01

ON Semiconductor ${ }^{\circledR}$

An Improved 2-Switch Forward Converter Application

Agenda

1. Generalities on forward converters
2. Core reset: tertiary winding, RCD clamp, 2-switch forward
3. Specs review of the NCP1252's demo board
4. Power components calculation
5. NCP1252 components calculation
6. Closed-loop feedback: simulations and compensation
7. Demo board schematics \& picture.
8. Board performance review
9. Conclusions

Agenda

1. Generalities on forward converters
2. Core reset: tertiary winding, RCD clamp, 2-switch forward
3. Specs review of the NCP1252's demo board
4. Power components calculation
5. NCP1252 components calculation
6. Closed-loop feedback: simulations and compensation
7. Demo board schematics \& picture.
8. Board performance review
9. Conclusions

Generalities About the 1-Switch Forward Converter PROs

[. It is a transformer-isolated buck-derived topology
\square It requires a single transistor, ground referenced

- Non-pulsating output current reduces rms content in the caps

CONs

* Smaller power capability than a full or half-bridge topology
* Limited in duty-cycle (duty ratio) excursion because of core reset
* The drain voltage swings to twice the input voltage or more

Agenda

1. Generalities on forward converters
2. Core reset: tertiary winding, RCD clamp, 2-switch forward
3. Specs review of the NCP1252's demo board
4. Power components calculation
5. NCP1252 components calculation
6. Closed-loop feedback: simulations and compensation
7. Demo board schematics \& picture.
8. Board performance review
9. Conclusions

Transformer Core Reset: Why?

\square Without transformer core reset:

$>$ The current builds up at each switching cycle
$>$ It brings the core into saturation

Transformer Core Reset: Why?

\square With transformer core reset:

$>$ The current does not build up at each switching cycle
> Volt-seconds average to zero during each cycle
$>$ The voltage reverses over $\mathrm{L}_{\text {mag }}$ and resets it

Core Reset Techniques: How ?

\square Energy is stored in the magnetizing inductor
\square This energy does not participate to the power transfer
> It needs to be released to avoid flux walk away

- 3 common standard techniques for the core reset:
\checkmark Tertiary winding
\checkmark RCD clamp
\checkmark 2-switch forward

Core Reset Techniques: Tertiary Winding

- Reset with the $3^{\text {rd }}$ winding
(-) Duty ratio can be $>50 \%$
But
(2) Q_{1} peak voltage can be $>2 \cdot V_{\text {in }}$
(: $3^{\text {rd }}$ winding for the transformer

Core Reset Techniques: RCD Clamp

- Reset with RCD clamp
(-) Duty ratio can be $>50 \%$
But
(:) Writing equation and simulation are required for checking the correct reset
(:) Lower cost than $3^{\text {rd }}$ winding technique

Core Reset Techniques: 2-switch Forward

- Reset with a 2-switch forward
(:) Easy to implement
(-) Q_{1} peak voltage is equal to $V_{i n}$
But
(:) Additional power MOSFET $\left(Q_{2}\right)+$ high side driver
(:2 2 High voltage, low power diodes $\left(D_{3} \& D_{4}\right)$

2-Switch Forward: How Does It Works?

Note : Primary controller status

- "on time" : Step1
- "off time": Step $2+$ Step 3

	$Q_{1} \& Q_{2}$	D_{1}	D_{2}	$D_{3} \& D_{4}$
Step 1	ON	ON	OFF	OFF
Step 2	OFF	OFF	ON	ON
Step 3	OFF	OFF	ON	OFF

Agenda

1. Generalities on forward converters
2. Core reset: tertiary winding, RCD clamp, 2-switch forward
3. Specs review of the NCP1252's demo board
4. Power components calculation
5. NCP1252 components calculation
6. Closed-loop feedback: simulations and compensation
7. Demo board schematics \& picture.
8. Board performance review
9. Conclusions

NCP1252 - Fixed Frequency Controller Featuring Skip Cycle and Latch OCP

Value Proposition

The NCP1252 offers everything needed to build a cost-effective and reliable ac-dc switching power supply.

Unique Features

- Adjustable switching freq.
- Delayed operation upon startup
- Latched Short circuit protection timer based.
- skip cycle mode

Benefits

- Design flexibility
- independent of the aux. winding
- Allow temporary over load and latch permanent fault
- Achieve real no load operation

Others Features

- Adjustable soft start duration
- Internal ramp compensation
- Auto-recovery brown-out detection
- Vcc up to 28 V with auto-recovery UVLO
- Frequency jittering $\pm 5 \%$ of the switching frequency
- Duty cycle 50\% with A Version, 80\% with B version Market \& Applications
- ATX Power supply
- AC adapters

Main differences with the UC384X series

	NCP1252	UC3843/5
Startup current	$<100 \mu \mathrm{~A}$	$500 \mu \mathrm{~A}$
Leading Edge Blanking (LEB)	Yes	No
Internal Ramp Compensation	Adj.	No
Frequency jittering	$300 \mathrm{~Hz}, \pm 5 \%$	No
Skip Cycle (light load behavior)	Yes	No
Brown-Out with shutdown feature	Yes	No
Pre-short protection	Latch-off,	No
Delay on startup	15 ms delay	
Soft start	Adj.	No
5 V voltage reference	No	No

Ordering \& Package Information

- NCP1252ADR2G: 50\% Duty Cycle SOIC8
- NCP1252BDR2G: 80\% Duty Cycle SOIC8

UC3843/5 Application Exemple

- UC384X does not include brown-out, soft-start and overload detection
$>$ the external implementation cost of these functions is $\$ 0.07$
* NCP1252 includes them all, reducing cost and improving reliability

Spec Review: NCP1252's Demo Board

- Input voltage range: 340-410 V dc
- Output voltage: 12 V dc, $\pm 5 \%$
- Nominal output power: 96 W (8 A)
- Maximal output power: 120 W (5 seconds per minute)
- Minimal output power: real no load (no dummy load!)
- Output ripple : 50 mV peak to peak
- Maximum transient load step: 50\% of the max load
- Maximum output drop voltage: 250 mV (from lout $=50 \%$ to Full load (5A $\rightarrow 10 \mathrm{~A}$) in $5 \mu \mathrm{~s}$)

Agenda

1. Generalities on forward converters
2. Core reset: tertiary winding, RCD clamp, 2-switch forward
3. Specs review of the NCP1252's demo board
4. Power components calculation
5. NCP1252 components calculation
6. Closed-loop feedback: simulations and compensation
7. Demo board schematics \& picture.
8. Board performance review
9. Conclusions

Power Components Calculation: Transformer (1/3)

- Step 1: Turns ratio calculation in CCM:

Where:

- $V_{\text {out }}$ is the output voltage
- η is the targeted efficiency
- $V_{\text {bulkmin }}$ is the min. input voltage

$$
\begin{aligned}
V_{\text {out }} & =\eta \cdot V_{\text {bulk } \min } \cdot D C_{\max } \cdot N \\
\Leftrightarrow \quad & N=\frac{V_{\text {out }}}{\eta \cdot V_{\text {bulk } \min } \cdot D C_{\max }} \\
& N=\frac{12}{0.9 \times 350 \times 0.45} \\
& N=0.085
\end{aligned}
$$

- $D C_{\text {max }}$ is the max duty cycle of the NCP1252
- N is the transformer turn ratio

Power Components Calculation: Transformer (2/3)

- Step 2: Verification: Maximum duty cycle at high input line $D C_{\text {min }}$ (Based on the previous equation)

Where:

- $V_{\text {out }}$ is the output voltage
- η is the targeted efficiency

$$
\begin{aligned}
& V_{\text {out }}=\eta \cdot V_{\text {bulk } \max } \cdot D C_{\text {min }} \cdot N \\
& \Leftrightarrow \quad D C_{\text {min }}=\frac{V_{\text {out }}}{\eta \cdot V_{\text {bulk } \max } \cdot N} \\
& D C_{\text {min }}=\frac{12}{0.9 \times 410 \times 0.085} \\
& \\
& D C_{\text {min }}=38.2 \%
\end{aligned}
$$

- $V_{\text {bulkmax }}$ is the max. input voltage
- N is the transformer turn ratio

Power Components Calculation: Transformer (3/3)

- Step 3: Magnetizing inductor value.
- For resetting properly the core, a minimal magnetizing current is needed to reverse the voltage across the winding.
- (Enough energy must be stored so to charge the capacitance)
- Rule of thumb: Magnetizing current $=10 \%$ primary peak current
$\left(\rightarrow I_{\text {Lmag_pk }}=10 \% I_{p _p k}\right)$

$$
L_{\text {mag }}=\frac{V_{\text {bulk }^{\min }}}{\frac{10 \% I_{p_{-} p k}}{T_{\text {ON }}}}=\frac{350}{\frac{0.1 \times 0.94}{\frac{0.45}{125 k}}}=13.4 \mathrm{mH}
$$

Power Components Calculation: LC Output Filter (1/4)

- Step 1: Crossover frequency $\left(f_{c}\right)$ selection
- arbitrarily selected to 10 kHz .
$-f_{c}>10 \mathrm{kHz}$ requires noiseless layout due to switching noise (difficult). Crossover at higher frequency is not recommended
- Step 2: $C_{\text {out }} \& R_{E S R}$ estimation
- If we consider a $\Delta V_{\text {out }}=250 \mathrm{mV}$ dictated by $f_{c}, C_{\text {out }} \& \Delta l_{\text {out }}$, we can write the following equation:

Where:

$$
\begin{aligned}
& C_{\text {out }} \geq \frac{\Delta I_{\text {out }}}{2 \pi f_{c} \Delta V_{\text {out }}} \geq \frac{5}{2 \pi \times 10 \mathrm{k} \times 0.25} \Rightarrow C_{\text {out }} \geq 318 \mu \mathrm{~F} \\
& \mathrm{R}_{\mathrm{ESR}} \leq \frac{1}{2 \pi f_{c} C_{\text {out }}} \leq \frac{1}{2 \pi \times 10 \mathrm{k} \times 318 \mu} \Rightarrow R_{\mathrm{ESR}} \leq 50 \mathrm{~m} \Omega
\end{aligned}
$$

- f_{c} crossover frequency
- $\Delta I_{\text {out }}$ is the max. step load current
- $\Delta V_{\text {out }}$ is the max. drop voltage @ $\Delta l_{\text {out }}$

Power Components Calculation: LC Output Filter (2/4)

- Step 3: Capacitor selection dictated by ESR rather than capacitor value:
- Selection of $2 \times 1000 \mu \mathrm{~F}$, FM capacitor type @ 16 V from Panasonic.
- Extracted from the capacitor spec:
- $I_{c, r m s}=5.36 \mathrm{~A}(2 * 2.38 \mathrm{~A}) @ \mathrm{~T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$
- $R_{\text {ESR,low }}=8.5 \mathrm{~m} \Omega(19 \mathrm{~m} \Omega / 2) @ T_{A}=+20^{\circ} \mathrm{C}$
- $R_{\text {ESR, high }}=28.5 \mathrm{~m} \Omega(57 \mathrm{~m} \Omega / 2) @ \mathrm{~T}_{\mathrm{A}}=-10^{\circ} \mathrm{C}$
$-\Delta V_{\text {out }}$ calculation @ $\Delta l_{\text {out }}=5 \mathrm{~A}$
- $\Delta V_{\text {out }}=\Delta I_{\text {out }} R_{\text {ESR, max }}=5 \times 28.5 \mathrm{~m}=142 \mathrm{mV}$

$$
\text { Tips: Rule of thumb: } R_{E S R, \text { high }} \square \frac{E S R(\text { step 2) }}{2}
$$

Is acceptable given a specification at 250 mV

Power Components Calculation: LC Output Filter (3/4)

- Step 4: Maximum peak to peak output current

$$
\Delta I_{L} \leq \frac{V_{\text {ripple }}}{R_{\text {ESR, max }}} \leq \frac{50 m}{22 m}<2.27 \mathrm{~A} \quad \mathrm{R}_{\mathrm{ESR}, \max }=22 \mathrm{~m} \Omega @ 0^{\circ} \mathrm{C}
$$

- Step 5: Inductor value calculation

$$
\begin{aligned}
\Delta I_{L} & \geq \frac{V_{\text {out }}}{L}\left(1-D C_{\text {min }}\right) T_{\text {sw }} \\
\Leftrightarrow \quad L & \geq \frac{V_{\text {out }}}{\Delta I_{L}}\left(1-D C_{\text {min }}\right) T_{\text {sw }}=\frac{12}{2.27}(1-0.38) \frac{1}{125 k} \\
& L \quad \geq 26 \mu \mathrm{H}
\end{aligned}
$$

- Let select a standardized value of $27 \mu \mathrm{H}$

Power Components Calculation: LC Output Filter (4/4)

- Step 6: rms current in the output capacitor

$$
I_{C_{\text {out }}, r m s}=I_{\text {out }} \frac{1-D C_{\text {min }}}{\sqrt{12 \tau_{L}}}=10 \times \frac{1-0.38}{\sqrt{12 \times 2.813}}=1.06 \mathrm{~A}
$$

where $\quad \tau_{\mathrm{L}}=\frac{L_{\text {out }}}{\frac{V_{\text {out }}}{I_{\text {out }}} \frac{1}{F_{\text {sw }}}}=\frac{27 \mu}{\frac{12}{10} \frac{1}{125 k}}=2.813 \quad \begin{aligned} & \text { Note: } \tau_{\mathrm{L}} \text { is the normalized } \\ & \text { inductor time constant }\end{aligned}$
$I_{\text {Cout,rms }}(1.06 \mathrm{~A})<I_{C, \text { rms }}(5.36 \mathrm{~A}) \rightarrow$ No need to adjust or change the output capacitors

Power Components Calculation: Transformer Current

- RMS current on primary and secondary side
- secondary currents:

$$
\begin{aligned}
& I_{L_{-} p k}=I_{\text {out }}+\frac{\Delta I_{L}}{2}=10+\frac{2.27}{2}=11.13 \mathrm{~A} \\
& I_{L_{-} \text {valley }}=I_{L_{-} p k}-\Delta I_{L}=11.13-2.27=8.86 \mathrm{~A}
\end{aligned}
$$

- Primary current can calculated by multiplying the secondary current with the turns ratio:

$$
I_{p_{-} p k}=I_{L_{-} p k} N=11.13 \times 0.085=0.95 \mathrm{~A}
$$

$$
I_{p_{-} \text {valley }}=I_{L_{-} \text {valley }} N=8.86 \times 0.085=0.75 \mathrm{~A}
$$

$$
\Rightarrow I_{p, r m s}=\sqrt{D C_{\max }\left(\left(I_{p_{-} p k}+10 \%\right)^{2}-\left(I_{p_{-} p k}+10 \%\right) \Delta I_{L} N+\frac{\left(\Delta I_{L} N\right)^{2}}{3}\right)}=0.63 \mathrm{~A}
$$

Note: $I_{p, r m s}$ has been calculated by taking into account the magnetizing current $\left(10 \%\right.$ of $\left.I_{p _p k}\right)$.

Power Components Calculation: MOSFET (1/3)

- With a 2-switch forward converter \rightarrow max voltage on power MOSFET is limited to the input voltage
- Usually a derating factor is applied on drain to source breakdown voltage ($B V_{D S S}$) equal to 15%.
- If we select a $500-\mathrm{V}$ power MOSFET type, the derated max voltage should be 425 V ($500 \mathrm{~V} \times 0.85$).
- FDP16N50 has been selected:
- Package TO220
- $B V_{\text {DSS }}=500 \mathrm{~V}$
$-R_{D S(o n)}=0.434 \Omega @ T_{j}=110^{\circ} \mathrm{C}$
- Total Gate charge: $Q_{G}=45 \mathrm{nC}$
- Gate drain charge: $Q_{G D}=14 \mathrm{nC}$

Power Components Calculation: MOSFET (2/3)

- Losses calculation:
- Conduction losses:

$$
P_{\text {cond }}=I_{p, r m s, 10 \%}{ }^{2} R_{D S(\text { on })} @ T_{j}=110^{\circ} \mathrm{C}=0.632^{2} \times 0.434=173 \mathrm{~mW}
$$

- Switch ON losses:
Overlap $\left(\Delta_{t}\right)$ is extracted from

$$
\Delta_{t}=\frac{Q_{G D}}{I_{D R V_{-} p k}}=\frac{14 n}{0.3}=46.7 \mathrm{~ns}
$$

Power Components Calculation: MOSFET (3/3)

- Switch OFF losses: based on the same equation of switch ON

$$
\begin{aligned}
& \qquad P_{S W, \text { off }}=\frac{I_{p_{-} \text {valley }} V_{\text {bulk }, \text { max }} \Delta t}{6} F \\
& \text { Overlap }\left(\Delta_{\mathrm{t}}\right) \text { is extracted from }
\end{aligned}
$$

$$
\Delta_{t}=\frac{Q_{G D}}{I_{D R V-p k}}=\frac{14 n}{0.35}=40 \mathrm{~ns}
$$

- Total losses:

$$
P_{\text {losses }}=P_{\text {cond }}+P_{S W, o n}+P_{S W, \text { off }}=173+149+355=677 \mathrm{~mW}
$$

Power Components Calculation: Diode (1/2)

- Secondary diodes: D_{1} and D_{2} sustain same Peak Inverse Voltage (PIV):
- Where k_{D} is derating factor of the diodes (40\%)

Power Components Calculation: Diode (2/2)

- Diode selection: MBRB30H60CT (30 A, 60 V in TO-220)
- Losses calculation:
- During ON time : Worst case @ low line ($D C_{\text {max }}$)

$$
\begin{aligned}
P_{\text {cond, forward }} & =I_{\text {out }} V_{f} D C_{\max } \\
& =10 \times 0.5 \times 0.45 \\
& =2.25 \mathrm{~W}
\end{aligned}
$$

- During OFF time : Worst case @ High line $\left(D C_{\text {min }}\right)$

$$
\begin{aligned}
P_{\text {cond,freewheel }} & =I_{\text {out }} V_{f}\left(1-D C_{\min }\right) \\
& =10 \times 0.5 \times(1-0.39) \\
& =3.05 \mathrm{~W}
\end{aligned}
$$

Figure 2. Maximum Forward Voltage

Agenda

1. Generalities on forward converters
2. Core reset: tertiary winding, RCD clamp, 2-switch forward
3. Specs review of the NCP1252's demo board
4. Power components calculation
5. NCP1252 components calculation
6. Closed-loop Feedback: simulations and compensation
7. Demo board schematics \& Picture.
8. Board performance review
9. Conclusions

NCP1252 Components Calculation: $\boldsymbol{R}_{\boldsymbol{t}}$

- Switching frequency selection: a simple resistor allows to select the switching frequency from 50 to 500 kHz :

$$
R_{t}=\frac{1.95 \times 10^{9} V_{R_{t}}}{F_{s w}}
$$

If we assume $F_{s w}=125 \mathrm{kHz}$

$$
R_{t}=\frac{1.95 \times 10^{9} \times 2.2}{125 \mathrm{k}}=34.3 \mathrm{k} \Omega
$$

Where:

Figure 10. Switching Frequency Selection

- $V_{R t}$ is the internal voltage reference (2.2 V) present on R_{t} pin

NCP1252 Components Calculation: Sense Resistor

- NCP1252 features a max peak current sensing voltage to 1 V .
- The sense resistor is computed with 20% margin of the primary peak current ($\left.l_{p, r m s, 20 \%}\right)$: 10\% for the magnetizing current + 10\% for overall tolerances.

$$
\begin{aligned}
& R_{\text {sense }}=\frac{F_{C S}}{I_{p_{-} p k}+20 \%}=\frac{1}{0.946 \times 1.2}=884 \mathrm{~m} \Omega \\
& P_{R_{\text {sense }}}=R_{\text {sense }} I_{p, r m s+20 \%}{ }^{2}=0.884 \times 0.695^{2}=427 \mathrm{~mW}
\end{aligned}
$$

If we select 1206 SMD type of resistor, we need to place 2 resistors in parallel to sustain the power: $2 \times 1.5 \Omega$.

Where:

- $I_{p _p k}$ is the primary peak current
- $I_{p, r m s, 20 \%}$ is the primary rms current with a 20% margin on the peak current

NCP1252 Components Calculation: Ramp Compensation (1/5)

- Ramp compensation prevents sub-harmonic oscillation at half of the switching frequency, when the converter works in CCM and duty ratio close or above 50\%.
- With a forward it is important to take into account the natural compensation due to magnetizing inductor.
- Based on the requested ramp compensation (usually 50\% to 100%), only the difference between the ramp compensation and the natural ramp could be added externally
- Otherwise the system will be over compensated and the current mode of operation can be lost, the converter will work more like a voltage mode than current mode of operation.

NCP1252 Components Calculation: Ramp Compensation (2/5)

- How to build it?

Where:

- $V_{\text {ramp }}=3.5 \mathrm{~V}$, Internal ramp level.
- $R_{\text {ramp }}=26.5 \mathrm{k} \Omega$, Internal pull-up resistance

NCP1252 Components Calculation: Ramp Compensation (3/5)

- Calculation: Targeted ramp compensation level: 100\%
- Internal Ramp:
$S_{\text {int }}=\frac{V_{\text {ramp }}}{D C_{\text {max }}} F_{\text {sw }}=\frac{3.5}{0.50} 125 \mathrm{k}=875 \mathrm{mV} / \mu \mathrm{s}$
- Natural primary ramp

$$
S_{\text {natural }}=\frac{V_{\text {bulk }}}{L_{\text {mag }}} R_{\text {sense }}=\frac{350}{13 \cdot 10^{-3}} 0.75=20.19 \mathrm{mV} / \mu \mathrm{s}
$$

- Secondary down slope

$$
S_{\text {sense }}=\frac{\left(V_{\text {out }}+V_{f}\right)}{L_{\text {out }}} \frac{N_{s}}{N_{p}} R_{\text {sense }}=\frac{(12+0.5)}{27 \cdot 10^{-6}} 0.087 \times 0.75=30.21 \mathrm{mV} / \mu \mathrm{S}
$$

- Natural ramp compensation

$$
\delta_{\text {natural_comp }}=\frac{S_{\text {natural }}}{S_{\text {sense }}}=\frac{20.19}{30.21}=66.8 \%
$$

Where:

- $V_{\text {out }}=12 \mathrm{~V}$
- $L_{\text {out }}=27 \mu \mathrm{H}$
- $V_{f}=0.5 \mathrm{~V}$ (Diode drop)
- $R_{\text {sense }}: 0.75 \Omega$
- $F_{s w}: 125 \mathrm{kHz}$
- $V_{\text {bulk, } \text { min }}=350 \mathrm{~V}$
- $D C_{\text {max }}=50 \%$
- $L_{\text {mag }}=13 \mathrm{mH}$
- $N=0.087$

NCP1252 Components Calculation: Ramp Compensation (4/5)

- As the natural ramp comp. (67\%) is lower than the targeted 100% ramp compensation, we need to calculate a compensation of 33% (100-67).

$$
\begin{aligned}
& \text { Ratio }=\frac{S_{\text {sense }}\left(\delta_{\text {comp }}-\delta_{\text {natural_comp }}\right)}{S_{\text {int }}}=\frac{30.21(1.00-0.67)}{875}=0.0114 \\
& R_{\text {comp }}=R_{\text {ramp }} \frac{\text { Ratio }}{1-\text { Ratio }}=26.5 \cdot 10^{3} \frac{0.0114}{1-0.0114}=305 \Omega
\end{aligned}
$$

NCP1252 Components Calculation: Ramp Compensation (5/5)

- Illustration of correct filtering on CS pin

Figure 15. Comparison of the Voltage on the Current Sense
Resistor and After the RC Filter

NCP1252 Components Calculation: Brown-Out

- Dedicated pin for monitoring the bulk voltage to protects the converter against low input voltage.

NCP1252 Components Calculation: Brown-Out

- From the previous schematic, we can extract the brown-out resistors

$$
\begin{aligned}
& R_{\text {BOlo }}=\frac{V_{\text {BO }}}{I_{B O}}\left(\frac{V_{\text {bulkon }}-V_{\text {BO }}}{V_{\text {bulkoff }}-V_{B O}}-1\right)=\frac{1}{10 \mu}\left(\frac{370-1}{350-1}-1\right)=5731 \Omega \\
& R_{\text {BOlo }}=5.1 \mathrm{k} \Omega+680 \Omega \\
& R_{\text {BOup }}=\frac{V_{\text {bulkon }}-V_{\text {bulkoff }}}{I_{\text {BO }}}=\frac{370-350}{10 \mu}=2.0 \mathrm{M} \Omega \\
& R_{\text {BOup }}=2 \times 1 \mathrm{M} \Omega
\end{aligned}
$$

Where:

- $V_{\text {bulkon }}=370 \mathrm{~V}$, starting point level
- $V_{\text {bulkoff }}=350 \mathrm{~V}$, stopping point level
- $V_{B O}=1 \mathrm{~V}$ (fixed internal voltage reference)
- $I_{B O}=10 \mu \mathrm{~A}$ (fixed internal current source)

Agenda

1. Generalities on forward converters
2. Core reset: tertiary winding, RCD clamp, 2-switch forward
3. Specs review of the NCP1252's demo board
4. Power components calculation
5. NCP1252 components calculation
6. Closed-loop feedback: simulations and compensation
7. Demo board schematics \& picture.
8. Board performance review
9. Conclusions

Small Signal Analysis: Model

- NCP1252's small signal model is available for running and validating the closed loop regulation, as well as the step load response of the power supply with very fast simulation time.

Small Signal Analysis: Power Stage

If we want a crossover @ $F_{c}=6 \mathrm{kHz}$, we need to measure:
$\rightarrow|\mathrm{G}(6 \mathrm{kHz})|=-23 \mathrm{~dB}$
$\rightarrow \operatorname{Arg}(\mathrm{G}(6 \mathrm{kHz}))=-66^{\circ}$

Small Signal Analysis: Open Loop

After applying the K factor method @ $F_{c}=6 \mathrm{kHz}$ and phase margin $=70^{\circ}$, with the help of an automated Orcad simulation, we obtain:

$\mathrm{G}=\{10 * *(-\mathrm{GFc} / 20)\}$
boost $=\{\mathrm{PM}-\mathrm{PFc}-90\}$
$\mathrm{K}=\{\tan (($ boost $/ 2+45) * \mathrm{pi} / 180)\}$ $\mathrm{C} 2=\left\{1 /\left(2^{\star} \mathrm{pi} \mathrm{F}^{*} \mathrm{c}^{*} \mathrm{G}^{*} \mathrm{~K}^{*}\right.\right.$ Rupper $\left.)\right\}$ $\mathrm{C} 1=\left\{\mathrm{C} 2^{*}(\mathrm{PWR}(\mathrm{K}, 2)-1)\right\}$ $R 2=\left\{\mathrm{K} /\left(2^{\star} \mathrm{p} \mathrm{i}^{\star} \mathrm{Fc}^{*} \mathrm{C} 1\right)\right\}$
Fzero $=\{$ Fc/K $\}$
Fpole $=\left\{\mathrm{K}^{*} \mathrm{Fc}\right\}$
Rpullup $=4 \mathrm{k}$
RLED $=\{$ CTR*Rpullup/G $\}$
Czero $=\left\{1 /\left(2^{*}\right.\right.$ pi*Fzero*Rupper $\left.)\right\}$ Cpole $=\left\{1 /\left(2^{*}\right.\right.$ pi*Fpole*Rpullup $\left.)\right\}$
CTR $=0.7$
Lmag $=12.3 \mathrm{mH}$
Sp = \{(Vin/Lmag)*Rsense $\}$
$\mathrm{Vin}=390 \mathrm{~V}$
Cfb $=\{$ Cpole-Cpopto
Cpopto $=3 n F$

Step Load Stability

Validation of the closed loop stability with a step load test

Figure 26. Step Load Response from 5 A to 10 A

Agenda

1. Generalities on forward converters
2. Core reset: tertiary winding, RCD clamp, 2-switch forward
3. Specs review of the NCP1252's demo board
4. Power components calculation
5. NCP1252 components calculation
6. Closed-loop feedback: simulations and compensation
7. Demo board schematics \& picture.
8. Board performance review
9. Conclusions

NCP1252 Demo Board Schematic (1/2)

(Drive and $V_{c c}$ circuits are shown on the next slide)

NCP1252 Demo Board Schematic (2/2)

NCP1252 Demo Board: Pictures

Top view

Bottom view

Link to demoboard web page:
http://www.onsemi.com/PowerSolutions/evalBoard.do?id=NCP1252TSFWDGEVB
Or from the page of the NCP1252:
http://www.onsemi.com/PowerSolutions/product.do?id=NCP1252

Agenda

1. Generalities on forward converters
2. Core reset: tertiary winding, RCD clamp, 2-switch forward
3. Specs review of the NCP1252's demo board
4. Power components calculation
5. NCP1252 components calculation
6. Closed-loop feedback: simulations and compensation
7. Demo board schematics \& picture.
8. Board performance review
9. Conclusions

NCP1252 Demo Board: Efficiency

Figure 28. Efficiency Measurement at Room Temperature and Nominal Input Voltage (390 V dc) versus Output Load Variation

NCP1252

Demo Board: No Load Operation

Figure 25. No Load Regulation (Real No Load to the Output) Vout $=12.096 \mathrm{~V}$

- Thanks to the skip cycle feature implemented on the NCP1252, it is possible to achieve a real no load regulation without triggering any overvoltage protection. The demonstration board does not have any dummy load and ensure a correct no load regulation. This regulation is achieved by skipping some driving cycles and by forcing the NCP1252 in burst mode of operation.

NCP1252 Demo Board: Soft Start

One dedicated pin allows to adjust the soft start duration and control the peak current during the startup

Figure 23. Soft Start at Full Load (10 A)

NCP1252 Demo Board: Performance Improvements

- Synchronous rectification on the secondary side of the converter \rightarrow will save few percent of the efficiency from middle to high load.
- Stand-by power: The NCP1252 can be shut down by grounding the BO pin \rightarrow less than $100 \mu \mathrm{~A}$ is sunk on $V_{c c}$ rail when NCP1252 is shutdown.

Agenda

1. Generalities on forward converters
2. Core reset: tertiary winding, RCD clamp, 2-switch forward
3. Specs review of the NCP1252's demo board
4. Power components calculation
5. NCP1252 components calculation
6. Closed-loop feedback: simulations and compensation
7. Demo board schematics \& picture.
8. Board performance review

9. Conclusions

Conclusion

- NCP1252 features high-end characteristics in a small 8-pin package
- Added or improved functions make it powerful \& easy to use
- Low part-count
- Ideal candidate for forward applications, particularly adapters, ATX power supplies and any others applications where a low standby power is requested.

References

- Datasheet: NCP1252/D "Current Mode PWM Controller for Forward and Flyback Applications"
- Application note: AND8373/D "2 Switch-Forward Current Mode Converter" Detailed all the calculations presented in this document.
- C. Basso, Director application engineer at ON Semiconductor. "Switch Mode Power Supplies: SPICE Simulations and Practical Designs", McGraw-Hill, 2008.
- Note : Datasheet and application note are available on
www.onsemi.com.

For More Information

- View the extensive portfolio of power management products from ON Semiconductor at www.onsemi.com
- View reference designs, design notes, and other material supporting the design of highly efficient power supplies at www.onsemi.com/powersupplies

