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Why Implement PFC?

• The mains utility provides a sinusoidal voltage Vin(t).
• The shape and phase of Iin(t) depend on the load. 

( ) ?inI t =

Ac line

( )( ) 2 sin( )in in rmsV t V tω= ⋅ ⋅
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AC Line Rectification Leads to  
Current Spikes…

• Only the fundamental component produces real power
• Harmonic currents circulate uselessly (reactive power)
• The line rms current increases

12

3

Vin(t)Iin(t)

Cbulk is refueled
when Vin(t) > Vout

Ac
Line

Rectifiers

Bulk 
Storage 
Capacitor

Converter

Load

VIN

High current
spike!
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Too High rms Currents!...

Pin(avg) = 119 W, Vin(rms) = 85 V
Iin(rms) = 1.4 A

Pin(avg) = 119 W, Vin(rms) = 85 V
Iin(rms) = 2.5 A

Same
power
(W)

(Iin(rms))max = 16 A

n°1

n°2

n°1

n°2

16/2.5 = 6 monitors

16/1.4 = 11 resistors

PF = 0.56

PF = 1.00

• High rms currents reduce outlet capability

( )
( )

( )

in avg
in rms

in rms

P
I

V PF
=

⋅
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Power Factor Standard

• The standard specifies a maximum level up to harmonic 39
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Need for a PFC Stage

• A boost pre-converter draws a sinusoidal current from the 
line to provide a dc voltage (bulk voltage)

• The current within the coil is made sinusoidal by:
– Forcing it to follow a sinusoidal reference (current mode)
– Controlling the duty-cycle appropriately (voltage mode) 

+ 

- 

IN

Diode Bridge PFC Stage Power Supply

Bulk
CapacitorController LOAD

AC
Line LOADController

+ 

- 

IN

Diode Bridge PFC Stage Power Supply

Bulk
CapacitorController LOAD

AC
Line LOADController

Icoil,pk

Current
reference

Iline(t)

Icoil,pk

Current
reference

Iline(t)
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Operating Modes Overview
• ON Semiconductor offers solutions for three modes

Operating Mode Main Feature

Critical conduction 
Mode (CrM)

Large rms current
Switching frequency is not 
fixed

e.g.: NCP1606

Frequency Clamped
Critical Conduction 

Mode (FCCrM)

Large rms current
Frequency is limited
Reduced coil inductance

e.g.: NCP1605

Continuous
Conduction Mode

(CCM)

Always hard-switching
Inductor value is largest
Minimized rms current

e.g.: NCP1654

IL

IL

IL

TclampTclamp

Operating Mode Main Feature

Critical conduction 
Mode (CrM)

Large rms current
Switching frequency is not 
fixed

e.g.: NCP1606

Frequency Clamped
Critical Conduction 

Mode (FCCrM)

Large rms current
Frequency is limited
Reduced coil inductance

e.g.: NCP1605

Continuous
Conduction Mode

(CCM)

Always hard-switching
Inductor value is largest
Minimized rms current

e.g.: NCP1654

IL

IL

IL

TclampTclamp
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FCCrM: an Efficient Mode
• Frequency Clamped CrM seems the most efficient solution
• Efficiency of a 300 W, wide mains PFC has been measured:

The complete
study will be
published in the 
PFC handbook
revision that will
be released in 
Q1 2009.

Efficiency at 100 Vrms

20% 30% 40% 50% 60% 70% 80% 90% 100%
Output Load

NCP1605 (FCCrM)

NCP1654 (CCM)NCP1606 (CrM)

Efficiency at 100 Vrms

20% 30% 40% 50% 60% 70% 80% 90% 100%
Output Load

NCP1605 (FCCrM)

NCP1654 (CCM)NCP1606 (CrM)
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New Needs to Address
• High efficiency for ATX power supplies:

– Efficiency is measured at:
• 20% Pout(max)

• 50% Pout(max)

• 100% Pout(max)

• Slim LCD TVs:
– Components height is limited
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• Two small PFC stages delivering (Pin(avg) / 2) in lieu of a 
single big one

• If the two phases are out-of-phase, the resulting currents
(IL(tot)) and (ID(tot)) exhibit a dramatically reduced ripple.

Interleaved PFC
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Interleaved Benefits
• More components but:

– A 150 W PFC is easier to design than a 300 W one
– Modular approach
– Two DCM PFCs look like a CCM PFC converter…

• Eases EMI filtering and reduces the output rms current

• Only interleaving of DCM PFCs will be considered

0

0

0

0

3

2

1(Icoil)phase1 (Icoil)phase2

Iin

time
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Input Current Ripple
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Computing the Input Current Ripple
• Let’s assume that:

– Vin and the switching period are constant over few cycles
– The two branches operate in CrM

• There are two cases:
– Vin<Vout /2  (or d>0.5): 
The on-times of the two phases overlap. The input
current peaks at the end of the conduction intervals.

– Vin>Vout /2  (or d<0.5): 
There is no overlap but still, the input current peaks
at the end of the each conduction time

• Using , we can derive the current ripple1on in

sw out

t Vd
T V

⎛ ⎞
= = −⎜ ⎟⎜ ⎟

⎝ ⎠
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Peak Current
envelop

Valley Current
envelop

Peak to peak ripple

Averaged input 
current

(line current)

Finally,…

( )
2
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in
VV t ≤ ( )
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Peak to Peak Ripple of the Input Current

• The input ripple only
depends on the ratio (Vin 
/Vout):

• Unlike in CCM:
– L plays no role
– The ripple percentage does

not depend on the load

• At low line (Vin /Vout = 0.3), 
the ripple is +/-28% (at the 
sinusoid top, assuming 180°
phase shift and CrM operation)
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Input Current Ripple at Low Line
• When Vin remains lower than Vout /2, the input current looks 

like that of a CCM, hysteretic PFC
• (IL(tot)) swings between two nearly sinusoidal envelops

 Peak, averaged and valley current @ 90 Vrms, 320 W input
(Vout = 390 V)
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Input Current Ripple at High Line
• When Vin exceeds (Vout /2), the valley current is constant!

• It equates where Rin is the PFC input impedance

 Peak, averaged and valley current @ 230 Vrms, 320 W input
(Vout = 390 V)
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Line Input Current
• For each branch, somewhere within the sinusoid:

• The sum of the two averaged, sinusoidal phases currents
gives the total line current:

• Assuming a perfect current balacing:

• The peak current in each branch is Iin(t)

( ) 1 2
2
sw sw sw

in L LTL tot T TI I I I= = +

1 22 2
sw sw

L L inT TI I I⋅ = ⋅ =

IL1
1

sw
L TI

12
sw

L TI⋅

IL1
1

sw
L TI

12
sw

L TI⋅
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Ac Component of the Refueling Current

• The refueling current (output diode(s) current) depends on 
the mode:

Iin Iin Iin

2.Iin Phase 1
Phase 2

Single phase CCM Single phase CrM Interleaved CrM

in
in

out

VI
V

⋅
2
3

in
in

out

VI
V

⋅
2
3

in
in

out

VI
V

⋅

rms value 
over Tsw

rms value 
over Tsw

rms value 
over Tsw
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A Reduced RMS Current in the Bulk Capacitor
• Integration over the sinusoid leads to (resistive load):

• Interleaving dramatically reduces the rms currents
reduced losses, lower heating, increased reliability

Diode(s) rms
current
(ID(rms))

ID(tot)(rms) = 1.5 A
IC(rms) = 1.3 A

ID(rms) = 2.2 A
IC(rms) = 2.1 A

ID(rms) = 1.9 A
IC(rms) = 1.7 A

300 W, 
Vout=390V 

Vin(rms)=90 V

Capacitor
rms current

(IC(rms))

Interleaved CrM or 
FCCrM PFC
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Summary
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Interleaving: Master/Slave Approach…
• The master branch operates freely
• The slave follows with a 180° phase shift
• Main challenge: maintaining the CrM operation (no CCM, 

no dead-time)

2
swT

2
swT

2
swT

2
swT

2
swT

2
swT

Current mode: inductor unbalance Voltage mode: on-time shift 

2
swT

2
swT

2
swT

2
swT

2
swT

2
swT

L2 < L1
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Interleaving: Independent Phases Approach…
• Each phase properly operates in CrM or FCCrM.
• The two branches interact to set the 180° phase shift
• Main challenge: to keep the proper phase shift

• We selected this approach

2
swT

2
swT

2
swT

2
swT

2
swT

2
swT

CrM operation is
maintained but 

a perturbation of 
the on-time may

degrade the 
180° phase shift

On-time perturbation for one phase
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General Principle on a Two-NCP1601 Solution
• The solution lies on the Frequency Clamp Critical

Conduction mode, unique scheme developed by ON 
Semiconductor (NCP1601)

• Two NCP1601 drive two independent PFC branches:
– Auxiliary windings are used to detect the core reset of each branch
– The current sensing is shared by the two stages for protection only

(Over Current Limitation)

• The two branches are operating in voltage mode
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Synchronization: the Main Challenge
• One driver (DRV2) synchronizes the two branches so that:

– Branch 1 (DRV1) cannot turn high until a time τ has elapsed
– Branch 2 (DRV2) cannot dictate a new conduction phase within 2τ

• Hence:
– In fixed frequency operation, the switching period for each branch is

2τ and the two phases are naturally interleaved
– In CrM, the switching frequency is that imposed by the current cycle 

(Tsw>2τ) and must stabilize out of phase. 

• Possible slippages are contained by a phase compensation 
circuitry (refer to www.onsemi.com for detailed AN available
in Q4 2008). 
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NCP1601 Synchronization Capability

• The oscillator
oscillates
between 3.5 and 
5 V

• The NCP1601 
generates a clock
when the 
oscillator goes
below 3.5 V

• The clock signal 
is stored until
ZCD is detected

+

-

50 µA

100 µA
5.0 V
/ 3.5 V S

R

Q

Q

Cosc

DRV

CLOCK

OSC pin

Fixed Frequency Critical Conduction Mode

5 V

3.5 V

ZCD

Vosc

IL(coil 
current)

CLOCK

Dead-time

5 V

3.5 V

ZCD

Vosc

IL(coil 
current)

CLOCK

Dead-time
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Operation @ 230 Vrms, Medium Load

• Each stage operates
in fixed frequency
mode

• Both branches are 
synchronized to DRV2

• A new DRV2 pulse 
can take place after 2τ

• A new DRV1 pulse 
can occur after τ

• The switching period
for each branch is
then 2τ and they
operate out of phase.

SYNC2

DRV2

SYNC1

DRV1

2 τ

τ

A new drive sequence cannot take place as long as the SYNC signal remains
higher than 3.5 V (see NCP1601 operation).
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Operation at Low Line, Full Load

• The circuit operates in 
critical conduction 
mode

• The operation of both
branches are 
synchronized to DRV2

• A new DRV2 pulse 
can take place after
2τ, but the MOSFET 
turn on is delayed until
the core is reset

• A new DRV1 pulse 
can occur after τ, but 
again, the MOSFET 
turn on is delayed until
the core is reset

SYNC2

DRV2

SYNC1

DRV1
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Remarks on the Solution
• The NCP1601 operates in voltage mode 
• Same on-time and hence switching period in the two branches
• A coil imbalance

– Does not affect the switching period
– “Only” causes a difference in the power amount conveyed by each branch

• The two branches are synchronized but they operate independently:
– Discontinuous conduction mode is guaranteed (zero current detection)
– No risk of CCM operation
– Both branches enter CrM at full load

Phase 1
Phase 2

ton
time

ton

L1 > L2
(1) 2

(2) 1

in

in

I L
I L

=
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The Board…

Buck 
converter
to provide

Vcc (not 
used for 

test)
Two

NCP1601 
circuits

Wide mains, 
300 W, PFC 

pre-converter

MUR550
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Input Voltage and Current

• As expected, the input current looks like a CCM one
• At high line, frequency foldback influences the ripple

Full load, 90 Vrms Full load, 230 Vrms
IL(tot) (2 A/div)

Vin (50 V/div)

IL(tot) (2 A/div)

Vin (100 V/div)
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Zoom of the Precedent Plots

• These plots were obtained at the sinusoid top
• The current swings at twice the frequency of each phase
• At low and high line, the phase shift is substantially 180°

Full load, 90 Vrms Full load, 230 Vrms
IL(tot) (2 A/div)

DRV1

IL(tot) (1 A/div)

DRV2

DRV1

DRV2
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No Overlap between the Refueling Sequences

• CrM at low line with valley switching
• Fixed frequency operation at high line (frequency foldback)
• No overlap between the demag. phases in both cases

Full load, 90 Vrms Full load, 230 VrmsIL(tot) (2 A/div) IL(tot) (1 A/div)

Vds1

Vds2

Vds1

Vds2
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Performance Measurements
• Conditions for the measurements:

– The measurements were made after the board was 30 mn operated full 
load, low line

– All the measurements were made consecutively without interruption
– PF, THD, Iin(rms) were measured by a power meter PM1200
– Vin(rms) was measured directly at the input of the board by a HP 34401A 

multimeter
– Vout was measured by a HP 34401A multimeter
– The input power was computed according to: 

– Open frame, ambient temperature, no fan

( ) ( ) ( )in avg in rms in rmsP V I PF= ⋅ ⋅
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Efficiency versus Load

92.5%

93.8%

95.0%

96.3%

97.5%

98.8%

100.0%

30 60 90 120 150 180 210 240 270 300 330

Output power (W)

Ef
fic

ie
nc

y 
(%

)

230 Vrms

120 Vrms

90 Vrms

20% Pmax Pmax

The plot portrays the efficiency over the line range, from 20% to 100% of the load
The efficiency remains higher than 95%!

Results obtained
in a relatively

high frequency
application 

allowing the use 
of small

inductors:
(85 kHz in each

phase at 90 Vrms, 
full load,

L1 = L2 =150 µH)
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Switching Frequency (at the Sinusoid Top)

230 Vrms

120 Vrms

90 Vrms

The plot portrays fsw (sinusoid top) over the line range, as a function of the load
The PFC stages operate in CrM at full load

CrM lowers the 
switching frequency

Frequency foldback

85 kHz
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Conclusion
• Interleaved PFCs

– Reduce the input current ripple
– Lower the bulk capacitor rms current

• Two NCP1601 provide an efficient solution for interleaving
• Besides interleaving, this solution takes benefit of:

– The FCCrM mode that optimizes the efficiency
– MUR550 diodes optimized for DCM PFC applications
– Frequency foldback (light load)

• The solution has been tested on a 300 W, wide mains board
• 95% efficiency at 90 Vrms over a large load range (from

20% to 100% load)
• A 16-pin interleaved PFC controller is under development
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Agenda
• Introduction

Basic solutions for power factor correction
New needs to address

• Interleaved PFC
Basic characteristics
A discrete solution
Performance

• Bridgeless PFC
Why should we care of the input bridge?
Main solutions
Ivo Barbi solution
Performance of a wide mains, 800 W application

• Conclusion

No bridge!
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The Diodes Bridge

• The diodes bridge rectifies the ac line voltage
• Two diodes conduct simultaneously
• The PFC input current flows through two series diodes

Ac line
EMI 
filter

PFC
stage

+

+
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Efficiency Loss caused by the Diodes Bridge

• Average current flowing through the input diodes:

• Dissipation in the diodes bridge:

• If Vf = 1 V and (Vin(rms))LL = 90 V:

In low mains applications (@ 90 Vrms), the diodes 
bridge wastes about 2% efficiency!

( )

2 2( )
lineline

out
bridge line TT in rms

PI I t
Vπ η

= = ⋅
⋅

( )

2 22 2 out
bridge f bridge f

in rms

PP V I V
Vη π
⋅

= ⋅ ⋅ ≈ ⋅ ⋅
⋅ ⋅

2% out
bridge

PP
η

≈ ⋅
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Switching cell when PH2 is high
M1 is off

Switching cell when PH1 is high
M2 is off

Basic Bridgeless PFC

Ac Line

PH1

PH2

L
D1 D2

M1 M2
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Ac Line

PH1

PH2

Operation with Positive Half-Wave

M2 body diode grounds PH2 as would a diode bridge.

M1 is on: conduction time

M1 is open: off time
D1

M1

M2
Body 
diode

PH1 is high, PH2 is low:
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Operation with Negative Half-Wave

Both line terminals are pulsating at the switching frequency
The pulsation swing is high (VOUT)
HF noise that leads to a tedious EMI filtering

M2 is on: conduction time

M1 is open: off time D2

M1
Body 
diode

M2

Ac Line

PH1

PH2

PH1 is low, PH2 is high:
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Ivo Barbi Bridgeless Boost

Two PFC stages but:
– One driver with no need for detecting the active half-wave
– Improved thermal performance
– As with convential PFC stages, the negative phase is always

attached to ground. EMI issue is solved.

« PH1 »
PFC 
stage

« PH2 »
PFC 
stage

Ac Line

PH1

PH2

DRV
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Current Sharing

Phase 2 current (5 A/div)

Phase 1 current (5 A/div)

Part of the current flows…
… through the supposedly inactive MOSFET and coil

0 A

0 A

Part of the active 
phase current

flows throught the 
inactive MOSFET 

and coil!
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Two Return Paths…

Need for current sense transformers

PH2 is the positive terminal

Vin

0 V

MOSFET is on

MOSFET is off

Body diode

Ac Line

PH1

PH2

DRV

Small low frequency impedance

Rsense
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Schematic for 800 W Prototype
« PH1 » PFC stage

« PH2 » PFC stage
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Board Photograph

NCP1653
And

MC33152
MOSFET 

driver

Bulk
converter to 
generate the 
Vcc voltage
(NCP1012)
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Typical Waveforms

• These plots portray typical waveforms at full load (Iout = 2.1 A)
• “CS” is representative of the current flowing into the MOSFETs of the 

two branches (common output of the current transformers)
• The input current is sinusoidal

Iline (10 A/div)

CS (negative sensing)

Vout

Vin,1 (input voltage for branch 1)

Iline (10 A/div)

Vout

CS (negative sensing)

Vin,1

90 Vrms 230 Vrms
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Zoom of the Precedent Plots                 
(Top of the Sinusoid)

• The switching frequency is 100 kHz
• The waveforms are similar to those of a traditional CCM PFC

Iline (10 A/div)

Vsense (negative sensing)

Vout

Vin,1 (input voltage for branch 1)

Iline (10 A/div)

Vout

Vsense (negative sensing)

Vin,1

90 Vrms 230 Vrms
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Performance Measurements
• Conditions for the measurements:

– The measurements were made after the board was 30 mn operated full load, 
low line

– All the measurements were made consecutively without interruption
– PF, THD, Iin(rms) were measured by a power meter PM1200 
– Vin(rms) was measured directly at the input of the board by a HP 34401A 

multimeter
– Vout was measured by a HP 34401A multimeter
– The input power was computed according to: 

– Open frame, ambient temperature, no fan

( ) ( ) ( )in avg in rms in rmsP V I PF= ⋅ ⋅
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Efficiency versus Load
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90 Vrms

20% Pmax Pmax

The plot portrays the efficiency from 20% to 100% of the load
At 90 Vrms, full load, it is about 94% without fan (95% at 100 Vrms)
At 20% of full load, efficiency is in the range or higher than 96%
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THD versus Load

• THD remains very low on the whole range

0.0
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10.0

15.0

20.0

100 200 300 400 500 600 700 800 900

Output power (W)
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Conclusion
• A bridgeless PFC controlled by the NCP1653 has been 

developed (100 kHz)
• The prototype was tested at full load (800 W output) without 

fan (open frame, ambient temperature)
• In these conditions, the efficiency was measured in the 

range of 94% at 90 Vrms and 95% at 100 Vrms

• The THD remains very low 
• Bridgeless can be an efficient solution for high power 

applications.
• An application note is being prepared and should be posted 

in Q4 this year.
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Agenda
• Introduction

Basic solutions for power factor correction
New needs to address

• Interleaved PFC
Basic characteristics
A discrete solution
Performance

• Bridgeless PFC
Why should we care of the input bridge?
Main solutions
Ivo Barbi solution
Performance of a wide mains, 800 W application

• Conclusion
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Conclusion
• New requirements:

• Compactness and form factor (LCD TV)
• Efficiency (ATX power supplies)

• New solutions can address them
• Interleaved PFC brings:

• Efficiency
• Flat design
• Improved heat distribution
• Reduced rms current through the PFC stage
• Modular approach

• Bridgeless PFC:
• halves the losses in the input rectification
• Improves the heat distribution

• ON Semiconductor supports these innovative approaches
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For More Information

• View the extensive portfolio of power management products from ON 
Semiconductor at www.onsemi.com

• View reference designs, design notes, and other material supporting 
the design of highly efficient power supplies at 
www.onsemi.com/powersupplies


