Smart FET Protection Features
Agenda

- Current Limit
- Over Temperature Protection
- Over Voltage Protection
- ESD Protection
- Diagnostic Output
- High and Low Side Portfolio and Applications
SmartFET Capability

SmartFET enables integration of analog circuit elements in Power MOSFET devices for cost effective solutions.
Smart FET Protection Features

- ON Semiconductor’s Smart FET’s Feature 4 Main Protection Functions
 - Current Limit Protection
 - Over Temperature Protection
 - Overvoltage Protection
 - ESD Protection
- ON Semiconductor’s High Side NCV8460 Adds Diagnostic Features
 - Open Load Detection
Current Limit Protection

• Current from the Drain is mirrored into a smaller device anywhere from 1/200th to 1/1000th the size of the main power device

Figure 5. Simplified Current Limit Circuit
Current Limit Protection

- The current through the smaller device develops a voltage across R_S
- As V_{RS} increases, a pulldown FET turns on, and pulls down on the voltage of the main power FET, which reduces output current
Current Limit Protection

• The current limit will vary with temperature
• As can be seen above, as the device heats up, current limit decreases
Over Temperature Protection

- On Semiconductor’s Smart FET’s include Over Temperature Protection, which shuts down the device when the temperature exceeds a predetermined threshold.
- If the TSD structure indicates a high temperature, the T_{LIM} Pulldown device pulls the voltage down on the main power device.
Over Temperature Protection

- A reference voltage is compared to the TSD structure, a diode structure, located in the die’s ‘hot spot’
Over Temperature Protection

- Once the TSD structure indicates the temperature has dropped, the pulldown device turns off, allowing the main power device to turn back on.
- The typical hysteresis is 15 C.
Over Voltage Protection

- A Gate to Drain Zener Clamp provides overvoltage protection
- The clamp allows the Gate to turn on, spreading the energy more evenly across the active area
Over Voltage Protection

- Voltage across DUT is clamped during an inductive flyback event.
- When the input is turned off, the voltage across DUT increases until it reaches the clamp level, typically around 45 V.
ESD Protection

- Back to Back diodes on the Gate pin clamp the voltage to 13 V
- This combined with the internal series resistance allow a minimum of 4000 V Human Body Model and 400 V Machine Model ESD capability
- The Source and Drain are inherently protected through the device structure itself
Diagnostics

• The NCV8460 offers diagnostic features and a status pin
 – Normal Operation- Status Pin High

 ![Diagram of Normal Operation]

 – Undervoltage-
 • Status Pin Undefined
 • Output Turns Off

 ![Diagram of Undervoltage]
Diagnostics

- The NCV8460 offers diagnostic features and a status pin
 - Overvoltage
 - Status Pin Stays High
 - Output Shuts Off

- Over Temperature
 - Status Pin Goes Low
 - Output Turns Off
Diagnostics

• The NCV8460 offers diagnostic features and a status pin
 – Open Load With External Pull Up
 • Input High- Status Pin Goes Low When Open Load Detected
 • Input Low- Status Pin Goes Low When Open Load Detected

 \[\text{OPEN LOAD with external pull-up}\]
 \[
 \begin{array}{c}
 \text{INPUT} \\
 \text{LOAD VOLTAGE} \\
 \text{STATUS}
 \end{array}
 \begin{array}{c}
 \vdash \vdash \vdash \\
 V_{\text{OUT}}>V_{\text{OL}} \\
 V_{\text{OL}}
 \end{array}
 \]

 – Open Load Without External Pull Up
 • Input High- Status Pin Goes Low When Open Load Detected
 • Input Low- Status Pin Stays High Regardless of Load Condition

 \[\text{OPEN LOAD without external pull-up}\]
 \[
 \begin{array}{c}
 \text{INPUT} \\
 \text{LOAD VOLTAGE} \\
 \text{STATUS}
 \end{array}
 \begin{array}{c}
 \vdash \vdash \vdash \\
 \vdash \vdash \vdash \\
 \vdash \vdash \vdash
 \end{array}
 \]
Potential Failure Modes and Mitigation Strategies

<table>
<thead>
<tr>
<th>Potential Failure Mode</th>
<th>Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insufficient gate drive during fault condition</td>
<td>- Increase current source/sink capability of gate drive circuit
 - Increase gate drive voltage</td>
</tr>
<tr>
<td>Excessive dV/dt at drain</td>
<td>- Increase series gate resistance
 - Filter or snubber circuits to eliminate fast edge transients
 - Reduce supply voltage</td>
</tr>
<tr>
<td>Excessive die temperature during SCIS operation</td>
<td>- Reduce load inductance
 - Reduce circuit parasitic inductance
 - Use lower clamp voltage device
 - Use device with proper energy rating
 - Decrease device duty cycle or frequency or both
 - Use parallel devices</td>
</tr>
<tr>
<td>Excessive die temperature during load dump or other transient event</td>
<td>- Increase load resistance
 - Improve transient thermal response via better thermal pathway or larger silicon active area
 - Use parallel devices</td>
</tr>
</tbody>
</table>
ON Semiconductor Low Side Portfolio

- NCV8401
 - 33 A Current Limit, 23 mOhm RDSOn, 42 V Clamp, and 175 C TSD
- NCV8402 and NCV8402 Dual
 - 2 A Current Limit, 165 mOhm RDSOn, 42 V Clamp, and 175 C TSD
- NCV8403
 - 15 A Current Limit, 53 mOhm RDSOn, 42 V Clamp, and 175 C TSD
- NCV8405
 - 6 A Current Limit, 90 mOhm RDSOn, 42 V Clamp, and 175 C TSD
- NCV8440
 - 95 mOhm RDSOn
 - 52 V Clamp Only, No TSD, or Current Limit
- NIMD6001 (Dual)
 - 110 mOhm RDSOn
 - No Clamp, TSD or Current Limit
 - Over Voltage Diagnostic Signal
Low Side Applications

- Split Cooling Valve Sensor- NCV8403
 - The Drain is used to drive a heater resistor to control a thermostat
 - As the resistive load heats up, the thermostat heats up causing it to be over-ridden
 - A $3\,\text{k}\Omega$ gate resistor is used to slew the switching speed.
Low Side Applications

- Lambda Sensor- NCV8403
 - A lambda sensor is a resistive load
 - The sensor measures the oxygen content in the exhaust gas
 - A 3 kΩ gate resistor is used to slew the switching speed
ON Semiconductor High Side Portfolio

- **NCV8450**
 - Released
 - 1 A Current Limit, 1 Ohm RDSOn
 - No Diagnostic Features
 - Cross to BTS4140
 - Voltage Clamped to 45 V, 175 C TSD

- **NCV8460**
 - Currently in Design
 - Diagnostic Features
 - On State Open Load Detection
 - Off State Open Load Detection
 - Diagnostic Output
 - Under Voltage and Over Voltage Shutdown
 - 9 A Current Limit, 60 mOhm RDSOn
 - Cross to VN750
 - Voltage Clamped to 42 V, 175 C TSD
High Side Applications

- Power Train Application- NCV8450
 - Evaporation Leak Detection Solenoid
High Side Applications

- Brake Light Application- NCV8450
 - Open Collector Hall Sensor Used to Drive NCV8450
Conclusion

• ON Semiconductor’s SmartFET offers 4 main protection functions
 – Current Limit
 – Over Temperature Protection
 – Over Voltage Protection
 – ESD Protection

• ON Semiconductors’ new NCV8460 adds a Diagnostic Output Feature
For More Information

- View the extensive portfolio of power management products from ON Semiconductor at www.onsemi.com

- View reference designs, design notes, and other material supporting automotive applications at www.onsemi.com/automotive