

ESD Protection Diode Array

Low Clamping Voltage

NUP8011MU

This integrated surge protection device is designed for applications requiring transient overvoltage protection. It is intended for use in sensitive equipment such as computers, printers, business machines, communication systems, and other applications. Its integrated design provides very effective and reliable protection for eight separate lines using only one package. These devices are ideal for situations where board space is at a premium.

Features

- Low Clamping Voltage
- UDFN Package, 1.2 x 1.8 mm
- Standoff Voltage: 4.3 V
- Low Leakage Current
- IEC61000-4-2, Level 4 ESD Protection
- Moisture Sensitivity Level 1
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

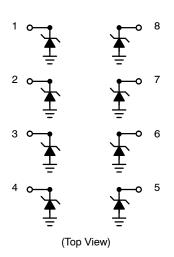
Benefits

- Provides Protection for ESD Industry Standards: IEC 61000, HBM
- Protects the Line Against Transient Voltage Conditions
- Minimize Power Consumption of the System
- Minimize PCB Board Space

Applications

- ESD Protection for Data Lines
- Wireless Phones
- Handheld Products
- Notebook Computers
- LCD Displays

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

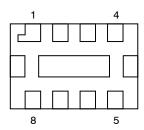

Characteristic	Symbol	Value	Unit
Steady State Power – 1 Diode (Note 1)	P_{D}	380	mW
Thermal Resistance, Junction-to-Ambient Above 25°C, Derate	$R_{\theta JA}$	327 3.05	°C/W mW/°C
Maximum Junction Temperature	T _{Jmax}	150	°C
Operating Temperature Range	T _{OP}	-40 to +85	°C
Storage Temperature Range	T _{stg}	-55 to +150	°C
Lead Solder Temperature (10 seconds duration)	TL	260	°C
IEC 61000-4-2 (ESD)Contact		±8.0	kV
Machine Model - Class C	MM	400	V
Human Body Model - Class 3B	HBM	8.0	kV

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

 Only 1 diode under power. For all 4 diodes under power, P_D will be 25%. Mounted on FR-4 board with min pad.

1

See Application Note AND8308/D for further description of survivability specs.

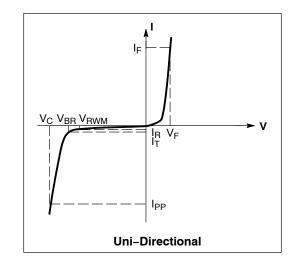


P3 = Specific Device Code
M = Month Code
• Pb-Free Package

PIN CONNECTIONS

ORDERING INFORMATION

Device	Package	Shipping
NUP8011MUTAG	UDFN8 (Pb-Free)	3000 / Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

NUP8011MU

ELECTRICAL CHARACTERISTICS

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

Symbol	Parameter			
I _{PP}	Maximum Reverse Peak Pulse Current			
V _C	Clamping Voltage @ I _{PP}			
V _{RWM}	Working Peak Reverse Voltage			
I _R	Maximum Reverse Leakage Current @ V _{RWM}			
V_{BR}	Breakdown Voltage @ I _T			
I _T	Test Current			
I _F	Forward Current			
V _F	Forward Voltage @ I _F			
P _{pk}	Peak Power Dissipation			
С	Capacitance @ V _R = 0 and f = 1.0 MHz			

^{*}See Application Note AND8308/D for detailed explanations of datasheet parameters.

ELECTRICAL CHARACTERISTICS (T_A = 25°C)

		Breakdown Voltage V _{BR} @ 1 mA (V)		Leakage Current		Typ Capacitance @ 0 V Bias (pF) (Note 2)		Typ Capacitance @ 3 V Bias (pF) (Note 2)		V _C	
Device	Device Marking	Min	Nom	Max	V _{RWM}	I _{RWM} (μΑ)	Тур	Max	Тур	Max	Per IEC61000-4-2 (Note 3)
NUP8011MUTAG	P3	6.47	6.8	7.14	4.3	1.0	12	14	6.7	9.5	Figures 1 and 2 (See Below)

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 2. Capacitance of one diode at f = 1 MHz, $V_R = 0$ V, $T_A = 25$ °C
- 3. For test procedure see Figures 3 and 4 and Application Note AND8307/D.

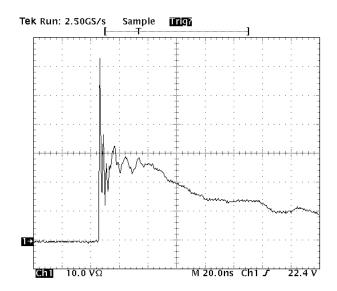


Figure 1. ESD Clamping Voltage Screenshot Positive 8 kV Contact per IEC61000-4-2

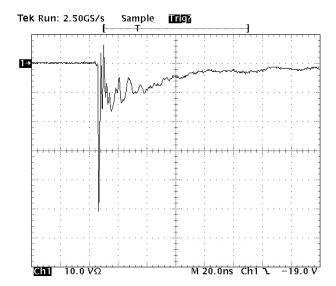


Figure 2. ESD Clamping Voltage Screenshot Negative 8 kV Contact per IEC61000-4-2

NUP8011MU

IEC 61000-4-2 Spec.

	Test Voltage	First Peak Current	Current at	Current at
Level	(kV)	(A)	30 ns (A)	60 ns (A)
1	2	7.5	4	2
2	4	15	8	4
3	6	22.5	12	6
4	8	30	16	8

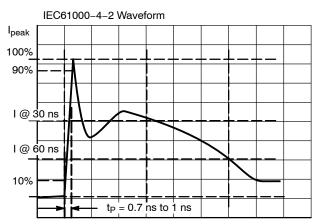


Figure 3. IEC61000-4-2 Spec

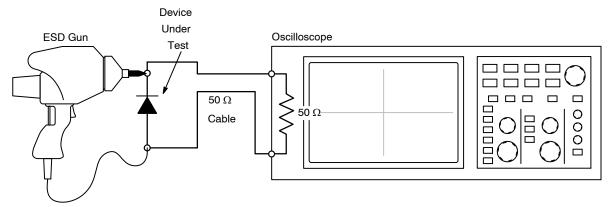


Figure 4. Diagram of ESD Test Setup

The following is taken from Application Note AND8308/D – Interpretation of Datasheet Parameters for ESD Devices.

ESD Voltage Clamping

For sensitive circuit elements it is important to limit the voltage that an IC will be exposed to during an ESD event to as low a voltage as possible. The ESD clamping voltage is the voltage drop across the ESD protection diode during an ESD event per the IEC61000-4-2 waveform. Since the IEC61000-4-2 was written as a pass/fail spec for larger

systems such as cell phones or laptop computers it is not clearly defined in the spec how to specify a clamping voltage at the device level. **onsemi** has developed a way to examine the entire voltage waveform across the ESD protection diode over the time domain of an ESD pulse in the form of an oscilloscope screenshot, which can be found on the datasheets for all ESD protection diodes. For more information on how **onsemi** creates these screenshots and how to interpret them please refer to AND8307/D.

NUP8011MU

TYPICAL ELECTRICAL CHARACTERISTICS

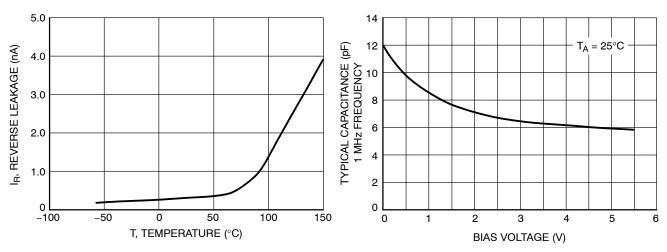


Figure 5. Reverse Leakage versus Temperature

Figure 6. Capacitance

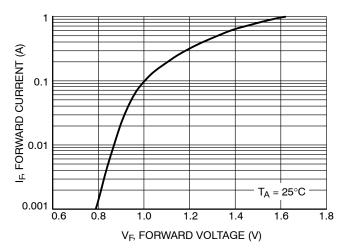


Figure 7. Forward Voltage

D

TOP VIEW

SIDE VIEW

- п ф|ф п

BOTTOM VIEW

е

e/2

DETAIL B

В

C SEATING PLANE

0.10 C A B

0.05 C NOTE 3

SCALE 4:1

PIN ONE REFERENCE

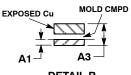
8X 🗀

NOTE 4

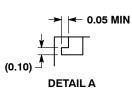
0.10 C

0.10 C

0.05 C


0.05 C

8x L


DETAIL A

UDFN8 1.8x1.2, 0.4P CASE 517AD ISSUE D

DATE 23 OCT 2012

DETAIL B ALTERNATE CONSTRUCTIONS

DETAIL A OPTIONAL CONSTRUCTION

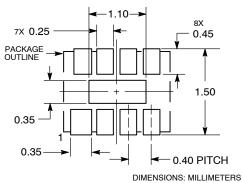
NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM TERMINAL. COPLANARITY APPLIES TO THE EXPOSED
- PAD AS WELL AS THE TERMINALS.

	MILLIMETERS				
DIM	MIN	MAX			
Α	0.45	0.55			
A1	0.00	0.05			
A3	0.13	REF			
b	0.15 0.25				
D	1.80 BSC				
E	1.20 BSC				
е	0.40 BSC				
D2	0.90	1.10			
E2	0.20	0.30			
J	0.19 REF				
K	0.20 TYP				
L	0.20 0.30				
L1		0.10			

GENERIC MARKING DIAGRAM*

XX= Specific Device Code М


= Date Code = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G", may or not be present.

SOLDERING FOOTPRINT*

8Xb

Ф

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON22154D	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	UDFN8 1.8X1.2, 0.4P		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves brisefin and of 160 m are trademarked so defined values of services and of the confined values and of the values of the confined values and of the values of the confined values and of the values of the special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales