January, 2005

Verilog Models for Catalyst Microwire Serial CMOS E2PROMs
General Presentation

These Verilog programs are intended to offer:

· a behavioral model for any of the Microwire serial memory chips produced by Catalyst

· a benchtest for it.

They were conceived as protocol automata (state machines) for Microwire protocol, the memory chip being seen as the “slave” component and the controlling device as the “master” one.

The programs are fully parameterized (through a configuration file), in order to cover all the chip types and various environment conditions.

A detailed report of the parameters selected by the user and of the simulation flow is offered to the user by means of displayed messages.

This version consists in:

· a Verilog modules - MWslave.v

 (model for Catalyst Microwire memory chips - the main target);

· the necessary stuff to test this module (benchtest), as follows:

· a Verilog module MWmaster.v (master for Microwire protocol)

· some context Verilog modules, as follows

- MWtest.v for:

· test running (frame modules, containing the instantiations

of modules representing the chip model (slave) and the controlling device generating input signals (master));

- customization (specification of time parameters);

- MemType.v (called through `include in the protocol modules),

 for customization (selection of chip type & memory organization & others)

- Input.v (called through `include in the master module), for customization

 (definition of the suite of commands to be sent to the memory chip)

 - Timing_46_56_57_66.v & Timing_76.v & Timing_86.v (called through `include in the protocol modules), containig the default timing (which is that from the circuit datasheet);
How to Prepare a Simulation

- edit MemType.v

- uncomment only the lines specifying your chip features:

· the chip type (cat93c46, cat93hc46, cat93c56, cat93c57, cat93c66, cat93c76 or cat93c86);

· the memory organization (X8 or X16);

· the timing category (Vcc=1.8-2.5V or 2.5-5.5V for cat93c76; Vcc=1.8-6V, 2.5-6V or 4.5-5.5V for the others);

· the position of PE pin (relevant only for 93c86);

· uncomment, if you want, init/dump memory features;

- if you want to initialize memory from a file, uncomment the definition of

“initMemFile” and give it as value the name of a file containing the desired

initializations for memory; this file must have the following structure:

@<addr1>

<strings of hex values separated by blanks or new lines >.....

@<addrn>

<strings of hex values separated by blanks or new lines>......

 e.g:

@001

02 0a 0c

05

@008

ff af

will produce the following result:

mem[0] = xx; mem[1] = 02; mem[2] = 0a; mem[3] = 0c; mem[4] = 05;

mem[5] = xx; mem[6] = xx; mem[7] = xx; mem[8] = ff; mem[9] = af;

mem[a] = xx; ...

.... and “xx” until the end of the memory

 if you keep this line commented, the memory will be initialized with “00”.

· if you want to write memory content to a file, after each write type

 operation, uncomment the definition of “dumpMemFile” and give it as

 value the name of a file where this content will be dumped in a format

 compatible with that described above.
- edit MWtest.v

- specify the desired clock frequency, uncommenting and modifying the appropriate line;

e.g.

defparam m.frequency = 1000000;
// clock frequency (in Hz)

(attention: not over the maximum one allowed in your context);

- specify the desired clock duty factor, uncommenting and modifying the appropriate line;

e.g.

defparam m.dutyFactor = 1.0/4.0;
// clock duty factor

- specify time constants you want to differ from the default ones

 (there is maximum / minimum values from datasheet),

 uncommenting and modifying the appropriate line;

e.g.

defparam m.tCSS = 400;
// CS Setup Time

- edit Input.v

- specify the desired test suite;

the file is headed with a commented zone including

patterns for all the commands specifications;

to include a new command in the suite:

- copy the appropriate pattern and uncomment & replace as required

- ensure that the numbers preceding the operations descriptors are

 in ascending order (beginning with 1); this file being included in a "case"

 statement in the context of a mechanism of automated index increasing

 by 1, the sequential order must be kept.

Example of Test Suite

Here you have a possible sequence from a suite of commands to include

 in “InputIni.v” (the first) & “Input.v” (the others):

1
EWEN;

2
READ;

addr = 11'h010;

lSeq = 16;

3
EWEN;

//EWDS;

for write disable verification

4
ERAL;

5
READ;

addr = 11'h010;

lSeq = 16;

6
WRITE;

addr = 11'h010;

lSeq = 1;

dataByte = 8'h35;

for X8 memory organization

dataBytes = 16'h3579;

for X16 memory organization

7
READ;

addr = 11'h000;

lSeq = 32;

8
ERASE;

addr = 11'h010;

9
READ;

addr = 11'h010;

lSeq = 32;

10
ERAL;

11
READ;

addr = 11'h010;

lSeq = 32;

12
WRAL;

dataByte = 11'h033;

dataBytes = 16'h3355;

13
READ;

addr = 11'h000;

lSeq = lgMem;

for full memory read

Protocol Requirements Verification Made by the Model

The model makes the following verifications of input signals according to Microwire protocol requirements (errors being signaled by messages on the output window of the simulator):

- timing related:

 (see "A.C. Characteristics" section in Microwire circuits datasheets):

- Serial Clock (frequency, high time, low time)

- Chip Select:

- at start recognition (low to high CSB transition):

- Chip Select Low time to be >= tCSMIN

- Chip Select Setup time to be >= tCSS

- Serial Data Input:

·

- data setup time to be >= tDIS, data hold time to be >= tDIH

· message structure related:

- start bit to be 1;

- operation code to be valid.

How to Use Standard Output for Verification & Debugging

All the simulation flow is presented in the output window of the simulator.

· The following indications are given:

· the memory chip features (name, memory organization & size, timing, sequential read allowed or not,

· clock counter present or not etc.);

· each test phase (command specification, main protocol steps, partial images of memory -addresses and their contents-for read/write operations);

- protocol errors detected in input.

Remarks

The Verilog modules can be used in any simulator recognizing this language,

eventually making the minor modifications required when the used simulator

is conceived for another Verilog standard.

This version of the application is mainly oriented to basic operation checking.

The next version is intended to enhance the testing context with some procedures

· for the verification of special situations (incorrect protocol sequences sent by the master).
