## ON

ON Semiconductor ${ }^{\circledR}$

## Advanced Power Factor Correction

## Agenda

- Introduction
- Basic solutions for power factor correction
- New needs to address
- Interleaved PFC
- Basic characteristics
- A discrete solution
- Performance
- Bridgeless PFC
- Why should we care of the input bridge?
- Main solutions

- Ivo Barbi solution
- Performance of a wide mains, 800 W application
- Conclusion


## Agenda

- Introduction
- Basic solutions for power factor correction
- New needs to address
- Interleaved PFC
- Basic characteristics
- A discrete solution
- Performance
- Bridgeless PFC
- Why should we care of the input bridge?
- Main solutions

| Harmonic | Class-A <br> Amp | Class-B <br> Amp | Class-C <br> \% of Fund | Class-D mA/Watt |
| :---: | :---: | :---: | :---: | :---: |
| 2 | 1.08 | 1.62 | 2 |  |
| 3 | 2.30 | 3.45 | $30 *$ PF | 3.4 |
| 4 | 0.43 | 0.65 |  |  |
| 5 | 1.44 | 2.16 | 10 | 1.9 |
| 6 | 0.30 | 0.45 |  |  |
| 7 | 0.77 | 1.12 | 7 | 1 |
| 8 | 0.23 | 0.35 |  |  |
| 9 | 0.40 | 0.60 | 5 | 0.5 |
| 10 | 0.18 | 0.28 |  |  |
| 11 | 0.33 | 0.50 | 3 | 0.35 |
| 12 | 0.15 | 0.23 |  |  |
| 13 | 0.21 | 0.32 | 3 | 0.296 |
| 14/40 (even) | 1.84/n | 2.76/n |  |  |
| 15/39 (odd) | 2.25/n | 3.338/n | 3 | 3.85/n |

- Ivo Barbi solution
- Performance of a wide mains, 800 W application
- Conclusion


## Why Implement PFC?



- The mains utility provides a sinusoidal voltage $\boldsymbol{V}_{i n}(\boldsymbol{t})$.
- The shape and phase of $\boldsymbol{I}_{\boldsymbol{i n}}(\boldsymbol{t})$ depend on the load.


## AC Line Rectification Leads to Current Spikes...



- Only the fundamental component produces real power
- Harmonic currents circulate uselessly (reactive power)
- The line rms current increases


## Too High rms Currents!...

- High rms currents reduce outlet capability

$$
\begin{aligned}
\mathrm{n}^{\circ} 1 & -P_{\text {in(avg })}=119 \mathrm{~W}, V_{i n(\mathrm{rms})}=85 \mathrm{~V} \\
& -I_{\text {in(rms })}=2.5 \mathrm{~A} \\
\mathrm{n}^{\circ} 2 & -P_{\text {in(avg })}=119 \mathrm{~W}, V_{i n(\mathrm{rms})}=85 \mathrm{~V} \\
& -I_{\text {in(rms) }}=1.4 \mathrm{~A}
\end{aligned}
$$



## Power Factor Standard



- The standard specifies a maximum level up to harmonic 39


## Need for a PFC Stage



- A boost pre-converter draws a sinusoidal current from the line to provide a dc voltage (bulk voltage)
- The current within the coil is made sinusoidal by:
- Forcing it to follow a sinusoidal reference (current mode)
- Controlling the duty-cycle appropriately (voltage mode)


## Operating Modes Overview

- ON Semiconductor offers solutions for three modes

|  | Operating Mode | Main Feature |
| :---: | :---: | :---: |
|  | Continuous Conduction Mode (CCM) | Always hard-switching Inductor value is largest Minimized rms current e.g.: NCP1654 |
|  | Critical conduction Mode (CrM) | Large rms current Switching frequency is not fixed <br> e.g.: NCP1606 |
|  | Frequency Clamped Critical Conduction Mode (FCCrM) | Large rms current Frequency is limited Reduced coil inductance e.g.: NCP1605 |

## FCCrM: an Efficient Mode

- Frequency Clamped CrM seems the most efficient solution
- Efficiency of a 300 W , wide mains PFC has been measured:


The complete study will be published in the PFC handbook revision that will be released in Q1 2009.

## New Needs to Address

- High efficiency for ATX power supplies:
- Efficiency is measured at:
- $20 \% P_{\text {out(max) }}$
- $50 \% P_{\text {out(max }}$
- 100\% $P_{\text {out(max) }}$


- Slim LCD TVs:
- Components height is limited



## Agenda

- Introduction
- Basic solutions for power factor correction
- New needs to address
- Interleaved PFC
- Basic characteristics
- A discrete solution
- Performance
- Bridgeless PFC

- Why should we care of the input bridge?
- Main solutions
- Ivo Barbi solution
- Performance of a wide mains, 800 W application
- Conclusion


## Interleaved PFC

- Two small PFC stages delivering ( $\boldsymbol{P}_{\text {in(avg) }} / 2$ ) in lieu of a single big one

- If the two phases are out-of-phase, the resulting currents $\left(I_{L(t o t)}\right)$ and $\left(I_{D(t o t)}\right)$ exhibit a dramatically reduced ripple.


## Interleaved Benefits

- More components but:
- A 150 W PFC is easier to design than a 300 W one
- Modular approach
- Two DCM PFCs look like a CCM PFC converter...
- Eases EMI filtering and reduces the output rms current
- Only interleaving of DCM PFCs will be considered



## Input Current Ripple



## Computing the Input Current Ripple

- Let's assume that:
- $\boldsymbol{V}_{\text {in }}$ and the switching period are constant over few cycles
- The two branches operate in CrM
- There are two cases:
$-V_{\text {in }}<V_{\text {out }} / 2$ (or $\mathrm{d}>0.5$ ):
The on-times of the two phases overlap. The input current peaks at the end of the conduction intervals.

$-V_{\text {in }}>V_{\text {out }} / 2$ (or $\mathrm{d}<0.5$ ):
There is no overlap but still, the input current peaks at the end of the each conduction time

- Using $\left(d=\frac{t_{\text {on }}}{T_{\text {sw }}}=1-\frac{V_{\text {in }}}{V_{\text {out }}}\right)$, we can derive the current ripple


## Finally,...

|  | $V_{\text {in }}(t) \leq \frac{V_{\text {out }}}{2}$ | $V_{\text {in }}(t) \geq \frac{V_{\text {out }}}{2}$ |
| :---: | :---: | :---: |
| Averaged input current (line current) | $I_{\text {in }}(t)=\left\langle I_{L(t o t)}\right\rangle_{T_{\text {sw }}}=$ | $\frac{V_{i n}}{R_{i n}}=\frac{V_{\text {in }} \cdot P_{\text {in(avg })}}{V_{\text {in }(r m s)}{ }^{2}}$ |
| Peak to peak ripple | $\left(\Delta I_{L \text { (tot) }}\right)_{p p}=I_{\text {in }} \cdot\left(1-\frac{V_{\text {in }}}{V_{\text {out }}-V_{\text {in }}}\right)$ | $\left(\Delta L_{L \text { (tot) }}\right)_{p p}=I_{\text {in }} \cdot\left(2-\frac{V_{\text {out }}}{V_{\text {in }}}\right)$ |
| Peak Current envelop | $\left(L_{L \text { (tot }}\right)_{p k}=2 \cdot I_{\text {in }} \cdot\left(1-\frac{V_{\text {out }}}{4 \cdot\left(V_{\text {out }}-V_{\text {in }}\right)}\right)$ | $\left(I_{L(\text { tot })}\right)_{p k}=2 \cdot I_{\text {in }} \cdot\left(1-\frac{V_{\text {out }}}{4 \cdot V_{\text {in }}}\right)$ |
| Valley Current envelop | $\left(I_{L(\text { tot }}\right)_{V}=I_{\text {in }} \cdot \frac{V_{\text {out }}}{2 \cdot\left(V_{\text {out }}-V_{\text {in }}\right.}$ | $\left(L_{L(\text { tot })}\right)_{V}=\frac{P_{\text {in }(\text { avg })} \cdot V_{\text {out }}}{2 \cdot V_{\text {in }(\text { rms }}{ }^{2}}$ |

## Peak to Peak Ripple of the Input Current



- The input ripple only depends on the ratio ( $V_{i n}$ $/ V_{\text {out }}$ :
- Unlike in CCM:
- L plays no role
- The ripple percentage does not depend on the load
- At low line ( $V_{\text {in }} / V_{\text {out }}=0.3$ ), the ripple is $+/-28 \%$ (at the sinusoid top, assuming $180^{\circ}$ phase shift and CrM operation)


## Input Current Ripple at Low Line

- When $V_{i \underline{n}}$ remains lower than $V_{\text {out }} \underline{I 2}$, the input current looks like that of a CCM, hysteretic PFC
- $\left(I_{L(t o t)}\right)$ swings between two nearly sinusoidal envelops



## Input Current Ripple at High Line

- When $V_{i \underline{n}}$ exceeds $\left(V_{\text {out }} / 2\right)$, the valley current is constant! - It equates $\left(\frac{V_{\text {out }}}{2 \cdot R_{\text {in }}}\right)$ where $\boldsymbol{R}_{\text {in }}$ is the PFC input impedance



## Line Input Current

- For each branch, somewhere within the sinusoid:

- The sum of the two averaged, sinusoidal phases currents gives the total line current:

$$
I_{\text {in }}=\left\langle I_{L(t o t)}\right\rangle_{\frac{T_{s w}}{2}}=\left\langle I_{L 1}\right\rangle_{T_{s w}}+\left\langle I_{L 2}\right\rangle_{T_{s w}}
$$

- Assuming a perfect current balacing:

$$
2 \cdot\left\langle I_{L 1}\right\rangle_{T_{\text {sw }}}=2 \cdot\left\langle I_{L 2}\right\rangle_{T_{\text {sw }}}=I_{\text {in }}
$$

- The peak current in each branch is $I_{i n}(t)$


## Ac Component of the Refueling Current

- The refueling current (output diode(s) current) depends on the mode:


Single phase CCM



Single phase CrM

_ Phase 1
_ Phase 2

Interleaved CrM

## A Reduced RMS Current in the Bulk Capacitor

- Integration over the sinusoid leads to (resistive load):

|  | Single phase CCM PFC | Single phase CrM or FCCrM PFC | Interleaved CrM or FCCrM PFC |
| :---: | :---: | :---: | :---: |
| Diode(s) rms current <br> ( $\left.I_{D(\mathrm{rms})}\right)$ | $\sqrt{\frac{8 \sqrt{2} \cdot\left(\frac{P_{\text {out }}}{\eta}\right)^{2}}{3 \pi \cdot V_{\text {in( }(m s)} \cdot V_{\text {out }}}}$ | $\frac{2}{\sqrt{3}} \cdot \sqrt{\frac{8 \sqrt{2} \cdot\left(\frac{P_{\text {out }}}{\eta}\right)^{2}}{3 \pi \cdot V_{\text {in(ms) }} \cdot V_{\text {out }}}}$ | $\sqrt{\frac{2}{3}} \cdot \sqrt{\frac{8 \sqrt{2} \cdot\left(\frac{P_{\text {out }}}{\eta}\right)^{2}}{3 \pi \cdot V_{\text {in }(\mathrm{ms})} \cdot V_{\text {out }}}}$ |
| Capacitor rms current (I $\left.\boldsymbol{I}_{(\mathrm{rms})}\right)$ | $\sqrt{\frac{8 \sqrt{2} \cdot\left(\frac{P_{\text {out }}}{}\right)^{2}}{3 \pi \cdot V_{\text {in(ms }} \cdot V_{\text {out }}}-\left(\frac{P_{\text {out }}}{V_{\text {out }}}\right)^{2}}$ | $\sqrt{\frac{32 \sqrt{2} \cdot\left(\frac{P_{\text {out }}}{\eta}\right)^{2}}{9 \pi \cdot V_{\text {in(ms }} \cdot V_{\text {out }}}\left(\frac{P_{\text {out }}}{V_{\text {out }}}\right)^{2}}$ | $\sqrt{\frac{16 \sqrt{2} \cdot\left(\frac{P_{\text {out }}}{\eta}\right)^{2}}{9 \pi \cdot V_{\text {in( }(\text { ms })} \cdot V_{\text {out }}}-\left(\frac{P_{\text {out }}}{V_{\text {out }}}\right)^{2}}$ |
| $\begin{gathered} 300 \mathrm{~W}, \\ V_{\text {out }}=390 \mathrm{~V} \\ V_{\text {in }(\mathrm{rms})}=90 \mathrm{~V} \end{gathered}$ | $\begin{aligned} & I_{D(\mathrm{rms})}=1.9 \mathrm{~A} \\ & I_{C(\mathrm{rms})}=1.7 \mathrm{~A} \end{aligned}$ | $\begin{aligned} & I_{D(\mathrm{rms})}=2.2 \mathrm{~A} \\ & I_{C(\mathrm{rms})}=2.1 \mathrm{~A} \end{aligned}$ | $\begin{aligned} & I_{D(t \mathrm{t})(\mathrm{rms})}=1.5 \mathrm{~A} \\ & I_{C(\mathrm{rms})}=1.3 \mathrm{~A} \end{aligned}$ |

- Interleaving dramatically reduces the rms currents
$\rightarrow$ reduced losses, lower heating, increased reliability

Summary

|  | Single FCCrM stage |  | Interleaved FCCrM stage |  | Single CCM stage |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | General | 300 -W, wide mains | General | $300-W$, wide mains | General | 300 -W, wide mains |
| $\Delta \mathrm{l}_{\text {in }}^{\text {max }}$ ( ${ }^{\text {( }}$ ) | Independent on L | 10.0 A | Independent on L | 2.6 A | Depends on L | $\begin{gathered} 2.6 \mathrm{~A} \\ \text { (at } 90 \text { V } \mathrm{V} \text { th }, \text { full } \\ \text { load if } \mathrm{L}=250 \\ \mu \mathrm{H} \text { ) } \end{gathered}$ |
| Inductor | 1 coil | $75 \mu \mathrm{H}$ $\mathrm{I}_{\mathrm{L} . \mathrm{p} \mid \text { max } \mid}=10 \mathrm{~A}$ <br> $\mathrm{I}_{\mathrm{L}, \mathrm{m} \operatorname{si}(\max )}=4.1 \mathrm{~A}$ $\mathrm{L}^{*} \mathrm{pk}_{\mathrm{DK}}^{2}=7.5 \mathrm{~mJ}$ |  | $150 \mu \mathrm{H}$ $\mathrm{L}_{\mathrm{L}, \mathrm{p} / \mathrm{maxx}}=5.0 \mathrm{~A}$ $\mathrm{I}_{\mathrm{L} \text { mssmax }}=2.0 \mathrm{~A}$ $\mathrm{~L}^{*} \mathrm{I}_{\mathrm{Dk}}{ }^{2}=3.7 \mathrm{~mJ}$ | 1 coil |  |
|  |  | 4.6 W |  | 4.6 W |  | 3.5 W |
| MOSFETs |  | $\begin{aligned} & 1 * \text { SPP20N60 } \\ & \text { or } 2^{*} \text { SPP11N60 } \end{aligned}$ |  | 2*SPP11N60 |  | $\begin{aligned} & 1^{*} \text { SPP20N60 } \\ & \text { or } 2^{*} \text { SPP11N60 } \end{aligned}$ |
| Diode | Ultrafast | MUR550 (TO220) | 2 * Ultrafast |  | Low trr diode | High speed diode (SiC..) |
| $\mathrm{I}_{\text {Cirms }}^{\text {Imax }}$ ( ${ }^{\text {a }}$ ) |  | 2.0 | $\sqrt{\frac{16 \cdot \sqrt{2} \cdot\left(\frac{P_{\text {out }}}{}\right)^{2}}{9^{2 \pi} \cdot V_{\text {mams }} \cdot V_{\text {out }}}-\left(\frac{P_{\text {out }}}{V_{\text {out }}}\right)^{2}}$ | 1.3 | $\sqrt{\frac{8 \sqrt{2} \cdot\left(\frac{P_{\text {ot }}}{\eta}\right)^{2}}{3 \pi \cdot V_{\text {incms }} \cdot V_{\alpha t}}-\left(\frac{P_{\text {ct }}}{V_{\alpha \alpha t}}\right)^{2}}$ | 1.7 |
| EMI complexity | $\begin{aligned} & \text { DM: h } \\ & \text { CM: mo } \end{aligned}$ |  | DM: mode CM: mode |  | DM: mode CM: hig |  |
| Characteristics | Compact | esign | Low profile d | signs | Compact d | sign |

Compared to CrM, FCCrM allows the use of smaller inductances (due to frequency clamp)
The inductance for the single and interleaved FCCrM stages is based on a 130 kHz frequency clamp (high frequency design). The switching frequency is also supposed to be 130 kHz for the CCM stage.

## Agenda

- Introduction
- Basic solutions for power factor correction
- New needs to address
- Interleaved PFC
- Basic characteristics
- A discrete solution
- Performance
- Bridgeless PFC

- Why should we care of the input bridge?
- Main solutions
- Ivo Barbi solution
- Performance of a wide mains, 800 W application
- Conclusion


## Interleaving: Master/Slave Approach...

- The master branch operates freely
- The slave follows with a $180^{\circ}$ phase shift
- Main challenge: maintaining the CrM operation (no CCM, no dead-time)


Current mode: inductor unbalance


Voltage mode: on-time shift

## Interleaving: Independent Phases Approach...

- Each phase properly operates in CrM or FCCrM.
- The two branches interact to set the $180^{\circ}$ phase shift
- Main challenge: to keep the proper phase shift

- We selected this approach


## General Principle on a Two-NCP1601 Solution

- The solution lies on the Frequency Clamp Critical Conduction mode, unique scheme developed by ON Semiconductor (NCP1601)

- Two NCP1601 drive two independent PFC branches:
- Auxiliary windings are used to detect the core reset of each branch
- The current sensing is shared by the two stages for protection only (Over Current Limitation)
- The two branches are operating in voltage mode


## Synchronization: the Main Challenge

- One driver (DRV2) synchronizes the two branches so that:
- Branch 1 (DRV1) cannot turn high until a time $\tau$ has elapsed
- Branch 2 (DRV2) cannot dictate a new conduction phase within $2 \tau$
- Hence:
- In fixed frequency operation, the switching period for each branch is $2 \tau$ and the two phases are naturally interleaved
- In CrM, the switching frequency is that imposed by the current cycle ( $\mathrm{T}_{\mathrm{sw}}>2 \tau$ ) and must stabilize out of phase.
- Possible slippages are contained by a phase compensation circuitry (refer to www.onsemi.com for detailed AN available in Q4 2008).


## NCP1601 Synchronization Capability



- The oscillator oscillates between 3.5 and 5 V
- The NCP1601 generates a clock when the oscillator goes below 3.5 V
- The clock signal is stored until ZCD is detected


Critical Conduction Mode

## Operation @ $230 \mathrm{~V}_{\text {rms }}$, Medium Load



- Each stage operates in fixed frequency mode
- Both branches are synchronized to DRV2
- A new DRV2 pulse can take place after $2 \tau$
- A new DRV1 pulse can occur after $\tau$
- The switching period for each branch is then $2 \tau$ and they operate out of phase.

A new drive sequence cannot take place as long as the SYNC signal remains higher than 3.5 V (see NCP1601 operation).

## Operation at Low Line, Full Load



- The circuit operates in critical conduction mode
- The operation of both branches are synchronized to DRV2
- A new DRV2 pulse can take place after $2 \tau$, but the MOSFET turn on is delayed until the core is reset
- A new DRV1 pulse can occur after $\tau$, but again, the MOSFET turn on is delayed until the core is reset


## Remarks on the Solution

- The NCP1601 operates in voltage mode
- Same on-time and hence switching period in the two branches
- A coil imbalance
- Does not affect the switching period
- "Only" causes a difference in the power amount conveyed by each branch

- The two branches are synchronized but they operate independently:
- Discontinuous conduction mode is guaranteed (zero current detection)
- No risk of CCM operation
- Both branches enter CrM at full load



## The Board...



## Input Voltage and Current



- As expected, the input current looks like a CCM one
- At high line, frequency foldback influences the ripple


## Zoom of the Precedent Plots




- These plots were obtained at the sinusoid top
- The current swings at twice the frequency of each phase
- At low and high line, the phase shift is substantially $180^{\circ}$


## No Overlap between the Refueling Sequences




- CrM at low line with valley switching
- Fixed frequency operation at high line (frequency foldback)
- No overlap between the demag. phases in both cases


## Performance Measurements

- Conditions for the measurements:
- The measurements were made after the board was 30 mn operated full load, low line
- All the measurements were made consecutively without interruption
- PF, THD, $\mathrm{I}_{\text {in(rms) }}$ were measured by a power meter PM1200
- $\mathrm{V}_{\text {in(rms) }}$ was measured directly at the input of the board by a HP 34401A multimeter
- $\mathrm{V}_{\text {out }}$ was measured by a HP 34401A multimeter
- The input power was computed according to:

$$
P_{i n(a v g)}=V_{i n(r m s)} \cdot I_{i n(r m s)} \cdot P F
$$

- Open frame, ambient temperature, no fan


## Efficiency versus Load


$\square$ The plot portrays the efficiency over the line range, from $20 \%$ to $100 \%$ of the load

- The efficiency remains higher than $95 \%$ !


## Switching Frequency (at the Sinusoid Top)



The plot portrays $f_{\text {sw }}$ (sinusoid top) over the line range, as a function of the load - The PFC stages operate in CrM at full load

## Conclusion

- Interleaved PFCs
- Reduce the input current ripple
- Lower the bulk capacitor rms current
- Two NCP1601 provide an efficient solution for interleaving
- Besides interleaving, this solution takes benefit of:
- The FCCrM mode that optimizes the efficiency
- MUR550 diodes optimized for DCM PFC applications
- Frequency foldback (light load)
- The solution has been tested on a 300 W , wide mains board
- 95\% efficiency at $90 \mathrm{~V}_{\text {rms }}$ over a large load range (from 20\% to 100\% load)
- A 16-pin interleaved PFC controller is under development


## Agenda

- Introduction
- Basic solutions for power factor correction
- New needs to address
- Interleaved PFC
- Basic characteristics
- A discrete solution
- Performance
- Bridgeless PFC
- Why should we care of the input bridge?
- Main solutions
- Ivo Barbi solution
- Performance of a wide mains, 800 W application
- Conclusion


## The Diodes Bridge



- The diodes bridge rectifies the ac line voltage
- Two diodes conduct simultaneously
- The PFC input current flows through two series diodes


## Efficiency Loss caused by the Diodes Bridge

- Average current flowing through the input diodes:

$$
\left\langle I_{\text {bridge }}\right\rangle_{T_{\text {line }}}=\left\langle l_{\text {line }}(t)\right\rangle_{T_{\text {line }}}=\frac{2 \sqrt{2}}{\pi} \cdot \frac{P_{\text {out }}}{\eta \cdot V_{\text {in }(r m s)}}
$$

- Dissipation in the diodes bridge:

$$
P_{\text {bridge }}=2 \cdot V_{f} \cdot I_{\text {bridge }} \approx 2 \cdot V_{f} \cdot \frac{2 \sqrt{2} \cdot P_{\text {out }}}{\eta \cdot \pi \cdot V_{\text {in }(r m s)}}
$$

- If $V_{f}=1 \mathrm{~V}$ and $\left(V_{i n(\mathrm{rms})}\right)_{\mathrm{LL}}=90 \mathrm{~V}$ :

$$
P_{\text {bridge }} \approx 2 \% \cdot \frac{P_{\text {out }}}{\eta}
$$

$\Rightarrow$ In low mains applications (@ $90 \mathrm{~V}_{\mathrm{rms}}$ ), the diodes bridge wastes about 2\% efficiency!

## Basic Bridgeless PFC



## Operation with Positive Half-Wave

$\square \mathrm{PH} 1$ is high, PH 2 is low:
M1 is on: conduction time
M1 is open: off time

$\square$ M2 body diode grounds PH2 as would a diode bridge.

## Operation with Negative Half-Wave

PH1 is low, PH 2 is high:
M2 is on: conduction time
M1 is open: off time

$\square$ Both line terminals are pulsating at the switching frequency
$\square$ The pulsation swing is high ( $\mathrm{V}_{\text {OUT }}$ )
$\square$ HF noise that leads to a tedious EMI filtering

## Ivo Barbi Bridgeless Boost



Two PFC stages but:

- One driver with no need for detecting the active half-wave
- Improved thermal performance
- As with convential PFC stages, the negative phase is always attached to ground. EMI issue is solved.


## Current Sharing



Part of the active phase current flows throught the inactive MOSFET and coil!

Part of the current flows...
... through the supposedly inactive MOSFET and coil

## Two Return Paths...

Small low frequency impedance


MOSFET is off
Need for current sense transformers

## Schematic for 800 W Prototype



## Board Photograph



## Typical Waveforms



- These plots portray typical waveforms at full load ( $\left.I_{\text {out }}=2.1 \mathrm{~A}\right)$
- "CS" is representative of the current flowing into the MOSFETs of the two branches (common output of the current transformers)
- The input current is sinusoidal


## Zoom of the Precedent Plots (Top of the Sinusoid)



- The switching frequency is 100 kHz
- The waveforms are similar to those of a traditional CCM PFC


## Performance Measurements

- Conditions for the measurements:
- The measurements were made after the board was 30 mn operated full load, low line
- All the measurements were made consecutively without interruption
- PF, THD, $\mathrm{I}_{\text {in(rms) }}$ were measured by a power meter PM1200
- $\mathrm{V}_{\text {in(rms) }}$ was measured directly at the input of the board by a HP 34401A multimeter
- $\mathrm{V}_{\text {out }}$ was measured by a HP 34401A multimeter
- The input power was computed according to:

$$
P_{i n(\mathrm{avg})}=V_{i n(r m s)} \cdot I_{i n(r m s)} \cdot P F
$$

- Open frame, ambient temperature, no fan


## Efficiency versus Load



The plot portrays the efficiency from $20 \%$ to $100 \%$ of the load At $90 \mathrm{~V}_{\text {rms }}$, full load, it is about $94 \%$ without fan ( $95 \%$ at $100 \mathrm{~V}_{\mathrm{rms}}$ )
At $20 \%$ of full load, efficiency is in the range or higher than $96 \%$

## THD versus Load



- THD remains very low on the whole range


## Conclusion

- A bridgeless PFC controlled by the NCP1653 has been developed ( 100 kHz )
- The prototype was tested at full load (800 W output) without fan (open frame, ambient temperature)
- In these conditions, the efficiency was measured in the range of $94 \%$ at $90 \mathrm{~V}_{\mathrm{rms}}$ and $95 \%$ at $100 \mathrm{~V}_{\mathrm{rms}}$
- The THD remains very low
- Bridgeless can be an efficient solution for high power applications.
- An application note is being prepared and should be posted in Q4 this year.


## Agenda

- Introduction
- Basic solutions for power factor correction
- New needs to address
- Interleaved PFC
- Basic characteristics
- A discrete solution
- Performance
- Bridgeless PFC
- Why should we care of the input bridge?
- Main solutions

- Ivo Barbi solution
- Performance of a wide mains, 800 W application
- Conclusion


## Conclusion

- New requirements:
- Compactness and form factor (LCD TV)
- Efficiency (ATX power supplies)
- New solutions can address them
- Interleaved PFC brings:
- Efficiency
- Flat design
- Improved heat distribution
- Reduced rms current through the PFC stage
- Modular approach
- Bridgeless PFC:
- halves the losses in the input rectification
- Improves the heat distribution
- ON Semiconductor supports these innovative approaches


## For More Information

- View the extensive portfolio of power management products from ON Semiconductor at www.onsemi.com
- View reference designs, design notes, and other material supporting the design of highly efficient power supplies at www.onsemi.com/powersupplies

