and the Type hier-
archy. Instances of the metadata interfaces may be obtained from the Sessi onFact ory.

Cat fritz = ;
Long id = (Long) catMeta.getldentifier(fritz);
Cl assMet adat a cat Meta = sessi onfactory. get Cl assMet adat a(Cat . cl ass) ;
Cbj ect[] propertyVal ues = cat Meta. get PropertyVal ues(fritz);
String[] propertyNanes = cat Met a. get PropertyNanes();
Type[] propertyTypes = cat Meta. get PropertyTypes();
/1 get a Map of all properties which are not collections or associations
/1 TODO what about conponents?
Map nanedVal ues = new HashMap();
for (int i=0; i<propertyNanmes.length; i++) {
if (!propertyTypes[i].isEntityType() && !propertyTypes[i].isCollectionType()) {
nanmedVal ues. put (propertyNanes[i], propertyValues[i]);
}

Hibernate 3.0a pha 84

Chapter 10. Transactions And Concurrency

Hibernate is not itself a database. It is a lightweight object-relational mapping tool. Transaction management is
delegated to the underlying database connection. If the connection is enlisted with JTA, operations performed
by the sessi on are atomically part of the wider JTA transaction. Hibernate can be seen as a thin adapter to JD-
BC, adding object- oriented semantics.

10.1. Configurations, Sessions and Factories

A Sessi onFact ory is an expensive-to-create, threadsafe object intended to be shared by all application threads.
A Sessi on is an inexpensive, non-threadsafe object that should be used once, for a single business process, and
then discarded. For example, when using Hibernate in a servlet-based application, servlets could obtain a Ses-
si onFact ory using

Sessi onFactory sf = (Sessi onFactory)get Servl et Context().getAttribute("ny.session.factory");

Each call to a service method could create a new Sessi on, f1 ush() it, commi t () its connection, cl ose() it and
finally discard it. (The Sessi onFact ory may also be kept in INDI or in a static Sngleton helper variable.)

In a stateless session bean, a similar approach could be used. The bean would obtain a Sessi onFact ory inset -
Sessi onCont ext () . Then each business method would create a Sessi on, f1 ush() it and cl ose() it. Of course,
the application should not commi t () the connection. (Leave that to JTA, the database connection participates
automatically in container-managed transactions.)

We use the Hibernate Tr ansact i on API as discussed previously, asingle commi t () of aHibernate Transacti on
flushes the state and commits any underlying database connection (with special handling of JTA transactions).

Ensure you understand the semantics of f1 ush() . Flushing synchronizes the persistent store with in-memory
changes but not vice-versa. Note that for al Hibernate JDBC connections/transactions, the transaction isolation
level for that connection appliesto all operations executed by Hibernate!

The next few sections will discuss alternative approaches that utilize versioning to ensure transaction atomicity.
These are considered "advanced" approaches to be used with care.

10.2. Threads and connections

Y ou should observe the following practices when creating Hibernate Sessions:

* Never create more than one concurrent Sessi on Or Tr ansact i on instance per database connection.

» Beextremdy careful when creating more than one Sessi on per database per transaction. The Sessi on itself
keeps track of updates made to loaded objects, so adifferent Sessi on might see stale data.

e The Session is not threadsafe! Never access the same Sessi on in two concurrent threads. A Session is
usually only a single unit-of-work!

10.3. Considering object identity

The application may concurrently access the same persistent state in two different units-of-work. However, an
instance of a persistent class is hever shared between two Sessi on instances. Hence there are two different no-
tions of identity:

Hibernate 3.0a pha 85

Transactions And Concurrency

Database Identity
foo.getld().equals(bar.getld())

JVM ldentity
f oo==bar

Then for objects attached to a particular Sessi on, the two notions are equivalent. However, while the applica-
tion might concurrently access the "same" (persistent identity) business object in two different sessions, the two
instances will actually be "different” (JVM identity).

This approach leaves Hibernate and the database to worry about concurrency. The application never needs to
synchronize on any business object, aslong as it sticks to a single thread per Sessi on or object identity (within
a Sessi on the application may safely use == to compare objects).

10.4. Optimistic concurrency control

Many business processes require awhole series of interactions with the user interleaved with database accesses.
In web and enterprise applicationsit is not acceptable for a database transaction to span a user interaction.

Maintaining isolation of business processes becomes the partial responsibility of the application tier, hence we
call this process a long running application transaction. A single application transaction usually spans several
database transactions. It will be atomar if only one of these database transactions (the last one) stores the up-
dated data, all others simply read data.

The only approach that is consistent with high concurrency and high scalability is optimistic concurrency con-
trol with versioning. Hibernate provides for three possible approaches to writing application code that uses op-
timistic concurrency.

10.4.1. Long session with automatic versioning

A single sessi on instance and its persistent instances are used for the whole application transaction.

The sessi on uses optimistic locking with versioning to ensure that many database transactions appear to the
application as a single logical application transaction. The Sessi on is disconnected from any underlying JDBC
connection when waiting for user interaction. This approach is the most efficient in terms of database access.
The application need not concern itself with version checking or with reattaching detached instances.

/1 foo is an instance | oaded earlier by the Session
sessi on. reconnect () ;

f 0o. set Property("bar");

session. flush();

sessi on. connection().conmt();

sessi on. di sconnect () ;

Thef oo object still knows which Sessi on it was loaded it. As soon as the Sessi on has a JDBC connection, we
commit the changes to the object.

This pattern is problematic if our Sessi on istoo big to be stored during user think time, e.g. an Htt pSessi on
should be kept as small as possible. As the Sessi on is adso the (mandatory) first-level cache and contains all
loaded objects, we can propably use this strategy only for a few request/response cycles. This is indeed recom-
mended, as the Sessi on will soon aso have stale data.

Hibernate 3.0a pha 86

Transactions And Concurrency

10.4.2. Many sessions with automatic versioning

Each interaction with the persistent store occurs in a new Sessi on. However, the same persistent instances are
reused for each interaction with the database. The application manipulates the state of detached instances ori-
ginaly loaded in another sSession and then "reassociates’ them using Session.update() Of Ses-
si on. saveOr Updat e() .

/1 foo is an instance | oaded by a previ ous Session
f 0o. set Property("bar");

session = factory. openSession();

sessi on. saveOr Updat e(f 00) ;

session. flush();

sessi on. connection().comit();

session. cl ose();

You may also call | ock() instead of updat e() and use LockMode. READ (performing a version check, bypassing
all caches) if you are sure that the object has not been modified.

10.4.3. Application version checking

Each interaction with the database occurs in a new Sessi on that reloads all persistent instances from the data-
base before manipulating them. This approach forces the application to carry out its own version checking to
ensure application transaction isolation. (Of course, Hibernate will still update version numbers for you.) This
approach isthe least efficient in terms of database access. It is the approach most similar to entity EJBs.

/1l foo is an instance | oaded by a previ ous Session

session = factory.openSession();

int ol dVersi on = foo. getVersion();

session. | oad(foo, foo.getKey());

if (oldVersion!=foo.getVersion) throw new Stal eQbj ect St at eException();
f 0o. set Property("bar");

session. flush();

sessi on. connection().comit();

session. cl ose();

Of course, if you are operating in alow-data-concurrency environment and don't require version checking, you
may use this approach and just skip the version check.

10.5. Session disconnection

The first approach described above is to maintain a single Sessi on for a whole business process thats spans
user think time. (For example, a servlet might keep a Sessi on in the user's Ht t pSessi on.) For performance
reasons you should

1. commit the Transacti on (or JIDBC connection) and then
2. disconnect the Sessi on from the JDBC connection

before waiting for user activity. The method Sessi on. di sconnect () will disconnect the session from the JD-
BC connection and return the connection to the pool (unless you provided the connection).

Sessi on. reconnect () obtains a new connection (or you may supply one) and restarts the session. After recon-
nection, to force a version check on data you aren't updating, you may call Sessi on. | ock() on any objects that
might have been updated by another transaction. Y ou don't need to lock any data that you are updating.

Heres an example:

Hibernate 3.0a pha 87

Transactions And Concurrency

Sessi onFactory sessions;
Li st fooli st;
Bar bar;

Session s = sessi ons. openSessi on();

Transaction tx = null;

try {
tx = s.beginTransaction();

fooList = s.find(
"sel ect foo fromeg. Foo foo where foo.Date = current date"
/1 uses db2 date function
DE

bar = (Bar) s.create(Bar.class);

tx.commt();

}

catch (Exception e) {
if (tx!'=null) tx.rollback();
s.close();
throw e;

}

s. di sconnect ();

Later on:

s.reconnect ();

try {
tx = s.begi nTransaction();

bar. set FooTabl e(new HashMap());

Iterator iter = foolList.iterator();

while (iter.hasNext()) {
Foo foo = (Foo) iter.next();
s.lock(foo, LockMbde. READ); /lcheck that foo isn't stale
bar . get FooTabl e() . put (foo.getName(), foo);

}

tx.commt();

catch (Exception e) {
if (tx!'=null) tx.rollback();

throw e;
}
finally {
s.close();
}

You can see from this how the relationship between Tr ansact i ons and Sessi onS iS many-to-one, A Sessi on
represents a conversation between the application and the database. The Tr ansact i on breaks that conversation
up into atomic units of work at the database level.

10.6. Pessimistic Locking

It is not intended that users spend much time worring about locking strategies. Its usually enough to specify an
isolation level for the JDBC connections and then simply let the database do al the work. However, advanced
users may sometimes wish to obtain exclusive pessimistic locks, or re-obtain locks at the start of a new transac-
tion.

Hibernate will always use the locking mechanism of the database, never lock objects in memory!

Hibernate 3.0a pha 88

Transactions And Concurrency

The LockMde class defines the different lock levels that may be acquired by Hibernate. A lock is obtained by
the following mechanisms:

* LockMde. WRI TE is acquired automatically when Hibernate updates or inserts arow.

* LockMde. UPGRADE may be acquired upon explicit user request using SELECT ... FOR UPDATE on databases
which support that syntax.
e LockMde. UPGRADE_NOMI T may be acquired upon explicit user request using a SELECT ... FOR UPDATE

Nowal T under Oracle.

* LockMde. READ is acquired automatically when Hibernate reads data under Repeatable Read or Serializable
isolation level. May be re-acquired by explicit user request.

* LockMode. NONE represents the absence of alock. All objects switch to thislock mode at the end of a Tr ans-
acti on. Objects associated with the session via a call to updat e() Ofr saveOr Updat e() also start out in this
lock mode.

The "explicit user request” is expressed in one of the following ways:

e A cal toSession. | oad(), specifying aLockMde.
* A call to Session. | ock().
* A cal toQuery. set LockMbde() .

If Session. | oad() is called with UPGRADE or UPGRADE_NOwWAI T, and the requested object was not yet loaded by
the session, the object isloaded using SELECT ... FOR UPDATE. If | oad() iscalled for an object that is already
loaded with aless restrictive lock than the one requested, Hibernate calls1 ock() for that object.

Sessi on. l ock() performs a version number check if the specified lock mode is READ, UPGRADE Or UP-
GRADE_NOMI T. (In the case of UPGRADE Or UPGRADE_NOWAI T, SELECT ... FOR UPDATE isused.)

If the database does not support the requested lock mode, Hibernate will use an appropriate alternate mode
(instead of throwing an exception). This ensures that applications will be portable.

Hibernate 3.0a pha 89

Chapter 11. HQL: The Hibernate Query Language

Hibernate is equiped with an extremely powerful query language that (quite intentionally) looks very much like
SQL. But don't be fooled by the syntax; HQL is fully object-oriented, understanding notions like inheritence,
polymorphism and association.

11.1. Case Sensitivity

Queries are case-insensitive, except for names of Java classes and properties. So SeLeCT is the same as sELEct
is the same as SELECT but org. hi bernate. eg. FOO iS Not org. hi bernat e. eg. Foo and f oo. bar Set iS not
f 00. BARSET.

This manual uses lowercase HQL keywords. Some users find queries with uppercase keywords more readable,
but we find this convention ugly when embedded in Java code.

11.2. The from clause

The simplest possible Hibernate query is of the form:

from eg. Cat

which simply returns al instances of the class eg. Cat .

Most of the time, you will need to assign an alias, since you will want to refer to the cat in other parts of the
query.

fromeg. Cat as cat

This query assignsthe alias cat to cat instances, so we could use that alias later in the query. The as keyword
isoptional; we could also write:

fromeg. Cat cat

Multiple classes may appear, resulting in a cartesian product or "cross" join.

from Fornul a, Paraneter
fromFornmula as form Paranmeter as param

It is considered good practice to name query aliases using an initial lowercase, consistent with Java naming
standards for local variables (eg. donest i cCat).

11.3. Associations and joins

We may also assign aliases to associated entities, or even to elements of a collection of values, using aj oi n.

fromeg. Cat as cat
inner join cat.mate as mate
left outer join cat.kittens as kitten

fromeg.Cat as cat left join cat.mate.kittens as kittens

Hibernate 3.0a pha 90

HQL: The Hibernate Query Language

fromFormula formfull join form paraneter param

The supported join types are borrowed from ANSI SQL

® inner join

e J|eft outer join

® right outer join

e full join (notusualy useful)

Theinner join,left outer joinandright outer join constructs may be abbreviated.

fromeg. Cat as cat
join cat.mate as mate
left join cat.kittens as kitten

In addition, a "fetch" join alows associations or collections of values to be initialized along with their parent
objects, using a single select. This is particularly useful in the case of a collection. It effectively overrides the
outer join and lazy declarations of the mapping file for associations and collections.

fromeg. Cat as cat
inner join fetch cat.mate
left join fetch cat.kittens

A fetch join does not usually need to assign an alias, because the associated objects should not be used in the
wher e clause (or any other clause). Also, the associated objects are not returned directly in the query results. In-
stead, they may be accessed via the parent object.

Note that, in the current implementation, only one collection role may be fetched in a query (everything else
would be non-performant). Note also that the f et ch construct may not be used in queries called using scrol | ()
oriterate().Finally, notethatfull join fetchandright join fetch arenot meaningful.

11.4. The select clause

Thesel ect clause picks which objects and propertiesto return in the query result set. Consider:

sel ect mate
fromeg. Cat as cat
inner join cat.mte as mate

The query will select mat es of other cat s. Actually, you may express this query more compactly as:

select cat.mate fromeg. Cat cat

You may even select collection elements, using the special el ement s function. The following query returns all
kittens of any cat.

sel ect el enents(cat.kittens) fromeg. Cat cat

Queries may return properties of any value type including properties of component type:

sel ect cat.name from eg. DonesticCat cat
where cat.name like "fri%

sel ect cust.nane.firstName from Custoner as cust

Hibernate 3.0a pha 91

HQL: The Hibernate Query Language

Queries may return multiple objects and/or properties as an array of type j ect []

sel ect nother, offspr, mate.nanme
from eg. Donesti cCat as not her
inner join nother.mate as mate
| eft outer join nother.kittens as offspr

or as an actual typesafe Java object

sel ect new Fami | y(nother, mate, offspr)
from eg. Donesti cCat as not her

join nother.mate as nate

left join nother.kittens as of fspr

assuming that the class Fani | y has an appropriate constructor.

11.5. Aggregate functions

HQL queries may even return the results of aggregate functions on properties:

sel ect avg(cat.weight), sun{cat.weight), max(cat.weight), count(cat)
fromeg. Cat cat

Collections may also appear inside aggregate functionsin the sel ect clause.

sel ect cat, count(elenents(cat.kittens))
fromeg. Cat cat group by cat

The supported aggregate functions are

* avg(...), sun(...), mn(...), mx(...)

e count(*)

e count(...), count(distinct ...), count(all...)

Thedi stinct andal | keywords may be used and have the same semantics asin SQL.

sel ect distinct cat.nane from eg. Cat cat

sel ect count(distinct cat.nanme), count(cat) fromeg.Cat cat

11.6. Polymorphic queries

A query like:

fromeg. Cat as cat

returns instances not only of cat, but also of subclasses like Donest i cCat . Hibernate queries may name any
Java class or interface in the f r om clause. The query will return instances of al persistent classes that extend
that class or implement the interface. The following query would return all persistent objects:

fromjava.l ang. Obj ect o

The interface Named might be implemented by various persistent classes:

Hibernate 3.0a pha 92

HQL: The Hibernate Query Language

from eg. Naned n, eg. Naned m where n.nane = m nane

Note that these last two queries will require more than one SQL SELECT. This means that the or der by clause
does not correctly order the whole result set. (It also means you can't call these queriesusing Query. scrol 1 ().)

11.7. The where clause

The wher e clause allows you to narrow the list of instances returned.

fromeg. Cat as cat where cat.nanme='Fritz'

returns instances of cat named 'Fritz'.

sel ect foo
from eg. Foo foo, eg.Bar bar
where foo.startDate = bar.date

will return all instances of Foo for which there exists an instance of bar with a dat e property equal to the
start Dat e property of the Foo. Compound path expressions make the wher e clause extremely powerful. Con-
sider:

fromeg.Cat cat where cat.nmate.nane is not null

This query tranglates to an SQL query with atable (inner) join. If you were to write something like

from eg. Foo foo
where foo. bar. baz. custoner. address.city is not null

you would end up with aquery that would require four table joinsin SQL.
The = operator may be used to compare not only properties, but also instances:

fromeg.Cat cat, eg.Cat rival where cat.mate = rival.nmate
sel ect cat, mate

fromeg. Cat cat, eg.Cat mate
where cat.mate = nate

The special property (lowercase) i d may be used to reference the unique identifier of an object. (You may aso
use its property name.)
fromeg.Cat as cat where cat.id = 123

fromeg.Cat as cat where cat.nmate.id = 69

The second query is efficient. No table join is required!

Properties of composite identifiers may also be used. Suppose Per son has a composite identifier consisting of
count ry and nedi car eNunber .

from bank. Person person
where person.id.country = "'AU
and person.id. medi careNunber = 123456

f rom bank. Account account
where account.owner.id.country = "'AU
and account. owner. i d. nedi careNunber = 123456

Hibernate 3.0a pha 93

HQL: The Hibernate Query Language

Once again, the second query requires no table join.

Likewise, the special property cl ass accesses the discriminator value of an instance in the case of polymorphic
persistence. A Java class name embedded in the where clause will be trandlated to its discriminator value.

fromeg. Cat cat where cat.class = eg. Donesti cCat

You may also specify properties of components or composite user types (and of components of components,
etc). Never try to use a path-expression that endsin a property of component type (as opposed to a property of a
component). For example, if st or e. owner isan entity with a component addr ess

store. owner. address.city /'l okay
st ore. owner . addr ess /1 error!

An "any" type has the specia propertiesid and cl ass, alowing us to express a join in the following way
(where Audi t Log. i t emis aproperty mapped with <any>).

fromeg. AuditlLog | og, eg.Paynent paynent
where log.itemclass = 'eg. Paynent' and log.itemid = paynment.id

Notice that | og.item cl ass and paynent. cl ass would refer to the values of completely different database
columnsin the above query.

11.8. Expressions

Expressions allowed in the wher e clause include most of the kind of things you could writein SQL.:

e mathematical operators+, -, *, /

* binary comparison operators=, >=, <=, <>, !=, like
* logical operationsand, or, not

e string concatenation ||

e SQL scaar functions like upper () and | ower ()

e Parentheses () indicate grouping

* in,between,is null

e JDBCIN parameters ?

¢ named parameters: nane, : start_date, : x1

e SQL literals' foo', 69, ' 1970-01-01 10: 00: 01. 0'

e Javapublic static final constantseg. Col or. TABBY

i n and bet ween may be used as follows:

from eg. DonesticCat cat where cat.nane between 'A and 'B

from eg. DonesticCat cat where cat.nane in ('Foo', 'Bar', 'Baz')

and the negated forms may be written

from eg. Donesti cCat cat where cat.nane not between 'A and 'B'

from eg. Donesti cCat cat where cat.nane not in ('Foo', 'Bar', 'Baz')

Likewise,is null andis not null may be used to test for null values.

Booleans may be easily used in expressions by declaring HQL query substitutions in Hibernate configuration:

Hibernate 3.0a pha 94

HQL: The Hibernate Query Language

<property nane="hi bernate. query. substitutions">true 1, fal se 0</property>

Thiswill replace the keywordst rue and f al se with theliterals 1 and o in the trandated SQL from thisHQL :

fromeg. Cat cat where cat.alive = true

Y ou may test the size of a collection with the special property si ze, or the specia si ze() function.

fromeg. Cat cat where cat.kittens.size > 0
fromeg. Cat cat where size(cat.kittens) > 0
For indexed collections, you may refer to the minimum and maximum indices using ni ni ndex and max! ndex.

Similarly, you may refer to the minimum and maximum elements of a collection of basic type using ni nEl e-
ment and naxEl ement .

from Cal endar cal where cal. holidays. maxEl ement > current date

There are also functional forms (which, unlike the constructs above, are not case sensitive):

from Order order where maxi ndex(order.itenms) > 100

from Order order where m nel enment (order.itenms) > 10000

The SQL functionsany, sone, all, exists, in aresupportedwhen passed the element or index set of a col-
lection (el enent s and i ndi ces functions) or the result of a subquery (see below).

sel ect nother fromeg.Cat as nother, eg.Cat as kit
where kit in el ements(foo.kittens)

sel ect p fromeg. NaneList list, eg.Person p
where p.nane = sone el ements(list. nanes)

fromeg.Cat cat where exists el enents(cat.kittens)
fromeg. Player p where 3 > all el enments(p.scores)

from eg. Show show where 'fizard' in indices(show acts)

Note that these constructs - si ze, el enent s, i ndi ces, ni nl ndex, maxl ndex, mi nEl enent, naxEl enent - have
certain usage restrictions:

¢ inawhere clause: only for databases with subselects
* inasel ect clause: only el ement s and i ndi ces make sense

Elements of indexed collections (arrays, lists, maps) may be referred to by index (in awhere clause only):

from Order order where order.itens[0].id = 1234

sel ect person from Person person, Cal endar cal endar

wher e cal endar. hol i days[' nati onal day'] = person. birthDay
and person. nationality.cal endar = cal endar

select itemfromlitemitem O-der order
where order.itens[order.deliveredltem ndices[0]] = itemand order.id = 11

select itemfromltemitem Order order
where order.itens[maxindex(order.itens)] = itemand order.id = 11

The expressioninside[] may even be an arithmetic expression.

Hibernate 3.0a pha 95

HQL: The Hibernate Query Language

select itemfromlitemitem O der order
where order.itens[size(order.items) - 1] = item

HQL also provides the built-in i ndex() function, for elements of a one-to-many association or collection of
values.

select item index(item) from Order order
join order.itens item
where index(itenm) < 5

Scalar SQL functions supported by the underlying database may be used

from eg. Donesti cCat cat where upper(cat.nanme) |ike 'FRI %

If you are not yet convinced by al this, think how much longer and less readable the following query would be
in SQL:

sel ect cust
from Product prod,
Store store
i nner join store.custoners cust
where prod. nanme = 'w dget'
and store.location.name in (' Ml bourne', 'Sydney')
and prod = all elenments(cust.currentOder.lineltens)

Hint: something like

SELECT cust.nanme, cust.address, cust.phone, cust.id, cust.current_order
FROM cust oners cust,
stores store,
| ocations |oc,
store_custoners sc,
product prod
VWHERE prod. nanme = 'w dget'
AND store.loc_id = loc.id
AND | oc. nane IN (' Mel bourne', 'Sydney')
AND sc.store_id = store.id
AND sc.cust _id = cust.id
AND prod.id = ALL(
SELECT item prod_id
FROM line_itens item orders o
WHERE itemorder_id = o.id
AND cust.current _order = o.id

11.9. The order by clause

The list returned by a query may be ordered by any property of areturned class or components:

from eg. Donmesti cCat cat
order by cat.nane asc, cat.weight desc, cat.birthdate

The optional asc or desc indicate ascending or descending order respectively.

11.10. The group by clause

A query that returns aggregate values may be grouped by any property of areturned class or components:

Hibernate 3.0a pha 96

HQL: The Hibernate Query Language

sel ect cat.color, sum(cat.weight), count(cat)
from eg. Cat cat
group by cat. col or

sel ect foo.id, avg(el enments(foo.nanmes)), max(indices(foo.nanes))

from eg. Foo foo
group by foo.id

Note: You may use the el enent s and i ndi ces constructs inside a select clause, even on databases with no

subselects.
A havi ng clauseisalso allowed.

sel ect cat.color, sum(cat.weight), count(cat)
fromeg. Cat cat
group by cat.col or

havi ng cat.color in (eg.Col or. TABBY, eg. Col or. BLACK)

SQL functions and aggregate functions are allowed in the havi ng and or der by clauses, if supported by the un-

derlying database (ie. not in MySQL).

sel ect cat
fromeg. Cat cat
join cat.kittens kitten
group by cat
havi ng avg(kitten.weight) > 100

order by count(kitten) asc, sun(kitten.weight) desc

Note that neither the gr oup by clause nor the or der by clause may contain arithmetic expressions.

11.11. Subqueries

For databases that support subselects, Hibernate supports subqueries within queries. A subguery must be sur-
rounded by parentheses (often by an SQL aggregate function call). Even correlated subqueries (subqueries that

refer to an aliasin the outer query) are allowed.

fromeg. Cat as fatcat
where fatcat.weight > (
sel ect avg(cat.weight) from eg. DonesticCat cat

)

from eg. DonesticCat as cat
where cat.name = sone (
sel ect nane. ni ckNane from eg. Nane as nane

)

fromeg. Cat as cat
where not exists (
fromeg. Cat as mate where mate. mate = cat

)

from eg. DonesticCat as cat
where cat.nanme not in (

sel ect nane. ni ckNane from eg. Name as nane
)

11.12. HQL examples

Hibernate queries can be quite powerful and complex. In fact, the power of the query language is one of Hi-

Hibernate 3.0a pha

97

HQL: The Hibernate Query Language

bernate's main selling points. Here are some example queries very similar to queries that | used on a recent
project. Note that most queries you will write are much simpler than these!

The following query returns the order id, number of items and total value of the order for all unpaid orders for a
particular customer and given minimum total value, ordering the results by total value. In determining the
prices, it uses the current catalog. The resulting SQL query, against the ORDER, ORDER_LI NE, PRODUCT, CATALOG
and PRI CE tables has four inner joins and an (uncorrel ated) subselect.

sel ect order.id, sun(price.anmount), count(item
from Order as order
join order.lineltens as item
join item product as product,
Cat al og as cat al og
join catal og.prices as price
where order.paid = fal se
and order.custonmer = :custoner
and price. product = product
and catal og. effectiveDate < sysdate
and catal og. effectiveDate >= all (
sel ect cat.effectiveDate
from Catal og as cat
where cat.effectiveDate < sysdate
)
group by order
havi ng sun(price.anmount) > :m nAmount
order by sun(price.anmpunt) desc

What amonster! Actually, inreal life, I'm not very keen on subqueries, so my query was really more like this:

sel ect order.id, sun(price.anmount), count(item
from Order as order

join order.lineltens as item

join item product as product,

Cat al og as cat al og

join catal og.prices as price
where order.paid = fal se

and order.custonmer = :custoner
and price. product = product
and catal og = :current Cat al og

group by order
havi ng sum(price. amount) > :m nAmount
order by sum(price.anmunt) desc

The next query counts the number of payments in each status, excluding all payments in the awal T-
| NG_APPROVAL status where the most recent status change was made by the current user. It trandates to an SQL
query with two inner joins and a correlated subselect against the PAYMENT, PAYMENT_STATUS and PAY-
VENT_STATUS CHANGE tables.

sel ect count (paynent), status.nane
from Paynent as paynent
join paynment.currentStatus as status
join payment. st at usChanges as st atusChange
wher e paynent. st atus. nanme <> Paynent St at us. AWAI TI NG_APPROVAL
or (
statusChange.tineStanp = (
sel ect max(change.ti meSt anp)
f rom Paynent St at usChange change
wher e change. payment = paynent
)
and st at usChange. user <> :currentUser
)
group by status.nane, status.sortOrder
order by status.sortOrder

Hibernate 3.0a pha 98

HQL: The Hibernate Query Language

If 1 would have mapped the st at usChanges collection as a list, instead of a set, the query would have been
much simpler to write.

sel ect count (paynent), status.nane
from Paynent as paynent
join payment.currentStatus as status
wher e paynent. status. nane <> Paynent St at us. AWAI TI NG_APPROVAL
or paynent. st atusChanges[naxlndex(paymnment. st at usChanges)].user <> :currentUser
group by status.nane, status.sortOrder
order by status.sortO der

The next query uses the MS SQL Server i s\ul | () function to return al the accounts and unpaid payments for
the organization to which the current user belongs. It trandlates to an SQL query with three inner joins, an outer
join and a subselect against the ACCOUNT, PAYMENT, PAYMENT_STATUS, ACCOUNT_TYPE, ORGANI ZATI ON and
ORG_USER tables.

sel ect account, paynent
from Account as account
| eft outer join account.paynents as paynment
where :currentUser in el enents(account. hol der. users)
and Payment St at us. UNPAI D = i sNul | (paynent. current St at us. nane, Paynent St at us. UNPAI D)
order by account.type.sortO der, account.account Nunber, paymnent. duebDate

For some databases, we would need to do away with the (correlated) subselect.

sel ect account, paynent
from Account as account
join account. hol der.users as user
|l eft outer join account.paynents as payment
where :currentUser = user
and Payment St at us. UNPAI D = i sNul | (paynent . current St at us. nane, Paynent St at us. UNPAI D)
order by account.type.sortOrder, account.account Nunber, paynent. dueDate

11.13. Tips & Tricks

Y ou can count the number of query results without actually returning them:

((Integer) session.iterate("select count(*) from....").next()).intValue()

To order aresult by the size of a collection, use the following query:

sel ect usr.id, usr.nanme
from User as usr
| eft join usr.nessages as nsg
group by usr.id, usr.nane
order by count (nsg)

If your database supports subselects, you can place a condition upon selection size in the where clause of your
query:

from User usr where size(usr.nmessages) >= 1

If your database doesn't support subselects, use the following query:

sel ect usr.id, usr.nane
from User usr.nane

join usr.messages nsg
group by usr.id, usr.nane
havi ng count(nsg) >= 1

Hibernate 3.0a pha 99

HQL: The Hibernate Query Language

Asthis solution can't return a User with zero messages because of the inner join, the following form is also use-
ful:

sel ect usr.id, usr.name
from User as usr
| eft join usr.nmessages as nsg
group by usr.id, usr.nane
havi ng count(nsg) = 0

Properties of a JavaBean can be bound to named query parameters:

Query g = s.createQuery("fromfoo in class Foo where foo. nane=: name and f oo. si ze=: si ze");
g. set Properties(fooBean); // fooBean has get Nane() and getSize()
List foos = qg.list();

Collections are pageable by using the Quer y interface with afilter:

Query g = s.createFilter(collection, ""); // the trivial filter
g. set MaxResul t s(PAGE_SI ZE) ;

g. set Fi rst Resul t (PAGE_SI ZE * pageNunber) ;

Li st page = qg.list();

Collection elements may be ordered or grouped using a query filter:

Col | ection orderedCol l ection = s.filter(collection, "order by this.anmunt");
Col l ection counts = s.filter(collection, "select this.type, count(this) group by this.type");

Y ou can find the size of a collection without initializing it:

((I'nteger) session.iterate("select count(*) from....").next()).intValue();

Hibernate 3.0a pha 100

Chapter 12. Criteria Queries

Hibernate now features an intuitive, extensible criteria query API. For now, this API is less powerful and than
the more mature HQL query facilities. In particular, criteria queries do not support projection or aggregation.

12.1. Creating a Criteri a instance

The interface or g. hi bernat e. Cri t eri a represents a query against a particular persistent class. The Sessi on is
afactory for ori teri a instances.

Criteria crit = sess.createCriteria(Cat.class);
crit.set MaxResul t s(50);
List cats = crit.list();

12.2. Narrowing the result set

Anindividual query criterion is an instance of the interface or g. hi ber nat e. expressi on. Cri teri on. The class
or g. hi ber nat e. expr essi on. Expressi on defines factory methods for obtaining certain built-in Criterion

types.

List cats = sess.createCriteria(Cat.class)
.add(Expression.like("nanme", "Fritz%))
.add(Expression. between("wei ght", m nWight, maxWeight))
dist();

Expressions may be grouped logically.

Li st cats = sess.createCriteria(Cat.cl ass)
.add(Expression.like("nanme", "Fritz%))
.add(Expression.or(
Expression. eq("age", new I nteger(0)),
Expression.isNull ("age")

))

dist();

Li st cats = sess.createCriteria(Cat.cl ass)
.add(Expression.in("name", new String[] { "Fritz", "lzi", "Pk" }))
.add(Expression. disjunction()
.add(Expression.isNull ("age"))
.add(Expression.eq("age", new Integer(0)))
.add(Expression.eq("age", new Integer(1l)))
.add(Expression.eq("age", new Integer(2)))

))
dist();

There are quite arange of built-in criterion types (Expr essi on subclasses), but one that is especially useful lets
you specify SQL directly.

Li st cats = sess.createCriteria(Cat.class)
.add(Expression.sql ("lower({alias}.name) like lower(?)", "Fritz%, H bernate.STRI NG)
dist();

The{al i as} placeholder with be replaced by the row alias of the queried entity.

Hibernate 3.0a pha 101

Criteria Queries

12.3. Ordering the results

Y ou may order the results using or g. hi ber nat e. expr essi on. Or der .

List cats = sess.createCriteria(Cat.cl ass)
.add(Expression.like("nanme", "F%)
.addOrder(Order.asc("nane"))
.addOrder(Order.desc("age"))

. set MaxResul t s(50)
ist();

12.4. Associations

Y ou may easily specify constraints upon related entities by navigating associationsusing creat eCriteri a() .

List cats = sess.createCriteria(Cat.class)
.add(Expression.like("name", "F%)
.createCriteria("kittens")

.add(Expression.like("nanme", "F%)
dist();

note that the second creat eCri teri a() returnsanew instance of Crit eri a, which refers to the elements of the

ki tt ens collection.
The following, alternate form is useful in certain circumstances.

Li st cats = sess.createCriteria(Cat.cl ass)
.createAlias("kittens", "kt")
.createAlias("mate", "nt")
.add(Expression. egProperty("kt.name", "nt.nane"))
dist();

(creat eAl i as() doesnot create anew instanceof Criteria.)

Note that the kittens collections held by the cat instances returned by the previous two queries are not pre-
filtered by the criterial If you wish to retrieve just the kittens that match the criteria, you must use r et ur n-

Maps() .

Li st cats = sess.createCriteria(Cat.cl ass)

.createCriteria("kittens", "kt")
.add(Expression.eq("nanme", "F%))

.returniaps()
dist();

Iterator iter = cats.iterator();

while (iter.hasNext()) {
Map map = (Map) iter.next();
Cat cat = (Cat) map.get(Criteria. ROOT_ALIAS);
Cat kitten = (Cat) nmap.get("kt");

12.5. Dynamic association fetching

Y ou may specify association fetching semantics at runtime using set Fet chMode() .

List cats = sess.createCriteria(Cat.class)
.add(Expression.like("name", "Fritz%))
. set Fet chMbde(" mat e", Fet chMbde. EAGER)

Hibernate 3.0a pha

102

Criteria Queries

. set Fet chMbde("ki ttens", FetchMde. EAGER)
dist();

This query will fetch both mat e and ki t t ens by outer join.

12.6. Example queries

The class or g. hi ber nat e. expr essi on. Exanpl e alows you to construct a query criterion from a given in-
stance.

Cat cat = new Cat();

cat.setSex('F');

cat . set Col or (Col or. BLACK) ;

List results = session.createCriteria(Cat.cl ass)
.add(Exanpl e.create(cat))
dist();

Version properties, identifiers and associations are ignored. By default, null valued properties are excluded.
Y ou can adjust how the Exanpl e is applied.

Exanpl e exanpl e = Exanpl e. creat e(cat)

. excl udeZer oes() /I excl ude zero val ued properties

.excl udeProperty("color") //exclude the property naned "col or"
.ignoreCase() /I perform case insensitive string conparisons
. enabl eLi ke(); /luse like for string conparisons

List results = session.createCriteria(Cat.class)
. add(exanpl e)
dist();

Y ou can even use examples to place criteria upon associated objects.

List results = session.createCriteria(Cat.cl ass)
.add(Exanpl e.create(cat))
.createCriteria("mte")

.add(Exanple.create(cat.getMate()))
dist();

Hibernate 3.0a pha 103

Chapter 13. Native SQL

You may also express queries in the native SQL dialect of your database. This is useful if you want to utilize
database specific features such as the CONNECT keyword in Oracle. This also allows for a cleaner migration
path from adirect SQL/JDBC based application to Hibernate.

Hibernate3 also supports native SQL statements for all create, update, delete, and load operations.

13.1. Creating a SQL based Query

SQL queries are exposed through the same Query interface, just like ordinary HQL queries. The only difference
isthe use of Sessi on. creat eSQLQuery() .

Query sql Query = sess.createSQLQuery("select {cat.*} fromcats {cat}", "cat", Cat.class);
sql Query. set MaxResul t s(50) ;
Li st cats = sql Query.list();

The three parameters provided to cr eat eSQLQuer y() are:

e the SQL query string
» atableaiasname
« the persistent class returned by the query

The alias name is used inside the sqgl string to refer to the properties of the mapped class (in this case cat). You
may retrieve multiple objects per row by supplying a st ri ng array of alias names and ad ass array of corres-
ponding classes.

13.2. Alias and property references

The{cat . *} notation used above is a shorthand for "all properties'. Y ou may even list the properties explicity,
but you must let Hibernate provide SQL column aliases for each property. The placeholders for these column
aliases are the property name qualified by the table dias. In the following example, we retrieve cat s from a dif-
ferent table (cat _I og) to the one declared in the mapping metadata. Notice that we may even use the property
aliasesin the where clause.

String sql = "select cat.originalld as {cat.id}, "
+ " cat.mateid as {cat.nmte}, cat.sex as {cat.sex}, "
+ " cat.weight*10 as {cat.weight}, cat.name as {cat.name}"
+ " fromcat_|og cat where {cat.mate} = :catld"

Li st | oggedCats = sess.createSQ.Query(sqgl, "cat", Cat.class)
.setLong("catld", catld)
dist();

Note: if you list each property explicitly, you must include all properties of the class and its subclasses!

13.3. Named SQL queries

Named SQL queries may be defined in the mapping document and called in exactly the same way as a named
HQL query.

Hibernate 3.0a pha 104

Native SQL

Li st people = sess. get NanedQuery(" mySqgl Query")
. set MaxResul t s(50)
dist();

<sql - query name="nySql Query">
<return alias="person" class="eg.Person"/>
SELECT {person}. NAME AS {person. nane},
{person}. AGE AS {person. age},
{person}. SEX AS {person. sex}
FROM PERSON { person} WHERE {person}. NAVE LI KE ' H ber %
</ sql - query>

13.4. Custom SQL for CUD

Hibernate3 can use custom SQL statements for create, update, and delete operations. The class and collection
persisters in Hibernate already contain a set of configuration time generated strings (insertsgl, deletesql, updat-
esql etc.). The mapping tags <sql -i nsert >, <sqgl - del et e>, and <sql - updat e> override these strings:

<cl ass nane="Person">
<id name="id">
<generator class="increment"/>
</id>
<property nane="nane" not-null="true"/>
<sql -i nsert > NSERT | NTO PERSON (NAVE, |D) VALUES (UPPER(?), ?)</sql-insert>
<sql - updat e>UPDATE PERSON SET NAME=UPPER(?) WHERE | D=7?</sql - updat e>
<sql - del et e>DELETE FROM PERSON WHERE | D=?</ sql - del et e>
</ cl ass>

The SQL isdirectly execute in your database, so you are free to use any dialect you like.
Stored procedures are support if the cal | abl e attributeis set:

<cl ass nane="Person">

<id name="id">

<generator class="increment"/>

</id>

<property nane="nane" not-null="true"/>

<sqgl -insert callable="true">{call createPerson (?, ?)}</sql-insert>

<sql -del ete callable="true">{? = call del etePerson (?)}</sql-delete>

<sqgl -update call abl e="true">{? = call updatePerson (?, ?)}</sql-update>
</ cl ass>

The stored procedures are in most cases (read: better do it than not) required to return the number of rows inser-
ted/updated/deleted, as Hibernate has some runtime checks for the success of the statement. Hibernate always
registers the first statement parameter as a numeric output parameter for the CUD operations:

CREATE OR REPLACE FUNCTI ON updat ePerson (uid I N NUMBER, unane | N VARCHAR2)
RETURN NUMBER | S
BEG N

updat e PERSON
set

NAVE = unane,
wher e

ID = uid;

return SQLYROWCOUNT;

END updat ePer son;

Hibernate 3.0a pha 105

Native SQL

13.5. Custom SQL for loading

Y ou may also declare your own SQL (or HQL) queries for entity loading:

<sql - query name="person">

<return alias="p" class="Person" |ock-node="upgrade"/>

SELECT NAME AS {p.nane}, ID AS {p.id} FROM PERSON WHERE | D=? FOR UPDATE
</ sql - query>

This is just a named query declaration, as discussed earlier. You may reference this named query in a class
mapping:
<cl ass name="Person" >

<id name="id">
<generator class="increnent"/>

</id>
<property nane="nane" not-null="true"/>
<l oader query-ref="person"/>

</ cl ass>

TODO: Document synchronized mapping element in named queries

Hibernate 3.0a pha 106

Chapter 14. Improving performance

14.1. Understanding Collection performance

We've dready spent quite some time talking about collections. In this section we will highlight a couple more
issues about how collections behave at runtime.

14.1.1. Taxonomy

Hibernate defines three basic kinds of collections;

» collections of values
¢ Oneto many associations
e many to many associations

This classification distinguishes the various table and foreign key relationships but does not tell us quite
everything we need to know about the relational model. To fully understand the relationa structure and per-
formance characteristics, we must also consider the structure of the primary key that is used by Hibernate to up-
date or delete collection rows. This suggests the following classification:

¢ indexed collections

e sets
e bags

All indexed collections (maps, lists, arrays) have a primary key consisting of the <key> and <i ndex> columns.
In this case collection updates are usually extremely efficient - the primary key may be efficiently indexed and
aparticular row may be efficiently located when Hibernate tries to update or delete it.

Sets have a primary key consisting of <key> and element columns. This may be less efficient for some types of
collection element, particularly composite elements or large text or binary fields; the database may not be able
to index a complex primary key as efficently. On the other hand, for one to many or many to many associ-
ations, particularly in the case of synthetic identifiers, it is likely to be just as efficient. (Side-note: if you want
SchemaExport to actually create the primary key of a <set> for you, you must declare al columns as not -
nul I ="true".)

<i dbag> mappings define a surrogate key, so they are always very efficient to update. In fact, they are the best
case.

Bags are the worst case. Since a bag permits duplicate element values and has no index column, no primary key
may be defined. Hibernate has no way of distinguishing between duplicate rows. Hibernate resolves this prob-
lem by completely removing (in a single DELETE) and recreating the collection whenever it changes. This might
be very inefficient.

Note that for a one-to-many association, the "primary key" may not be the physical primary key of the database
table - but even in this case, the above classification is still useful. (It still reflects how Hibernate "locates” indi-
vidual rows of the collection.)

Hibernate 3.0a pha 107

Improving performance

14.1.2. Lists, maps, idbags and sets are the most efficient collections to up-
date

From the discussion above, it should be clear that indexed collections and (usually) sets alow the most efficient
operation in terms of adding, removing and updating elements.

There is, arguably, one more advantage that indexed collections have over sets for many to many associations
or collections of values. Because of the structure of a Set, Hibernate doesn't ever UPDATE a row when an ele-
ment is "changed”. Changesto a set alwayswork via | NSERT and DELETE (of individual rows). Once again, this
consideration does not apply to one to many associations.

After observing that arrays cannot be lazy, we would conclude that lists, maps and idbags are the most perform-
ant (non-inverse) collection types, with sets not far behind. Sets are expected to be the most common kind of
collection in Hibernate applications. This is because the "set" semantics are most natural in the relational mod-
el.

However, in well-designed Hibernate domain models, we usually see that most collections are in fact one-
to-many associations with i nver se="t rue" . For these associations, the update is handled by the many-to-one
end of the association, and so considerations of collection update performance simply do not apply.

14.1.3. Bags and lists are the most efficient inverse collections

Just before you ditch bags forever, there is a particular case in which bags (and aso lists) are much more per-
formant than sets. For a collection with i nver se="true" (the standard bidirectiona one-to-many relationship
idiom, for example) we can add elements to a bag or list without needing to initialize (fetch) the bag elements!
Thisis because Col | ecti on. add() Or Col | ecti on. addAl | () must always return true for abag or Li st (unlike
a Set). This can make the following common code much faster.

Parent p = (Parent) sess.load(Parent.class, id);
Child ¢ = new Child();
c.setParent (p);
p.get Children().add(c); //no need to fetch the collection!
sess. flush();

14.1.4. One shot delete

Occasionally, deleting collection elements one by one can be extremely inefficient. Hibernate isn't completely
stupid, so it knows not to do that in the case of an newly-empty collection (if you called | i st . cl ear (), for ex-
ample). In this case, Hibernate will issue a single DELETE and we are done!

Suppose we add a single element to a collection of size twenty and then remove two elements. Hibernate will
iSsue one | NSERT statement and two DELETE statements (unless the collection is a bag). This is certainly desir-
able.

However, suppose that we remove eighteen elements, leaving two and then add thee new elements. There are
two possible ways to proceed

¢ delete eighteen rows one by one and then insert three rows
« remove the whole collection (in one SQL DELETE) and insert all five current elements (one by one)

Hibernate isn't smart enough to know that the second option is probably quicker in this case. (And it would
probably be undesirable for Hibernate to be that smart; such behaviour might confuse database triggers, etc.)

Hibernate 3.0a pha 108

Improving performance

Fortunately, you can force this behaviour (ie. the second strategy) at any time by discarding (ie. dereferencing)
the original collection and returning a newly instantiated collection with all the current elements. This can be
very useful and powerful from timeto time.

Of course, one-shot-del ete does not apply to collections mapped i nver se="t r ue".

We have already shown how you can use lazy initialization for persistent collections in the chapter about col-
lection mappings. A similar effect is achievable for ordinary object references, using CGLIB proxies. We have
also mentioned how Hibernate caches persistent objects at the level of a Sessi on. More aggressive caching
strategies may be configured upon a class-by-class basis.

In the next section, we show you how to use these features, which may be used to achieve much higher per-
formance, where necessary.

14.2. Proxies for Lazy Initialization

Hibernate implements lazy initializing proxies for persistent objects using runtime bytecode enhancement (via
the excellent CGLIB library).

The mapping file may declare an interface to use as the proxy interface for that class. By default, Hibernate
uses a subclass of the classitself. (The proxied class must implement a default constructor with at least package
visibility.)

There are some gotchas to be aware of when extending this approach to polymorphic classes, eg.

<cl ass nane="Cat" proxy="Cat">

</ subcl ass>
</ cl ass>

Firstly, instances of cat will never be castable to Donest i cCat , even if the underlying instance is an instance of
Donesti cCat .

Cat cat = (Cat) session.load(Cat.class, id); // instantiate a proxy (does not hit the db)
if (cat.isDonesticCat()) { /1 hit the db to initialize the proxy
DonesticCat dc = (DomesticCat) cat; /1 Error!

Secondly, it is possible to break proxy ==.

Cat cat = (Cat) session.load(Cat.class, id); [/ instantiate a Cat proxy
Donesti cCat dc =

(DonesticCat) session.|oad(DonesticCat.class, id); // required new DonesticCat proxy!
System out . printl n(cat==dc); /1 fal se

However, the situation is not quite as bad as it looks. Even though we now have two references to different
proxy objects, the underlying instance will still be the same object:

cat.setWeight(11.0); // hit the db to initialize the proxy
Systemout.println(dc.getWight()); // 11.0

Third, you may not use a CGLIB proxy for afi nal classor aclasswith any fi nal methods.

Hibernate 3.0a pha 109

Improving performance

Finaly, if your persistent object acquires any resources upon instantiation (eg. in initializers or default con-
structor), then those resources will also be acquired by the proxy. The proxy classis an actual subclass of the
persistent class.

These problems are al due to fundamental limitations in Java's single inheritence model. If you wish to avoid
these problems your persistent classes must each implement an interface that declares its business methods.
Y ou should specify these interfaces in the mapping file. eg.

<cl ass nane="Catl npl" proxy="Cat">
<subcl ass nane="DonesticCatlnpl" proxy="DonesticCat">

</ subcl ass>
</ cl ass>

where cat implementsthe interface | cat and Donesti cCat implements the interface | Donest i cCat . Then prox-
ies for instances of cat and Donest i cCat may be returned by | oad() oriterate(). (Notethat fi nd() does not
usually return proxies.)

Cat cat = (Cat) session.load(Catlnpl.class, catid);
Iterator iter = session.iterate("fromcat in class Catlnpl where cat.name="fritz'");
Cat fritz = (Cat) iter.next();

Relationships are also lazily initialized. This means you must declare any properties to be of type cat, not
Cat I npl .

Certain operations do not require proxy initialization

e equal s(), if the persistent class does not override equal s()
e hashCode(), if the persistent class does not override hashCode()
e Theidentifier getter method

Hibernate will detect persistent classes that override equal s() Of hashCode() .
Exceptions that occur while initializing a proxy are wrapped in aLazyl ni ti al i zat i onExcept i on.

Sometimes we need to ensure that a proxy or collection isinitialized before closing the Sessi on. Of course, we
can away force initialization by calling cat . get Sex() Of cat. getKittens().size(), for example. But that is
confusing to readers of the code and is not convenient for generic code. The static methods Hi ber n-
ate.initialize() and Hi bernate.islnitialized() provide the application with a convenient way of work-
ing with lazyily initialized collections or proxies. Hi bernat e. i ni ti al i ze(cat) will force the initialization of a
proxy, cat , aslong asits Sessi on isstill open. Hi bernate.initialize(cat.getKittens()) hasasimilar ef-
fect for the collection of kittens.

14.3. Using batch fetching

Hibernate can make efficient use of batch fetching, that is, Hibernate can load several uninitialized proxies if
one proxy is accessed. Batch fetching is an optimization for the lazy loading strategy. There are two ways you
can tune batch fetching: on the class and the collection level.

Batch fetching for classedentities is easier to understand. Imagine you have the following situation at runtime:
You have 25 cat instances loaded in a Sessi on, each Cat has a reference to its owner, a Per son. The Per son
class is mapped with a proxy, | azy="true". If you now iterate through al cats and call get Omer () on each,
Hibernate will by default execute 25 SELECT statements, to retrieve the proxied owners. Y ou can tune this beha-

Hibernate 3.0a pha 110

Improving performance

vior by specifying abat ch- si ze in the mapping of Per son:

<cl ass nanme="Person" batch-size="10">...</cl ass>

Hibernate will now execute only three queries, the pattern is 10, 10, 5. You can see that batch fetching is a
blind guess, as far as performance optimization goes, it depends on the number of unitilized proxiesin a partic-
ular Sessi on.

You may also enable batch fetching of collections. For example, if each Per son has a lazy collection of Cat s,
and 10 persons are currently loaded in the Sesssi on, iterating through all personswill generate 10 SELECTS, one
for every call to get cat s() . If you enable batch fetching for the cat s collection in the mapping of Per son, Hi-
bernate can pre-fetch collections:

<cl ass name="Per son" >
<set nane="cats" batch-size="3">

</ set >
</ cl ass>

With abat ch- si ze of 3, Hibernate will load 3, 3, 3, 1 collections in 4 SELECTS. Again, the value of the attribute
depends on the expected number of uninitialized collectionsin a particular Sessi on.

Batch fetching of collections is particularly useful if you have a nested tree of items, ie. the typical hill-
of-materials pattern.

14.4. Using lazy property fetching

Hibernate3 supports the lazy fetching of individual properties. This optimization technique is aso known as
fetch groups. Please note that this is mostly a marketing feature, as in practice, optimizing row reads is much
more important than optimization of column reads. However, only loading some properties of a class might be
useful in extreme cases, when legacy tables have hundreds of columns and the data model can not be improved.

To enable lazy property loading, set thel azy attribute on your particular property mappings:

<cl ass nane="Docunent" >
<id name="id">
<generator class="native"/>

</id>

<property nane="nanme" not-null="true" |ength="50"/>

<property nanme="summary" not-nul | ="true" |ength="200" |azy="true"/>

<property nane="text" not-null="true" |ength="2000" |azy="true"/>
</ cl ass>

Lazy property loading requires buildtime bytecode instrumentation! If your persistent classes are not enhanced,
Hibernate will silently ignore lazy property settings and fall back to immediate fetching.

For bytecode instrumentation, use the following Ant task:

<target nanme="instrunment" depends="conpile">
<t askdef nane="instrunment" classnanme="org. hi bernate.tool.instrunent.InstrunentTask">
<cl asspath path="${jar.path}"/>
<cl asspath path="${cl asses.dir}"/>
<cl asspath refid="lib.class.path"/>
</t askdef >

<i nstrunment verbose="true">
<fileset dir="${testclasses.dir}/org/hibernate/auction/ nodel">
<i ncl ude nane="*.cl ass"/>
</fileset>

Hibernate 3.0a pha 111

Improving performance

</i nstrunent >
</target>

A different (better?) way to avoid unnecessary column reads, at least for read-only transactonsis to use the pro-
jection features of HQL. This avoids the need for buildtime bytecode processing.

TODO: Document issues with lazy property loading

14.5. Outer join fetching

Any kind of lazy fetching is extremely vulnerable to N+1 selects problems. So usually, we choose lazy fetching
only as a "default" strategy, and override it for a particular transaction, using the HQL LEFT JO N FETCH
clause. This tells Hibernate to fetch the association in the first select, using an outer join. Inthecriteria AP,
you would use set Fet chMode(Fet chMode. EAGER) .

You can always force outer join association fetching in the mapping file, by setting out er-j oi n="true". We
don't recommend this setting, especialy not for collections, since it isincredibly rare to find an entity which is
always used when an associated entity is used, at least in a sufficiently large system.

A completely different way to avoid problems with N+1 selectsisto use the second-level cache.

14.6. The Second Level Cache

A Hibernate Sessi on isatransaction-level cache of persistent data. It is possible to configure a cluster or VM-
level (Sessi onFact or y-level) cache on a class-by-class and collection-by-collection basis. You may even plug
in a clustered cache. Be careful. Caches are never aware of changes made to the persistent store by another ap-
plication (though they may be configured to regularly expire cached data).

By default, Hibernate uses EHCache for WM-level caching. (JCS support is how deprecated and will be re-
moved in a future version of Hibernate.) Y ou may choose a different implementation by specifying the name of
a class that implements org. hibernate.cache. CacheProvider using the property hibern-
at e. cache. provi der _cl ass.

Table 14.1. Cache Providers

Cache Provider class Type Cluster Safe | Query Cache
Supported

Hashtable or g. hi ber nat e. cache. Hasht abl eCacheProv = memory yes

(not intended | i der

for produc-

tion use)

EHCache or g. hi ber nat e. cache. EhCachePr ovi der memory, disk yes

OSCache or g. hi ber nat e. cache. OSCachePr ovi der memory, disk yes

SwarmCache | or g. hi ber nat e. cache. Swar nCacheProvi der clustered (ip yes (clustered

multicast) invalidation)
JBoss org. hi bernat e. cache. TreeCacheProvi der clustered (ip | yes yes (clock
TreeCache multicast), (replication) syncreq.)
transactional

Hibernate 3.0a pha 112

Improving performance

14.6.1. Cache mappings

The <cache> element of aclass or collection mapping has the following form:

<cache
usage="transactional |[read-wite|nonstrict-read-wite|read-only" (1)
/>

(1) usage specifiesthe caching strategy: t ransactional ,read-wite, nonstrict-read-wite Of read-only

Alternatively (preferrably?), you may specify <cl ass- cache> and <col | ecti on- cache> elements in hi ber n-
ate.cfg. xnm .

The usage attribute specifies a cache concurrency strategy.

14.6.2. Strategy: read only

If your application needs to read but never modify instances of a persistent class, aread- onl y cache may be
used. Thisisthe simplest and best performing strategy. Its even perfectly safe for usein acluster.

<cl ass nane="eg. | nmut abl e" nut abl e="f al se" >
<cache usage="read-only"/>

</ cl ass>

14.6.3. Strategy: read/write

If the application needs to update data, aread-wite cache might be appropriate. This cache strategy should
never be used if serializable transaction isolation level is required. If the cache is used in a JTA environment,
you must specify the property hi ber nat e. t r ansact i on. manager _| ookup_cl ass, haming a strategy for obtain-
ing the JTA Transact i onManager . In other environments, you should ensure that the transaction is completed
when Sessi on. cl ose() Or Sessi on. di sconnect () is called. If you wish to use this strategy in a cluster, you
should ensure that the underlying cache implementation supports locking. The built-in cache providers do not.

<cl ass nane="eg.Cat" >
<cache usage="read-wite"/>

<set name="kittens" ... >
<cache usage="read-write"/>

</ set >
</ cl ass>

14.6.4. Strategy: nonstrict read/write

If the application only occasionally needs to update data (ie. if it is extremey unlikely that two transactions
would try to update the same item simultaneously) and strict transaction isolation is not required, anonstri ct -
read-write cache might be appropriate. If the cache is used in a JTA environment, you must specify hi ber n-
ate.transacti on. manager _| ookup_cl ass. In other environments, you should ensure that the transaction is
completed when Sessi on. cl ose() Or Sessi on. di sconnect () iscalled.

14.6.5. Strategy: transactional

The transactional cache strategy provides support for fully transactional cache providers such as JBoss

Hibernate 3.0a pha 113

Improving performance

TreeCache. Such a cache may only be used in a JTA environment and you must specify hibern-
ate. transacti on. manager _| ookup_cl ass.

None of the cache providers support al of the cache concurrency strategies. The following table shows which
providers are compatible with which concurrency strategies.

Table 14.2. Cache Concurrency Strategy Support

Cache read-only nonstrict- read-write transactional
read-write

Hashtable (notin- | yes yes yes

tended for produc-

tion use)

EHCache yes yes yes

OSCache yes yes yes

SwarmCache yes yes

JBoss TreeCache yes yes

14.7. Managing the sessi on Cache

Whenever you pass an object to save(), updat e() Or saveOr Updat e() and whenever you retrieve an object us-
ing ! oad(),get(),list(),iterate() Orscroll (), that object isadded to theinternal cache of the Sessi on.

When f1 ush() is subsequently called, the state of that object will be synchronized with the database. If you do
not want this synchronization to occur or if you are processing a huge number of objects and need to manage
memory efficiently, theevi ct () method may be used to remove the object and its collections from the cache.

Iterator cats = sess.iterate("fromeg.Cat as cat"); //a huge result set
while (cats.hasNext()) {

Cat cat = (Cat) iter.next();

doSonet hi ngW t hACat (cat) ;

sess.evict(cat);

}

Hibernate will evict associated entities automatically if the association is mapped with cascade="al I * Or cas-
cade="al | - del et e- or phan".

The sessi on aso providesacont ai ns() method to determine if an instance belongs to the session cache.
To completely evict al objects from the session cache, call Sessi on. cl ear ()

For the second-level cache, there are methods defined on Sessi onFact ory for evicting the cached state of an
instance, entire class, collection instance or entire collection role,

14.8. The Query Cache

Query result sets may also be cached. Thisisonly useful for queries that are run frequently with the same para-
meters. To use the query cache you must first enable it by setting the property hi bern-
ate. cache. use_query_cache=t rue. This causes the creation of two cache regions - one holding cached query

Hibernate 3.0a pha 114

Improving performance

result sets (or g. hi ber nat e. cache. Quer yCache), the other holding timestamps of most recent updates to quer-
ied tables (or g. hi ber nat e. cache. Updat eTi mest anpsCache). Note that the query cache does not cache the state
of any entities in the result set; it caches only identifier values and results of value type. So the query cache is
usually used in conjunction with the second-level cache.

Most queries do not benefit from caching, so by default queries are not cached. To enable caching, call
Query. set Cacheabl e(true). This call alows the query to look for existing cache results or add its results to
the cache when it is executed.

If you require fine-grained control over query cache expiration policies, you may specify a named cache region
for aparticular query by calling Query. set CacheRegi on() .

Li st bl ogs = sess.createQuery("from Bl og bl og where bl og. bl ogger = : bl ogger")
.setEntity("bl ogger", bl ogger)
. set MaxResul t s(15)
. set Cacheabl e(true)
. set CacheRegi on("front pages")
dist();

If the query should force a refresh of its query cache region, you may call Query. set For ceCacheRef resh() to
true. Thisis particularly useful in cases where underlying data may have been updated via a seperate process
(i.e., not modified through Hibernate) and allows the application to selectively refresh the query cache regions
based on its knowledge of those events. Thisis an alternative to eviction of a query cache region. If you need
fine-grained refresh control for many queries, use this function instead of a new region for each query.

Hibernate 3.0a pha 115

Chapter 15. Toolset Guide

Roundtrip engineering with Hibernate is possible using a set of commandline tools maintained as part of the
Hibernate project, along with Hibernate support built into XDoclet, Middlegen and AndroMDA.

The Hibernate main package comes bundled with the most important tool (it can even be used from "inside"
Hibernate on-the-fly):

» DDL schemageneration from a mapping file (aka SchemaExpor t , hbr2ddl)

Other tools directly provided by the Hibernate project are delivered with a separate package, Hibernate Exten-
sions. This package includes tools for the following tasks:

e Javasource generation from a mapping file (aka CodeGener at or , hbr2j ava)

» mapping file generation from compiled Java classes or from Java source with XDoclet markup (aka Map-
Gener at or , ¢l ass2hbm)

There's actually another utitily living in Hibernate Extensions: ddl 2hbm It is considered deprecated and will no
longer be maintained, Middlegen does a better job for the same task.

Third party tools with Hibernate support are:

» Middlegen (mapping file generation from an existing database schema)

e AndroMDA (MDA (Mode-Driven Architecture) approach generating code for persistent classes from
UML diagrams and their XML/XMI representation)

These 3rd party tools are not documented in this reference. Please refer to the Hibernate website for up-to-date
information (a snapshot of the site isincluded in the Hibernate main package).

15.1. Schema Generation

DDL may be generated from your mapping files by a command line utility. A batch file is located in the hi -
ber nat e- x. x. x/ bi n directory of the core Hibernate package.

The generated schema include referential integrity constraints (primary and foreign keys) for entity and collec-
tion tables. Tables and sequences are also created for mapped identifier generators.

Y ou must specify a SQL Di al ect viathehi ber nat e. di al ect property when using thistool.

15.1.1. Customizing the schema

Many Hibernate mapping elements define an optional attribute named | engt h. You may set the length of a
column with this attribute. (Or, for numeric/decimal data types, the precision.)

Some tags also accept a not-nul | attribute (for generating a NOT NULL constraint on table columns) and a
uni que attribute (for generating UNI QUE constraint on table columns).

Some tags accept an i ndex attribute for specifying the name of an index for that column. A uni que- key attrib-
ute can be used to group columns in a single unit key constraint. Currently, the specified value of the uni que-

Hibernate 3.0a pha 116

Toolset Guide

key attribute is not used to name the constraint, only to group the columnsin the mapping file.

Examples:
<property nane="foo" type="string" |ength="64" not-null="true"/>
<many-t o-one nane="bar" foreign-key="fk _foo_bar" not-null="true"/>
<el ement col um="seri al _nunber" type="long" not-null="true" uni que="true"/>

Alternatively, these elements also accept a child <col urm> element. Thisis particularly useful for multi-column

types:

<property nane="foo" type="string">
<col um nane="foo" |ength="64" not-null="true" sql-type="text"/>

</ property>

<property nane="bar" type="ny.custontypes. Ml ti Col umType"/>

<col um nane="fee" not-null="true"
<col um nane="fi" not-null="true"
<col um nane="fo" not-null="true"

</ property>

i ndex="bar i dx"/>
i ndex="bar _i dx"/>
i ndex="bar i dx"/>

Thesql - t ype attribute allows the user to override the default mapping of Hibernate type to SQL datatype.

The check attribute allows you to specify a check constraint.

<property nane="foo" type="integer">

<col um nane="f oo"

</ property>

<cl ass nane="Foo"

<property nane="bar" type="float"/>

</ cl ass>

Table 15.1. Summary

t abl e="f oos"

check="foo > 10"/>

check="bar < 100.0">

Attribute
 ength
not - nul
uni que

i ndex

uni que- key

Values
number
true|fal se
true|fal se
i ndex_nare

uni que_key_nane

I nterpretation

column length/decimal precision

specfies that the column should be non-nullable
specifies that the column should have a unique constraint
specifies the name of a (multi-column) index

specifies the name of a multi-column unique constraint

f orei gn- key forei gn_key_name specifies the name of the foreign key constraint generated
for an association, use it on <one-to-one>, <many-to-one>,
<key>, and <many-to-many> mapping elements. Note that
i nverse="true" sideswill not be considered by SchenmaEx-
port.

sqgl -type col urm_t ype overrides the default column type (attribute of <col urm>
element only)

check SQL expression create an SQL check constraint on either column or table

Hibernate 3.0a pha

117

Toolset Guide

15.1.2. Running the tool

The schemaExpor t tool writesa DDL script to standard out and/or executes the DDL statements.

java -cp hibernate _classpathsor g. hi ber nat e. t ool . hbnddl . SchemaExport options mapping_files

Table 15.2. SchemaExport Command Line Options

Option Description

--qui et don't output the script to stdout

--drop only drop the tables

--text don't export to the database

- - out put =ny_schema. ddl output the ddl script to afile

--confi g=hi bernate. cf g. xni read Hibernate configuration from an XML file
--properties=hi bernate. properties read database properties from afile

--for mat format the generated SQL nicely in the script
--delimter=x set an end of line delimiter for the script

Y ou may even embed SchemaExport in your application:

Configuration cfg =;
new SchemaExport(cfg).create(false, true);

15.1.3. Properties

Database properties may be specified

e assystem properties with - D<property>
e inhibernate. properties
* inanamed propertiesfile with - - properti es

The needed properties are:

Table 15.3. SchemaExport Connection Properties

Property Name Description

hi ber nat e. connect i on. dri ver _cl ass jdbc driver class
hi ber nat e. connect i on. url| jdbc url

hi ber nat e. connect i on. user nane database user

hi ber nat e. connect i on. password user password
hi ber nat e. di al ect dialect

Hibernate 3.0a pha 118

Toolset Guide

15.1.4. Using Ant

Y ou can call SchemaExport from your Ant build script:

<target nane="schenmaexport">
<t askdef nane="schenmaexport™"
cl assname="or g. hi ber nat e. t ool . hbnRddl . SchemaExport Task"
cl asspat href ="cl ass. pat h"/>

<schenmaexport
properties="hi bernate. properties"
qui et =" no"
text="no"
dr op="no"
delimter=";"
out put =" schema- export.sql ">
<fileset dir="src">

<i ncl ude nanme="**/*_hbm xm "/ >

</fileset>

</ schemaexport >

</target>

15.1.5. Incremental schema updates

The schemaUpdat e tool will update an existing schema with "incremental” changes. Note that SchemaUpdat e
depends heavily upon the JDBC metadata API, so it will not work with all JIDBC drivers.

java -cp hibernate_classpathsor g. hi ber nat e. t ool . hbnddl . SchemaUpdat e options mapping_files

Table 15.4. schemauUpdat e Command L ine Options

Option Description
- - qui et don't output the script to stdout
--properties=hi bernate. properties read database properties from afile

Y ou may embed SchemaUpdat e in your application:

Configuration cfg =;
new SchemaUpdat e(cf g) . execut e(fal se);

15.1.6. Using Ant for incremental schema updates

You can call schemaUpdat e from the Ant script:

<t arget nane="schenaupdate">
<t askdef nane="schenaupdate"
cl assnanme="or g. hi ber nat e. t ool . hbn2dd| . SchemaUpdat eTask"
cl asspat href ="cl ass. path"/ >

<schemaupdat e
properties="hi bernate. properties"
qui et ="no" >
<fileset dir="src">

<i ncl ude nane="**/*_hbm xm "/ >

</fileset>
</ schemaupdat e>
</target>

Hibernate 3.0a pha 119

Toolset Guide

15.2. Code Generation

The Hibernate code generator may be used to generate skeletal Java implementation classes from a Hibernate
mapping file. Thistooal isincluded in the Hibernate Extensions package (a seperate downl oad).

hbn2j ava parses the mapping files and generates fully working Java source files from these. Thus with
hbnej ava one could "just" provide the . hbmfiles, and then don't worry about hand-writing/coding the Java files.

java -cp hibernate classpathsor g. hi ber nat e. t ool . hbn2j ava. CodeGener at or options mapping_files

Table 15.5. Code Generator Command Line Options

Option Description
- - out put =output_dir root directory for generated code
--confi g=config_file optional file for configuring hbm2java

15.2.1. The config file (optional)

The config file provides for a way to specify multiple "renderers’ for the source code and to declare <net a> at-
tributes that is "global" in scope. See more about thisin the <net a> attribute section.

<codegen>
<meta attribute="inpl erent s">codegen. t est.| Audit abl e</ net a>
<generate renderer="org. hi bernate.tool.hbnj ava. Basi cRenderer"/ >
<generate
package="aut of i nders. onl y"
suf fi x="Fi nder"
renderer="org. hi bernate. t ool . hbn2j ava. Fi nder Renderer"/>
</ codegen>

This config file declares a global meta attribute "implements’ and specify two renderers, the default one
(BasicRenderer) and arenderer that generates Finder's (See morein "Basic Finder generation” below).

The second renderer is provided with a package and suffix attribute.

The package attribute specifies that the generated source files from this renderer should be placed here instead
of the package scope specified in the . hbmfiles.

The suffix attribute specifies the suffix for generated files. E.g. here afile named Foo. j ava would be FooFi nd-
er.java instead.

It is dso possible to send down arbitrary parameters to the renders by adding <params attributes to the
<gener at e> €lements.

hbm2java currently has support for one such parameter, namely gener at e- concr et e- enpt y- cl asses which in-
forms the BasicRenderer to only generate empty concrete classes that extends a base class for al your classes.
The following config.xml example illustrate this feature

<codegen>
<generate prefix="Base" renderer="org. hi bernate.tool.hbn2java. Basi cRenderer"/ >
<generate renderer="org. hi bernate.tool.hbn2j ava. Basi cRenderer">
<par am nane="gener at e- concr et e- enpt y- cl asses" >t r ue</ par anr
<par am nane="basecl| ass- pr ef i x" >Base</ par an>

Hibernate 3.0a pha 120

Toolset Guide

</ gener at e>
</ codegen>

Notice that this config.xml configure 2 (two) renderers. One that generates the Base classes, and a second one
that just generates empty concrete classes.

15.2.2. The net a attribute

The <net a> tag is a simple way of annotating the hbm xmi with information, so tools have a natural place to
store/read information that is not directly related to the Hibernate core.

You can use the <nmet a> tag to tell hbn2j ava to only generate "protected” setters, have classes always imple-
ment a certain set of interfaces or even have them extend a certain base class and even more.

The following example:

<cl ass name="Person">
<meta attribute="cl ass-description">
Javadoc for the Person class
@wut hor Frodo
</ met a>
<meta attribute="inpl erents" >l Audi t abl e</ met a>
<id name="id" type="|ong">
<meta attribute="scope-set">protected</neta>
<generator class="increment"/>
</id>
<property nanme="nane" type="string">
<neta attribute="fiel d-description">The nanme of the person</neta>
</ property>
</cl ass>

will produce something like the following (code shortened for better understanding). Notice the Javadoc com-
ment and the protected set methods:

/1 default package

import java.io.Serializable;

i mport org.apache. commons. | ang. bui | der. Equal sBui | der

i mport org. apache. conmons. | ang. bui | der. HashCodeBui | der
i mport org.apache. conmons. | ang. bui | der. ToSt ri ngBui | der

/**

t Javadoc for the Person class
k @ut hor Frodo

*

=

public class Person inplenents Serializable, |Auditable {

/** identifier field */
public Long id;

[** nullable persistent field */
public String nane;

/** full constructor */
public Person(java.lang. String nane) {
thi s. nane = nane;

}

/** default constructor */
public Person() {

}

public java.lang.Long getld() {

Hibernate 3.0a pha 121

Toolset Guide

return this.id;

}

protected void setld(java.lang.Long id) {
this.id =id;

}

/**

* The nanme of the person

*/

public java.lang. String get Name() ({
return this. nane;

}

public void setNane(java.lang. String name) {
thi s. nane = nane;

}

Table 15.6. Supported meta tags

Attribute
cl ass-description

field-description

Description
inserted into the javadoc for classes

inserted into the javadoc for fields/properties

interface If true an interface is generated instead of an class.
i mpl ement s interface the class should implement
ext ends class the class should extend (ignored for subclasses)

gener at ed- cl ass
scope-cl ass
scope- set

scope- get
scope-field
use-in-tostring
i mpl erent - equal s

use-in-equal s

overrule the name of the actual class generated

scope for class

scope for setter method

scope for getter method

scope for actual field

include this property inthet oSt ri ng()

include aequal s() and hashCode() method in this class.

include this property in the equal s() and hashCode() meth-
od.

bound

add propertyChangeL istener support for a property

constrai ned

bound + vetoChangeL istener support for a property

gen- property

property will not be generated if false (use with care)

property-type

cl ass-code
extra-inmport

fi nder - net hod

Overrides the default type of property. Use this with any tag's
to specify the concrete type instead of just Object.

Extra code that will inserted at the end of the class
Extraimport that will inserted at the end of all other imports

see "Basic finder generator" below

Hibernate 3.0a pha

122

Toolset Guide

Attribute Description

sessi on- net hod see "Basic finder generator” below

Attributes declared viathe <net a> tag are per default "inherited” inside an hbm xni file.

What does that mean? It means that if you e.g want to have all your classes implement | Audi t abl e then you
just add an <nmeta attribute="i npl enent s" >l Audi t abl e</ met a> in the top of the hbom xni file, just after
<hi ber nat e- mappi ng>. Now all classes defined in that hbm xni file will implement | Audi t abl e! (Except if a
class aso has an "implements' meta attribute, because local specified meta tags always overrules/replaces any
inherited meta tags).

Note: This applies to all <net a>-tags. Thus it can also e.g. be used to specify that all fields should be declare
protected, instead of the default private. This is done by adding <nmeta attrib-
ut e="scope-fiel d">prot ect ed</ net a> at e.g. just under the <cl ass> tag and all fields of that class will be
protected.

To avoid having a <met a>-tag inherited then you can simply specify i nherit="fal se" for the attribute, e.g.
<meta attribute="scope-class" inherit="false">public abstract</meta> will restrict the "class-scope"
to the current class, not the subclasses.

15.2.3. Basic finder generator

It is now possible to have hbnej ava generate basic finders for Hibernate properties. This requires two thingsin
thehbm xm files.

The first is an indication of which fields you want to generate finders for. Y ou indicate that with a meta block
inside a property tag such as:

<property nanme="nane" col um="nane" type="string">
<neta attribute="finder-nmethod">findByNane</neta>
</ property>

The finder method name will be the text enclosed in the meta tags.
The second isto create a config file for hbm2java of the format:

<codegen>

<generate renderer="org. hi bernate.tool.hbnj ava. Basi cRenderer"/ >

<generate suffix="Finder" renderer="org. hi bernate.tool.hbn?j ava. Fi nder Renderer"/ >
</ codegen>

And then use the param to hbn2j ava - - confi g=xxx. xmi wherexxx. xnl isthe config file you just created.
An optional parameter is metatag at the classlevel of the format:

<meta attribute="sessi on-net hod">
com what ever . Sessi onTabl e. get Sessi onTabl e() . get Sessi on() ;
</ met a>

Which would be the way in which you get sessions if you use the Thread Local Session pattern (documented in
the Design Patterns area of the Hibernate website).

15.2.4. Velocity based renderer/generator

Hibernate 3.0a pha 123

Toolset Guide

It is now possible to use velocity as an alternative rendering mechanism. The follwing config.xml shows how to
configure hbm2javato use its velocity renderer.

<codegen>

<gener at e renderer="org. hi bernate. t ool . hbn2j ava. Vel oci t yRenderer" >
<par am nanme="t enpl at e" >poj 0. vnx/ par an>

</ gener at e>

</ codegen>

The parameter named t enpl at e iS a resource path to the velocity macro file you want to use. This file must be
available via the classpath for hbm2java. Thus remember to add the directory where pojo.vm islocated to your
ant task or shell script. (The default location is. / t ool s/ src/ vel ocity)

Be aware that the current poj o. vm generates only the most basic parts of the java beans. It is not as complete
and feature rich as the default renderer - primarily alot of the net a tags are not supported.

15.3. Mapping File Generation

A skeletal mapping file may be generated from compiled persistent classes using a command line utility called
MapGener at or . This utility is part of the Hibernate Extensions package.

The Hibernate mapping generator provides a mechanism to produce mappings from compiled classes. It uses
Java reflection to find properties and uses heuristics to guess an appropriate mapping from the property type.
The generated mapping is intended to be a starting point only. Thereis no way to produce a full Hibernate map-
ping without extra input from the user. However, the tool does take away some of the repetitive "grunt" work
involved in producing a mapping.

Classes are added to the mapping one at atime. The tool will reject classes that it judges are are not Hibernate
persistable.

To be Hibernate persistable a class

e must not be a primitive type

e must not be an array

¢ must not be an interface

e must not be anested class

e must have a default (zero argument) constructor.

Note that interfaces and nested classes actually are persistable by Hibernate, but this would not usually be in-
tended by the user.

MapGener at or Will climb the superclass chain of all added classes attempting to add as many Hibernate persist-
able superclasses as possible to the same database table. The search stops as soon as a property is found that has
aname appearing on alist of candidate UID names.

The default list of candidate UID property namesis: ui d, Ul D, i d, | D, key, KEY, pk, PK.

Properties are discovered when there are two methods in the class, a setter and a getter, where the type of the
setter's single argument is the same as the return type of the zero argument getter, and the setter returns voi d.
Furthermore, the setter's name must start with the string set and either the getter's name starts with get or the
getter's name starts with i s and the type of the property is boolean. In either case, the remainder of their names
must match. This matching portion is the name of the property, except that the initial character of the property
name is made lower case if the second letter islower case.

Hibernate 3.0a pha 124

Toolset Guide

The rules for determining the database type of each property are asfollows:

1. If theJavatypeisHi bernat e. basi c() , then the property is asimple column of that type.

For hi ber nat e. t ype. Type custom types asimple column is used as well.

3. If the property type is an array, then a Hibernate array is used, and MapGener at or attempts to reflect on the
array element type.

4. If the property hastypejava. util.List,java.util.Map, Of java. util. Set, then the corresponding Hi-
bernate types are used, but MapGener at or cannot further process the insides of these types.

5. If the property's type is any other class, MapGener at or defers the decision on the database representation
until all classes have been processed. At this point, if the class was discovered through the superclass
search described above, then the property is an many- t o- one association. If the class has any properties,
thenitisaconponent . Otherwiseit is serializable, or not persistable.

N

15.3.1. Running the tool

The tool writes XML mappings to standard out and/or to afile.
When invoking the tool you must place your compiled classes on the classpath.

java -cp hibernate_and your_class classpaths or g. hi ber nat e. t ool . ¢l ass2hbm MapGener at or options and
classnames

There are two modes of operation: command line or interactive.

The interactive mode is selected by providing the single command line argument --i nteract. This mode
provides a prompt response console. Using it you can set the UID property name for each class using the
ui d=xXxx command where xxx is the UID property name. Other command alternatives are simply a fully quali-
fied class name, or the command done which emits the XML and terminates.

In command line mode the arguments are the options below interspersed with fully qualified class names of the
classes to be processed. Most of the options are meant to be used multiple times; each use affects subsequently
added classes.

Table 15.7. MapGenerator Command Line Options

Option Description

--qui et don't output the O-R Mapping to stdout

--set Ul D=ui d set the list of candidate UIDs to the singleton uid

--addUl D=ui d add uid to the front of the list of candidate UIDs

- - sel ect =mode mode use select mode mode(e.g., distinct or all) for subsequently added
classes

--dept h=<smal | -i nt > limit the depth of component data recursion for subsequently added
classes

- - out put =ny_mappi ng. xm output the O-R Mapping to afile

full.class.Name add the class to the mapping

- - abst ract =full.class.Name see below

Hibernate 3.0a pha 125

Toolset Guide

The abstract switch directs the map generator tool to ignore specific super classes so that classes with common
inheritance are not mapped to one large table. For instance, consider these class hierarchies:

Ani mal - - >Mammal - - >Hurman
Ani mal - - >Manmal - - >Mar supi al - - >Kangar oo

If the - - abst ract switch is not used, all classes will be mapped as subclasses of Ani mal , resulting in one large
table containing all the properties of all the classes plus a discriminator column to indicate which subclassis ac-
tually stored. If Marmal is marked as abst ract , Human and Mar supi al will be mapped to separate <cl ass> de-
clarations and stored in separate tables. Kangar oo Will still be a subclass of Mar supi al unless Mar supi al isaso
marked asabst ract .

Hibernate 3.0a pha 126

Chapter 16. Example: Parent/Child

One of the very first things that new users try to do with Hibernate isto model a parent / child type relationship.
There are two different approaches to this. For various reasons the most convenient approach, especially for
new users, isto model both Par ent and chi | d as entity classes with a <one- t o- many> association from Par ent

to ¢hi | d. (The alternative approach is to declare the chi | d as a <conposi t e- el enent >.) Now, it turns out that
default semantics of a one to many association (in Hibernate) are much less close to the usual semantics of a
parent / child relationship than those of a composite element mapping. We will explain how to use a bidirec-
tional one to many association with cascades to model a parent / child relationship efficiently and elegantly. It's
not at all difficult!

16.1. A note about collections

Hibernate collections are considered to be alogical part of their owning entity; never of the contained entities.
Thisisacrucia distinction! It has the following consequences.

¢ When we remove / add an object from / to a collection, the version number of the collection owner isincre-
mented.

« If an object that was removed from a collection is an instance of a value type (eg, a composite el ement), that
object will cease to be persistent and its state will be completely removed from the database. Likewise,
adding a value type instance to the collection will cause its state to be immediately persistent.

e On the other hand, if an entity is removed from a collection (a one-to-many or many-to-many association),
it will not be deleted, by default. This behaviour is completely consistent - a change to the internal state of
another entity should not cause the associated entity to vanish! Likewise, adding an entity to a collection
does not cause that entity to become persistent, by default.

Instead, the default behaviour is that adding an entity to a collection merely creates a link between the two en-
tities, while removing it removes the link. This is very appropriate for al sorts of cases. Where it is not appro-
priate at all is the case of a parent / child relationship, where the life of the child is bound to the lifecycle of the
parent.

16.2. Bidirectional one-to-many

Suppose we start with asimple <one- t o- many> association from Par ent to Chi | d.

<set nanme="children">
<key col um="parent _id"/>
<one-to-many class="Child"/>
</set>

If we were to execute the following code

Parent p = ;

Child ¢ = new Child();
p. get Chi l dren().add(c);
sessi on. save(c);
session. flush();

Hibernate would issue two SQL statements:

Hibernate 3.0a pha 127

Example: Parent/Child

e an| NSERT to create the record for ¢

* an UPDATE to create thelink fromp toc

Thisisnot only inefficient, but also violates any NOT NULL constraint on the par ent _i d column.

The underlying cause is that the link (the foreign key par ent _i d) from p to c is not considered part of the state
of the chi | d object and is therefore not created in the | NSERT. So the solution is to make the link part of the

Chi | d mapping.

<many-t o-one nane="parent" col um="parent _id" not-null="true"/>

(We aso need to add the par ent property to the chi | d class.)

Now that the cni | d entity is managing the state of the link, we tell the collection not to update the link. We use

thei nver se attribute.

<set nane="children" inverse="true">
<key col um="parent _id"/>
<one-to-many class="Child"/>

</ set>

The following code would be used to add anew chi I d

Parent p = (Parent) session.|oad(Parent.class, pid);
Child ¢ = new Child();

c.setParent (p);

p. get Chi l dren().add(c);

sessi on. save(c);

session. flush();

And now, only one SQL 1 NSERT would be issued!
To tighten things up a bit, we could create an addchi | d() method of Par ent .

public void addChild(Child c) {
c.setParent (this);
chil dren. add(c);

Now, the code to add achi | d looks like

Parent p = (Parent) session.|oad(Parent.class, pid);
Child ¢ = new Child();

p. addChi I d(c);

sessi on. save(c);

session. flush();

16.3. Cascading lifecycle

The explicit call to save() isstill annoying. We will address this by using cascades.

<set nane="children" inverse="true" cascade="all">
<key col um="parent _id"/>
<one-to-many class="Child"/>

</ set >

Hibernate 3.0a pha

128

Example: Parent/Child

This simplifies the code above to

Parent p = (Parent) session.|oad(Parent.class, pid);
Child ¢ = new Child();

p. addChi I d(c);

session. flush();

Similarly, we don't need to iterate over the children when saving or deleting a Par ent . The following removes p
and all its children from the database.

Parent p = (Parent) session.|oad(Parent.class, pid);
sessi on. del ete(p);
session. flush();

However, this code

Parent p = (Parent) session.|oad(Parent.class, pid);
Child ¢ = (Child) p.getChildren().iterator().next();
p. get Chi l dren().renove(c);

c.setParent(null);

session. flush();

will not remove ¢ from the database; it will ony remove the link to p (and cause a NOT NULL constraint viola-
tion, in this case). Y ou need to explicitly del et e() the cni | d.

Parent p = (Parent) session.|oad(Parent.class, pid);
Child ¢ = (Child) p.getChildren().iterator().next();
p. get Chil dren().renove(c);

session. del ete(c);

session. flush();

Now, in our case, achi |l d can't really exist without its parent. So if we remove a chi | d from the collection, we
really do want it to be deleted. For this, we must use cascade="al | - del et e- or phan" .

<set name="children" inverse="true" cascade="all -del et e-orphan">
<key col um="parent _id"/>
<one-to-nmany class="Child"/>

</set>

Note: even though the collection mapping specifiesi nverse="t rue", cascades are still processed by iterating
the collection elements. So if you require that an object be saved, deleted or updated by cascade, you must add
it to the collection. It is not enough to simply call set Parent ().

16.4. Using cascading updat e()

Suppose we loaded up a Par ent in one Sessi on, Made some changes in a Ul action and wish to persist these
changesin anew Session (by calling updat e()). The Par ent will contain a collection of childen and, since cas-
cading update is enabled, Hibernate needs to know which children are newly instantiated and which represent
existing rows in the database. L ets assume that both Par ent and chi | d have (synthetic) identifier properties of
typej ava. | ang. Long. Hibernate will use the identifier property value to determine which of the children are
new. (Y ou may aso use the version or timestamp property, see Section 9.4.2, “Updating detached objects’.)

The unsaved- val ue attribute is used to specify the identifier value of a newly instantiated instance. unsaved-
val ue defaultsto "null”, which is perfect for aLong identifier type. If we would have used a primitive identitifi-
er property, we would need to specify

<id name="id" type="long" unsaved-val ue="0">

Hibernate 3.0a pha 129

Example: Parent/Child

for the cnhi | d mapping. (There is also an unsaved- val ue attribute for version and timestamp property map-
pings.)

The following code will update par ent and chi I d and insert newchi | d.

[/ parent and child were both | oaded in a previous session
parent . addChi | d(chil d);

Child newChild = new Child();

par ent . addChi | d(newChi | d) ;

sessi on. updat e(parent);

session. flush();

Well, thats all very well for the case of a generated identifier, but what about assigned identifiers and composite
identifiers? This is more difficult, since unsaved- val ue can't distinguish between a newly instantiated object
(with an identifier assigned by the user) and an object loaded in a previous session. In these cases, you will
probably need to give Hibernate a hint; either

¢ define unsaved-val ue="nul | " Or unsaved-val ue="negative" ON @ <versi on> Of <ti mestanp> property
mapping for the class.

e set unsaved-val ue="none" and explicitly save() newly instantiated children before calling up-
dat e(parent)

e set unsaved-val ue="any" and explicitly update() previously persistent children before calling up-
dat e(parent)

none isthe default unsaved- val ue for assigned and composite identifiers.

Thereis one further possibility. Thereisanew I nt er cept or method named i sunsaved() which lets the applic-
ation implement its own strategy for distinguishing newly instantiated objects. For example, you could define a
base class for your persistent classes.

public class Persistent {
private bool ean _saved = fal se;
public void onSave() ({
_saved=true;
}
public void onLoad() ({
_saved=true;

publ i c bool ean isSaved() {
return _saved;

}

(The saved property is non-persistent.) Now implement i sunsaved(), adong with onLoad() and onSave() as
follows.

publ i c Bool ean i sUnsaved(Cbject entity) {
if (entity instanceof Persistent) {
return new Bool ean(!((Persistent) entity).isSaved());

}
el se {

return nul | ;
}

}

publ i ¢ bool ean onLoad((Chject entity,
Serializable id,
oj ect[] state,

Hibernate 3.0a pha 130

Example: Parent/Child

String[] propertyNanes,
Type[] types) {

if (entity instanceof Persistent) ((Persistent) entity).onLoad();
return false;

}

publ i ¢ bool ean onSave((bject entity,
Serializable id,
bj ect[] state,
String[] propertyNanes,
Type[] types) {

if (entity instanceof Persistent) ((Persistent) entity).onSave();
return false;

16.5. Conclusion

There is quite a bit to digest here and it might look confusing first time around. However, in practice, it all
works out quite nicely. Most Hibernate applications use the parent / child pattern in many places.

We mentioned an dternative in the first paragraph. None of the above issues exist in the case of
<conposi t e- el ement > mappings, which have exactly the semantics of a parent / child relationship. Unfortu-
nately, there are two big limitations to composite element classes. composite el ements may not own collections,
and they should not be the child of any entity other than the unique parent. (However, they may have a surrog-
ate primary key, using an <i dbag> mapping.)

Hibernate 3.0a pha 131

Chapter 17. Example: Weblog Application

17.1. Persistent Classes

The persistent classes represent a weblog, and an item posted in a weblog. They are to be modelled as a stand-
ard parent/child relationship, but we will use an ordered bag, instead of a set.

package eg;
import java.util.List;

public class Blog {
private Long _id;
private String _namne;
private List _itens;

public Long getld() {
return _id,
}

public List getltems() {
return _itens;

public String getName() {
return _nane;

}

public void setld(Long Iongl) {
_id = 1longl;

}

public void setltens(List list) {
_items = list;

}

public void setName(String string) {
_nane = string;
}

package eg;

i mport java.text.DateFornat;
i mport java.util.Cal endar;

public class Blogltem {
private Long _id;
private Cal endar _dateti ne;
private String _text;
private String _title;
private Blog _bl og;

public Blog getBlog() {
return _bl og;

public Cal endar getDatetine() {
return _datetine;
}

public Long getld() {
return _id;

public String getText() {
return _text;
}

public String getTitle() {
return _title;

}

public void setBl og(Blog blog) {
_blog = bl og;

Hibernate 3.0a pha 132

Example: Weblog Application

}

public void setDatetine(Cal endar cal endar) {
_datetine = cal endar

}

public void setld(Long | ongl) {
_id = longl;

}

public void setText(String string) {
_text = string;
}

public void setTitle(String string) {
_title = string;
}

17.2. Hibernate Mappings

The XML mappings should now be quite straightforward.

<?xm version="1.0"?>
<! DOCTYPE hi ber nat e- mappi ng PUBLI C
"http://hibernate. sourceforge. net/hi bernat e- mappi ng-3. 0. dtd">

<hi ber nat e- mappi ng package="eg">

<cl ass
nane="Bl og"
t abl e="BLOGS" >

<id
name="id"
col um="BLOG | D' >

<generator class="native"/>
</id>

<property
name="nane"
col umm=" NAME"
not - nul | ="true"
uni que="true"/>

<bag
nanme="itens"
i nverse="true"
or der - by="DATE_TI ME"
cascade="al | ">

<key col um="BLOG | D'/ >
<one-to-many class="Bl oglteni/>

</ bag>
</ cl ass>
</ hi ber nat e- mappi ng>
<?xm version="1.0"?>
<! DOCTYPE hi ber nat e- mappi ng PUBLI C
"http://hibernate. sourceforge. net/hi bernat e- mappi ng-3. 0. dtd">
<hi ber nat e- mappi ng package="eg">

<cl ass
nanme="Bl ogl t enf

Hibernate 3.0a pha 133

Example: Weblog Application

t abl e="BLOG | TEMS"
dynam c- updat e="true" >

<id

name="id"

col um="BLOG | TEM | D' >

<generator class="native"/>
</id>
<property

name="titl e"

col um="TI TLE"

not-null ="true"/>
<property

name="t ext"

col um="TEXT"

not-null ="true"/>
<property

nane="dat eti me"
col um="DATE_TI ME"
not-null ="true"/>

<nmany-t o-one
nane="bl og"
col um="BLOG | D"
not -nul | ="true"/>

</ cl ass>

</ hi ber nat e- mappi ng>

17.3. Hibernate Code

The following class demonstrates some of the kinds of things we can do with these classes, using Hibernate.

package eg;

import java.util.Arraylist;
i mport java.util.Cal endar;
import java.util.lterator;

import java.util.List;

i mport org. hi bernate. H bernat eExcepti on

i mport org. hi bernate. Query;

i mport org. hi bernate. Sessi on;

i mport org. hi bernate. Sessi onFact ory;

i mport org. hi bernate. Transacti on

i mport org. hi bernate. cfg. Configuration

i mport org. hi bernate.tool.hbnRddl . SchemaExport ;

public class BlogMain {
private SessionFactory _sessions;

public void configure() throws H bernateException {
_sessions = new Configuration()
. addd ass(Bl og. cl ass)
.addCl ass(Bl ogltem cl ass)
. bui | dSessi onFactory();

}

public void exportTabl es() throws Hi bernateException {
Configuration cfg = new Configuration()

Hibernate 3.0a pha 134

Example: Weblog Application

. addd ass(Bl og. cl ass)
.addd ass(Bl ogltem cl ass) ;
new SchemaExport(cfg).create(true, true);

public Blog createBlog(String name) throws Hi bernateException {
Bl og bl og = new Bl og();

bl og. set Nanme(nane) ;
bl og. setltens(new ArrayList());

Sessi on session = _sessi ons. openSessi on();
Transaction tx = null;
try {

tx = session. begi nTransaction();
sessi on. save(bl og);
tx.commt();
}
catch (H bernateExcepti on he) {
if (tx!'=null) tx.rollback();

t hrow he;
}
finally {

sessi on. cl ose();
}

return bl og;

public BlogltemcreateBloglten(Blog blog, String title, String text)
t hrows Hi ber nat eException {

Blogltemitem = new Blogltenm();
itemsetTitle(title);

item set Text (text);

i tem set Bl og(bl 0g);

item setDateti me(Cal endar. getlnstance());
bl og. getltens().add(iten);

Sessi on session = _sessi ons. openSessi on();
Transaction tx = null;
try {

tx = session. begi nTransaction();
sessi on. updat e(bl og) ;
tx.commt();

catch (H bernateException he) {
if (tx!'=null) tx.rollback();

t hr ow he;
}
finally {

sessi on. cl ose();
}

return item

public Blogltem createBl oglten(Long blogid, String title, String text)
t hrows Hi ber nat eException {

Blogltemitem = new Blogltenm();
itemsetTitle(title);

item set Text (text);

item set Dateti ne(Cal endar. getlnstance());

Sessi on session = _sessi ons. openSessi on();
Transaction tx = null;
try {

tx = session. begi nTransaction();

Bl og bl og = (Bl og) session.|oad(Bl og.class, blogid);
i tem set Bl og(bl og);

bl og. getltens().add(iten);

tx.commt();

Hibernate 3.0a pha 135

Example: Weblog Application

catch (H bernat eExcepti on he) {
if (tx!'=null) tx.rollback();

t hr ow he;
}
finally {

sessi on. cl ose();
}

return item

}

public void updateBl ogltenmBlogltemitem String text)
throws Hi ber nat eException {

item set Text (text);

Sessi on session = _sessions. openSessi on();
Transaction tx = null;
try {

tXx = session. begi nTransaction();
session. update(itenm;
tx.commt();

catch (Hi bernateException he) {
if (tx!'=null) tx.rollback();

t hrow he;
}
finally {

sessi on. cl ose();
}

}

public void updateBl ogltemLong itemd, String text)
throws Hi ber nat eException {

Sessi on session = _sessi ons. openSessi on();
Transaction tx = null;
try {

tXx = session. begi nTransaction();

Blogltemitem = (Bloglten) session.load(Blogltemclass, itemd);
item set Text (text);

tx.commt();

catch (H bernateException he) {
if (tx!'=null) tx.rollback();

t hr ow he;
}
finally {

sessi on. cl ose();
}

}

public List |istAllBlIogNamesAndltenCounts(int max)
t hrows Hi ber nat eException {

Sessi on session = _sessi ons. openSessi on() ;
Transaction tx = null;
List result = null;
try {
tXx = session. begi nTransacti on();
Query g = session. createQuery(
"sel ect blog.id, blog.nane, count(bloglten) " +
"fromBlog as blog " +
"left outer join blog.itens as blogltem" +
"group by blog.nane, blog.id " +
"order by nex(blogltem datetine)"
)
g. set MaxResul t s(max) ;
result = q.list();
tx.commt();

Hibernate 3.0a pha 136

Example: Weblog Application

catch (H bernateException he) {
if (tx!'=null) tx.rollback();

t hr ow he;
}
finally {

sessi on. cl ose();
}

return result;

public Bl og get Bl ogAndAl I | t ems(Long bl ogi d)
t hrows Hi ber nat eException {

Sessi on session = _sessi ons. openSessi on();
Transaction tx = null;
Bl og blog = null;
try {
tx = session. begi nTransaction();
Query g = session. createQuery(
"fromBlog as blog " +
"left outer join fetch blog.items " +
"where blog.id = :blogid"
I
g. set Paranet er (" bl ogi d", bl ogi d);
blog = (Blog) g.list().get(0);
tx.commt();

catch (Hi bernateException he) {
if (tx!'=null) tx.rollback();

t hrow he;
}
finally {

sessi on. cl ose();
}

return bl og;

public List |istBlogsAndRecentltens() throws Hi bernateException {

Sessi on session = _sessions. openSessi on();
Transaction tx = null;
List result = null;
try {
tx = session. begi nTransaction();
Query g = session. createQuery(
"fromBlog as blog " +
"inner join blog.itens as blogltem" +
"where bl ogltemdatetime > : minDate"

)

Cal endar cal = Cal endar. getlnstance();
cal .rol | (Cal endar. MONTH, fal se);
g. set Cal endar ("m nDate", cal);

result = q.list();
tx.commt();

catch (H bernat eExcepti on he) {
if (tx!'=null) tx.rollback();

t hr ow he;
}
finally {

sessi on. cl ose();
}

return result;

Hibernate 3.0a pha 137

Chapter 18. Example: Various Mappings

This chapters shows off some more complex association mappings.

18.1. Employer/Employee

The following model of the relationship between Enpl oyer and Enpl oyee Uses an actual entity class (Enpl oy-
ment) to represent the association. This is done because there might be more than one period of employment for
the same two parties. Components are used to model monetory values and employee names.

Employer Employment Employee Name
ploy +employer 0.% kit 0.+ Py

-id : long -startDate : Date = -id : long ~firstWame : 5tring
—hame : 5tring -endDate : Date +employee| taxfileMumber ; String +namel initial : char
+getldd : long -id : lang +gethamen : Hame ~lastName : String
+zetld_id:long +getstartDated : Date +setNameiname: Namel +getFirstNamen : 5tring
+getHamed ; String +setitartDate_startDate:Date) +getldi : long +3etFirstName_firstNameString
+setName_name:String) +getEndDated : Date +setldi_id:longs +ygetlnitiald : char

+setEndDatei_endDate:Datel +getTaxfileMumberd : String +setlnitialCinitial:chan

+getHourlyRated : MonetorgAmount +setTaxfileNumber_taxfileMumberString +getlastMamen ; String

+setHourlyRatelrate: Monetorydmount) +setlasthame_lastName:String

+getldd : long

+set|;(_|tl:l:lonil Emol +hourlyRatd Monetorydmount

+aget :

+gEtEmD| oyeri mEp 05;er " -amount : Bighecimal

setEmployeriemp:Employe
poy pEmpley —currency © Currency
+getEmployvesd : Employes - -
+getAmountd : Bighecimal
+setEmployveelemp Employves) X .
+setAmounti_amount:BigDecimal

+getCurrencyl @ Currency
+ et CUrrency_Currency Currencyl

Heres a possible mapping document:

<hi ber nat e- mappi ng>

<cl ass nanme="Enpl oyer" tabl e="enpl oyers">
<id name="id">
<generator class="sequence">
<par am nane="sequence" >enpl oyer _i d_seq</ par an>
</ gener at or >
</id>
<property nanme="nane"/>
</ cl ass>

<cl ass nanme="Enpl oynent" tabl e="enpl oynent peri ods" >

<id name="id">
<generator class="sequence">
<par am nanme="sequence" >enpl oynent _i d_seq</ par an»
</ gener at or >
</id>
<property nane="startDate" colum="start_date"/>
<property nanme="endDate" col utm="end_date"/>

<conponent name="hour | yRate" cl ass="Monet oryAmount" >
<property nane="anount">
<col um nane="hourly_rate" sql-type="NUMERI C(12, 2)"/>
</ property>
<property name="currency" |ength="12"/>
</ conponent >

<many-t o- one nane="enpl oyer" col um="enpl oyer _i d" not-nul |l ="true"/>
<many-t o- one nane="enpl oyee" col um="enpl oyee i d" not-null="true"/>
</ cl ass>

<cl ass nanme="Enpl oyee" tabl e="enpl oyees" >
<id name="id">

Hibernate 3.0alpha 138

Example: Various Mappings

<gener at or cl ass="sequence">
<par am nane="sequence" >enpl oyee_i d_seq</ par an»

</ gener at or >

</id>

<property nane="taxfil eNunber"/>

<conponent nanme="nane" cl ass="Nane">
<property nane="firstNane"/>
<property nane="initial"/>
<property nane="| ast Nane"/>

</ conponent >

</ cl ass>

</ hi ber nat e- mappi ng>

And heres the table schema generated by SchemaExport .

create table enployers (
id BIG NT not null,
name VARCHAR(255),
primary key (id)

)

create tabl e enpl oynent _periods (
id BIG@ NT not null,
hourly rate NUMERI C(12, 2),
currency VARCHAR(12),
enpl oyee_id BI G NT not null,
enpl oyer _id BI G NT not null,
end_date TI MESTAVP
start_date TI MESTAMP
primary key (id)

)

create tabl e enpl oyees (
id BIA NT not null,
firstNane VARCHAR(255),
initial CHAR(1),
| ast Name VARCHAR(255),
taxfil eNunmber VARCHAR(255),
primary key (id)

)

alter table enpl oynment _peri ods

add constraint enpl oyment _peri odsFKO foreign key (enployer_id) references enpl oyers
alter table enpl oynment _peri ods

add constraint enpl oyment _peri odsFK1 foreign key (enployee_id) references enpl oyees
create sequence enpl oyee_id_seq
create sequence enpl oynent _id_seq
create sequence enployer _id_seq

18.2. Author/Work

Consider the following model of the relationships between wr k, Aut hor and Per son. We represent the relation-
ship between wor k and Aut hor as a many-to-many association. We choose to represent the relationship between
Aut hor and Per son as one-to-one association. Another possibility would be to have Aut hor extend Per son.

Hibernate 3.0a pha 139

Example: Various Mappings

-genre : 5tring +oetTextd :int

+setTexti_textiint

+getGented @ 5tring
+ietGenre_genre:String)
+getTempob ; float
+ietTempai_tempo:floar

The following mapping document correctly represents these relationships:

<hi ber nat e- mappi ng>

<cl ass nanme="Work" tabl e="works" discrim nator-val ue="W >
col um="i d">

class="native"/>

<id name="id"
<gener at or

</id>

<di scri m nator colum="type" type="character"/>

<property nane="title"/>
<set nanme="aut hors" tabl e="aut hor_ work">
<key>
<col um nanme="wor k_i d"
</ key>
<many-t o- many cl ass="Aut hor">
<col um nane="aut hor _i d"
</ many-t o- nany>
</set>

not-null ="true"/>

not-null="true"/>

<subcl ass nane="Book" di scri m nator-val ue="B">
<property nane="text"/>
</ subcl ass>

<subcl ass nane="Song" di scri m nator-val ue="S">
<property nane="tenpo"/>
<property nane="genre"/>

</ subcl ass>

</ cl ass>

<cl ass nanme="Aut hor" tabl e="aut hors">
<id name="id" colum="id">
<l -- The Author nust have the sane
<generator class="assigned"/>
</id>

identifier

<property nane="alias"/>
<one-t o- one name="person" constrained="true"/>
<set name="wor ks" tabl e="aut hor_work" inverse="true">
<key col um="aut hor _i d"/>

<many-t o- many cl ass="Wrk" col um="work_id"/>

Whark: Author Persan

-id : long -id : long -id : long
~title : String 0..* 0% | _alias : String -hame : String
+qgetldd : long oo rhes +authord+oetidd : lang +persoh |HOetldd :long
+ietldi_id:long +zetldi_id:long +zetldiid:long
+gethuthorsi : Set +getWarksn : Set +getamen : 5tring
+setfAuthorsiemployees:Set) +setWarkslemployers:Set) +setName_namesString
+getTitled : 5tring +getPersond ; Person
+setTitle_title:String) +setPersanipersan:Person)

+gethliaso : 5tring

+setfliasi_alias:String
ong Book

-tempao : float “text - int

as the Person -->

Hibernate 3.0alpha

140

Example: Various Mappings

</ set >
</ cl ass>

<cl ass nane="Person" tabl e="persons">
<id name="id" col um="id">
<generator class="native"/>
</id>
<property nane="nane"/>
</ cl ass>

</ hi ber nat e- mappi ng>

There are four tables in this mapping. wor ks, aut hor s and per sons hold work, author and person data respect-
ively. aut hor _work is an association table linking authors to works. Heres the table schema, as generated by
SchemaExport.

create table works (

)

id BIANT not null generated by default as identity,
tenpo FLQAT,

genre VARCHAR(255),

text | NTEGER,

title VARCHAR(255),

type CHAR(1) not null,

primary key (id)

create table author_work (

)

author _id BIANT not null,
work_id BIG NT not null,
primary key (work_id, author_id)

create table authors (

)

id BIA NT not null generated by default as identity,
al i as VARCHAR(255),
primary key (id)

create table persons (

)

id BIA NT not null generated by default as identity,
nane VARCHAR(255),
primary key (id)

alter table authors

add constraint authorsFKO foreign key (id) references persons

al ter table author_work

add constrai nt author_workFKO forei gn key (author_id)

alter table author work

add constraint author_workFK1 foreign key (work_id) references works

18.3. Customer/Order/Product

Now consider a model of the relationships between cust omer, O der and Li nel t em and Pr oduct

ref erences authors

. Thereisa

one-to-many association between cust omer and order, but how should we represent order / Lineltem/
Product ? I've chosen to map Li nel tem as an association class representing the many-to-many association

between o der and Pr oduct . In Hibernate, thisis called a composite element.

Hibernate 3.0a pha

141

Example: Various Mappings

Customer

-id : long

-hame : 5tring

+getldd : long
+setldizid:lang
+getNamed : String
+setNamei_name:>5tring
+getOrdersd : Set
+setOrdersiordersSet)

The mapping document:

<hi ber nat e- mappi ng>

<cl ass nanme="Cust oner"
<id name="id">
<gener at or

<lid>

+customer +ardets

+setldi_id:long

+getlineltemso : List
+setlineltemsilineltems:List)
+getCustamerd : Customer
+ietCustomericustomer:Customen
+getDated : Date
+setDatei_date:Date)

class="native"/>

<property nane="nane"/>

<set nane="orders"

<key col um="custoner_id"/>
<one-to-many class="Order"/>

</ set >
</ cl ass>

<cl ass nane="Order"
<id name="id">
<gener at or

</id>

t abl e="orders">

class="native"/>

<property nane="date"/>
<many-t o- one nane="custoner" colum="custoner _id"/>

i nverse="true">

t abl e="cust oners" >

+getProductd ; Product
+zetProductiproduct;Product)

<list nane="lineltens" table="line_itens">
<key col umm="order_id"/>
<i ndex col um="1i ne_nunber"/>

<conposi te-el emrent class="Linelteni>

</ conposi te-el enent >

</[list>
</ cl ass>

<property nanme="quantity"/>
<many-t o- one nane="product" col um="product _id"/>

<cl ass name="Product" tabl e="products">

<id name="id">
<gener at or

<lid>

class="native"/>

<property nane="seri al Nunber"/>

</ cl ass>

</ hi ber nat e- mappi ng>

+setldi_id:long

Order Lineltem Product
el — 1.2 — [-
-id : long [-quantity :int - -id : long
-date : Date +Iine|ter1€ +aetQuantityd © int +|Jr0dlﬁt/ -setialNumber : String
+getldo : long +setluantityl_quantity:int) +getldo: long

+getserialMumberd : String
+setSerialNumber_serialNumber:String

custoners, orders, line_i tems and product s hold customer, order, order line item and product data respect-
ively. line_i t ens also acts as an association table linking orders with products.

create table custoners (
generated by default as identity,

id BIG NT not nul
nane VARCHAR(255),
primary key (id)

)

create table orders (
id BI G NT not nul
custoner_id Bl G NT,
dat e TI MESTAWVP
primary key (id)

)

generated by default as identity,

create table line_itens (

|'i ne_nunber

| NTEGER not nul |,

Hibernate 3.0alpha

142

Example: Various Mappings

order_id BIG NT not null,

product _id BI G NT,

quantity | NTEGER,

primary key (order_id, |ine_nunber)

)

create table products (
id BIANT not null generated by default as identity
seri al Nunber VARCHAR(255),
primary key (id)

)

alter table orders

add constraint ordersFKO foreign key (custoner_id) references custoners
alter table line_itens

add constraint line_itensFKO foreign key (product_id) references products
alter table line_itens

add constraint line_itensFKL foreign key (order_id) references orders

Hibernate 3.0a pha 143

Chapter 19. Best Practices

Write fine-grained classes and map them using <conponent >.
Use an Addr ess class to encapsulate street, suburb, state, post code. This encourages code reuse and
simplifies refactoring.

Declare identifier properties on persistent classes.
Hibernate makes identifier properties optional. There are all sorts of reasons why you should use them. We
recommend that identifiers be 'synthetic' (generated, with no business meaning) and of a non-primitive
type. For maximum flexibility, usej ava. | ang. Long Of j ava. | ang. Stri ng.

Place each class mapping in its own file.
Don't use a single monolithic mapping document. Map com eg. Foo in the file cont eg/ Foo. hbm xni . This
makes particularly good sense in ateam environment.

L oad mappings as resources.
Deploy the mappings along with the classes they map.

Consider externalising query strings.
This is a good practice if your queries call non-ANSI-standard SQL functions. Externalising the query
strings to mapping files will make the application more portable.

Use bind variables.
As in JDBC, aways replace non-constant values by "?'. Never use string manipulation to bind a non-
constant value in aquery! Even better, consider using named parametersin queries.

Don't manage your own JDBC connections.
Hibernate lets the application manage JDBC connections. This approach should be considered a last-resort.
If you can't use the built-in connections providers, consider providing your own implementation of
or g. hi bernat e. connecti on. Connecti onProvi der.

Consider using a custom type.
Suppose you have a Java type, say from some library, that needs to be persisted but doesn't provide the ac-
cessors needed to map it as a component. You should consider implementing or g. hi ber nat e. User Type.
This approach frees the application code from implementing transformations to / from a Hibernate type.

Use hand-coded JDBC in bottlenecks.
In performance-critical areas of the system, some kinds of operations (eg. mass update / delete) might bene-
fit from direct JDBC. But please, wait until you know something is a bottleneck. And don't assume that dir-
ect JDBC is necessarily faster. If need to use direct JDBC, it might be worth opening a Hibernate Sessi on
and using that SQL connection. That way you can still use the same transaction strategy and underlying
connection provider.

Understand Sessi on flushing.
From time to time the Session synchronizes its persistent state with the database. Performance will be af-
fected if this process occurs too often. You may sometimes minimize unnecessary flushing by disabling
automatic flushing or even by changing the order of queries and other operations within a particular trans-
action.

In athree tiered architecture, consider using saveOr Updat e() .
When using a servlet / session bean architecture, you could pass persistent objects loaded in the session
bean to and from the servlet / JSP layer. Use a new session to service each request. Use Sessi on. updat e()
Or Sessi on. saveOr Updat e() to update the persistent state of an object.

Hibernate 3.0a pha 144

Best Practices

In atwo tiered architecture, consider using session disconnection.
Database Transactions have to be as short as possible for best scalability. However, it is often neccessary to
implement long running Application Transactions, a single unit-of-work from the point of view of a user.
This Application Transaction might span several client requests and response cycles. Either use Detached
Objects or, in two tiered architectures, simply disconnect the Hibernate Session from the JDBC connection
and reconnect it for each subsequent request. Never use a single Session for more than one Application
Transaction usecase, otherwise, you will run into stale data.

Don't treat exceptions as recoverable.
Thisis more of a necessary practice than a "best" practice. When an exception occurs, roll back the Tr ans-
acti on and close the sessi on. If you don't, Hibernate can't guarantee that in-memory state accurately rep-
resents persistent state. As a specia case of this, do not use Sessi on. | oad() to determine if an instance
with the given identifier exists on the database; usefi nd() instead.

Prefer lazy fetching for associations.
Use eager (outer-join) fetching sparingly. Use proxies and/or lazy collections for most associations to
classes that are not cached at the JVM-level. For associations to cached classes, where there is a high prob-
ability of a cache hit, explicitly disable eager fetching using out er-j oi n="f al se". When an outer-join
fetch is appropriate to a particular use case, use aquery withal eft join.

Consider abstracting your business logic from Hibernate.
Hide (Hibernate) data-access code behind an interface. Combine the DAO and Thread Local Session pat-
terns. You can even have some classes persisted by handcoded JDBC, associated to Hibernate via a User -
Type. (This advice is intended for "sufficiently large" applications; it is not appropriate for an application
with five tables!)

Implement equal s() and hashCode() using aunique business key.

If you compare objects outside of the Session scope, you have to implement equal s() and hashCode() . In-
side the Session scope, Java object identity is guaranteed. If you implement these methods, never ever use
the database identifier! A transient object doesn't have an identifier value and Hibernate would assign a
value when the object is saved. If the object isin a Set while being saved, the hash code changes, breaking
the contract. To implement equal s() and hashCode(), use a unique business key, that is, compare a unigue
combination of class properties. Remember that this key has to be stable and unique only while the object is
in a Set, not for the whole lifetime (not as stable as a database primary key). Never use collections in the
equal s() comparison (lazy loading) and be careful with other associated classes that might be proxied.

Don't use exotic association mappings.
Good usecases for areal many-to-many associations are rare. Most of the time you need additional inform-
ation stored in the "link table". In this case, it is much better to use two one-to-many associations to an in-
termediate link class. In fact, we think that most associations are one-to-many and many-to-one, you should
be careful when using any other association style and ask yourself if it is really neccessary.

Hibernate 3.0a pha 145

	HIBERNATE - Relational Persistence for Idiomatic Java
	Table of Contents
	Preface
	Chapter 1. Quickstart with Tomcat
	1.1. Getting started with Hibernate
	1.2. First persistent class
	1.3. Mapping the cat
	1.4. Playing with cats
	1.5. Finally

	Chapter 2. Architecture
	2.1. Overview
	2.2. Instance states
	2.3. JMX Integration
	2.4. JCA Support

	Chapter 3. Configuration
	3.1. Programmatic configuration
	3.2. Obtaining a SessionFactory
	3.3. User provided JDBC connection
	3.4. Hibernate provided JDBC connection
	3.5. Optional configuration properties
	3.5.1. SQL Dialects
	3.5.2. Outer Join Fetching
	3.5.3. Binary Streams
	3.5.4. Second-level and query cache
	3.5.5. Transaction strategy configuration
	3.5.6. JNDI-bound SessionFactory
	3.5.7. Query Language Substitution
	3.5.8. Hibernate statistics

	3.6. Logging
	3.7. Implementing a NamingStrategy
	3.8. XML Configuration File

	Chapter 4. Persistent Classes
	4.1. A simple POJO example
	4.1.1. Declare accessors and mutators for persistent fields
	4.1.2. Implement a no-argument constructor
	4.1.3. Provide an identifier property (optional)
	4.1.4. Prefer non-final classes (optional)

	4.2. Implementing inheritance
	4.3. Implementing equals() and hashCode()
	4.4. Dynamic models

	Chapter 5. Basic O/R Mapping
	5.1. Mapping declaration
	5.1.1. Doctype
	5.1.2. hibernate-mapping
	5.1.3. class, dynamic-class
	5.1.4. id
	5.1.4.1. generator
	5.1.4.2. Hi/lo algorithm
	5.1.4.3. UUID algorithm
	5.1.4.4. Identity columns and sequences
	5.1.4.5. Assigned identifiers
	5.1.4.6. Primary keys assigned by triggers

	5.1.5. composite-id
	5.1.6. discriminator
	5.1.7. version (optional)
	5.1.8. timestamp (optional)
	5.1.9. property
	5.1.10. many-to-one
	5.1.11. one-to-one
	5.1.12. component, dynamic-component
	5.1.13. subclass
	5.1.14. joined-subclass
	5.1.15. union-subclass
	5.1.16. join
	5.1.17. key
	5.1.18. map, set, list, bag
	5.1.19. import

	5.2. Hibernate Types
	5.2.1. Entities and values
	5.2.2. Basic value types
	5.2.3. Custom value types
	5.2.4. Any type mappings

	5.3. SQL quoted identifiers
	5.4. Modular mapping files
	5.5. Using XDoclet markup

	Chapter 6. Collection Mapping
	6.1. Persistent Collections
	6.2. Mapping a Collection
	6.3. Collections of Values and Many-To-Many Associations
	6.4. One-To-Many Associations
	6.5. Lazy Initialization
	6.6. Sorted Collections
	6.7. Using an <idbag>
	6.8. Bidirectional Associations
	6.9. Ternary Associations
	6.10. Heterogeneous Associations
	6.11. Collection examples

	Chapter 7. Component Mapping
	7.1. Dependent objects
	7.2. Collections of dependent objects
	7.3. Components as Map indices
	7.4. Components as composite identifiers
	7.5. Dynamic components

	Chapter 8. Inheritance Mapping
	8.1. The Three Strategies
	8.2. Limitations

	Chapter 9. Working with Persistent Data
	9.1. Creating a persistent object
	9.2. Loading an object
	9.3. Querying
	9.3.1. Scalar queries
	9.3.2. The Query interface
	9.3.3. Scrollable iteration
	9.3.4. Filtering collections
	9.3.5. Criteria queries
	9.3.6. Queries in native SQL

	9.4. Updating objects
	9.4.1. Updating in the same Session
	9.4.2. Updating detached objects
	9.4.3. Reattaching detached objects

	9.5. Deleting persistent objects
	9.6. Flush
	9.7. Ending a Session
	9.7.1. Flushing the Session
	9.7.2. Committing the database transaction
	9.7.3. Closing the Session
	9.7.4. Exception handling

	9.8. Lifecyles and object graphs
	9.9. Parameterized application views with filters
	9.10. Interceptors
	9.11. Event system
	9.12. Metadata API

	Chapter 10. Transactions And Concurrency
	10.1. Configurations, Sessions and Factories
	10.2. Threads and connections
	10.3. Considering object identity
	10.4. Optimistic concurrency control
	10.4.1. Long session with automatic versioning
	10.4.2. Many sessions with automatic versioning
	10.4.3. Application version checking

	10.5. Session disconnection
	10.6. Pessimistic Locking

	Chapter 11. HQL: The Hibernate Query Language
	11.1. Case Sensitivity
	11.2. The from clause
	11.3. Associations and joins
	11.4. The select clause
	11.5. Aggregate functions
	11.6. Polymorphic queries
	11.7. The where clause
	11.8. Expressions
	11.9. The order by clause
	11.10. The group by clause
	11.11. Subqueries
	11.12. HQL examples
	11.13. Tips & Tricks

	Chapter 12. Criteria Queries
	12.1. Creating a Criteria instance
	12.2. Narrowing the result set
	12.3. Ordering the results
	12.4. Associations
	12.5. Dynamic association fetching
	12.6. Example queries

	Chapter 13. Native SQL
	13.1. Creating a SQL based Query
	13.2. Alias and property references
	13.3. Named SQL queries
	13.4. Custom SQL for CUD
	13.5. Custom SQL for loading

	Chapter 14. Improving performance
	14.1. Understanding Collection performance
	14.1.1. Taxonomy
	14.1.2. Lists, maps, idbags and sets are the most efficient collections to update
	14.1.3. Bags and lists are the most efficient inverse collections
	14.1.4. One shot delete

	14.2. Proxies for Lazy Initialization
	14.3. Using batch fetching
	14.4. Using lazy property fetching
	14.5. Outer join fetching
	14.6. The Second Level Cache
	14.6.1. Cache mappings
	14.6.2. Strategy: read only
	14.6.3. Strategy: read/write
	14.6.4. Strategy: nonstrict read/write
	14.6.5. Strategy: transactional

	14.7. Managing the Session Cache
	14.8. The Query Cache

	Chapter 15. Toolset Guide
	15.1. Schema Generation
	15.1.1. Customizing the schema
	15.1.2. Running the tool
	15.1.3. Properties
	15.1.4. Using Ant
	15.1.5. Incremental schema updates
	15.1.6. Using Ant for incremental schema updates

	15.2. Code Generation
	15.2.1. The config file (optional)
	15.2.2. The meta attribute
	15.2.3. Basic finder generator
	15.2.4. Velocity based renderer/generator

	15.3. Mapping File Generation
	15.3.1. Running the tool

	Chapter 16. Example: Parent/Child
	16.1. A note about collections
	16.2. Bidirectional one-to-many
	16.3. Cascading lifecycle
	16.4. Using cascading update()
	16.5. Conclusion

	Chapter 17. Example: Weblog Application
	17.1. Persistent Classes
	17.2. Hibernate Mappings
	17.3. Hibernate Code

	Chapter 18. Example: Various Mappings
	18.1. Employer/Employee
	18.2. Author/Work
	18.3. Customer/Order/Product

	Chapter 19. Best Practices

