MOSFET – Single, N-Channel, Small Signal, SOT-883 (XDFN3), 1.0 x 0.6 x 0.4 mm

20 V, 361 Ma

Features

- Single N-Channel MOSFET
- Ultra Low Profile SOT-883 (XDFN3) 1.0 x 0.6 x 0.4 mm for Extremely Thin Environments Such as Portable Electronics
- Low R_{DS(on)} Solution in the Ultra Small 1.0 x 0.6 mm Package
- 1.5 V Gate Drive
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

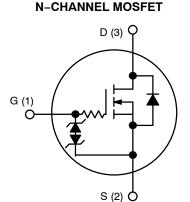
- High Side Switch
- High Speed Interfacing
- Level Shift and Translate
- Optimized for Power Management in Ultra Portable Solutions

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Para	meter		Symbol	Value	Unit	
Drain-to-Source Volt	age		V _{DSS}	20	V	
Gate-to-Source Volta	age		V _{GS}	±8	V	
Continuous Drain	Steady	$T_A = 25^{\circ}C$	Ι _D	361	mA	
Current (Note 1)	State	$T_A = 85^{\circ}C$		260		
	t ≤ 5 s	$T_A = 25^{\circ}C$		427		
Power Dissipation (Note 1)	Steady State	$T_A = 25^{\circ}C$	PD	155	mW	
	t ≤ 5 s			217		
Pulsed Drain Current	t _p = 10 μs		I _{DM}	1082	mA	
Operating Junction and Storage Temperature		T _J , T _{STG}	–55 to 150	°C		
Source Current (Body Diode) (Note 2)			۱ _S	129	mA	
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		ΤL	260	°C		

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Surface-mounted on FR4 board using the minimum recommended pad size, or 2 mm², 1 oz Cu.


2. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%



ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D Max
20 V	0.7 Ω @ 4.5 V	
	1.0 Ω @ 2.5 V	361 mA
	2.0 Ω @ 1.8 V	301 MA
	4.0 Ω @ 1.5 V	

= Date Code

М

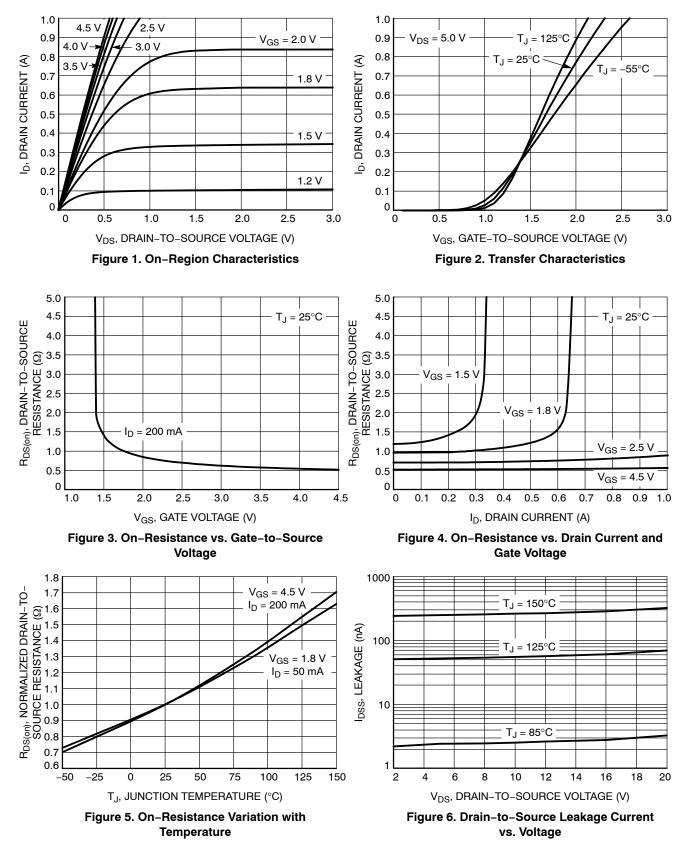
ORDERING INFORMATION

Device	Package	Shipping [†]
NTNS3164NZT5G	SOT-883 (Pb-Free)	8000 / Tape & Reel

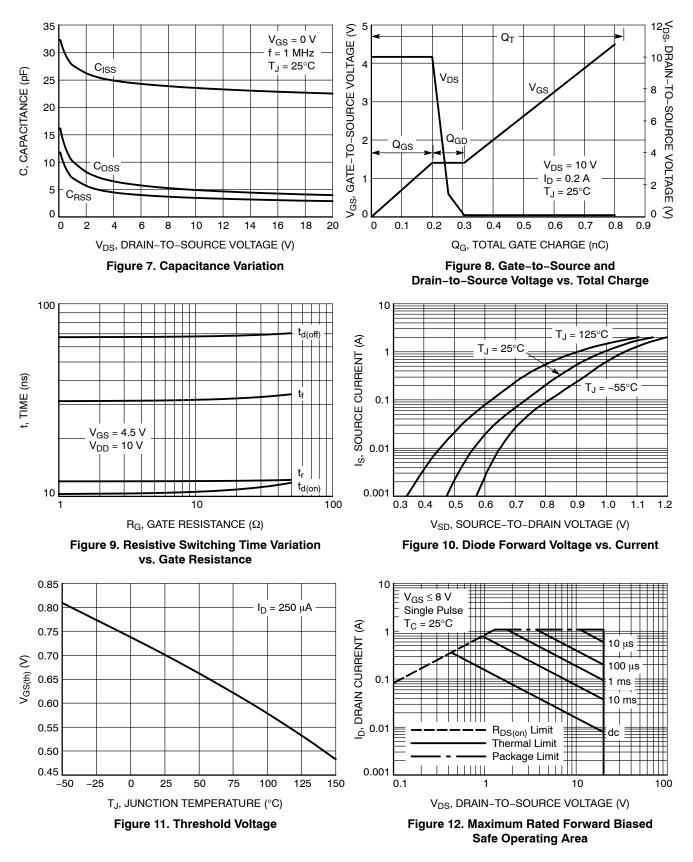
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Мах	Unit
Junction-to-Ambient - Steady State (Note 3)	R_{\thetaJA}	806	°C/W
Junction-to-Ambient – t \leq 5 s (Note 3)	R_{\thetaJA}	575	C/W


3. Surface-mounted on FR4 board using the minimum recommended pad size, or 2 mm², 1 oz Cu.

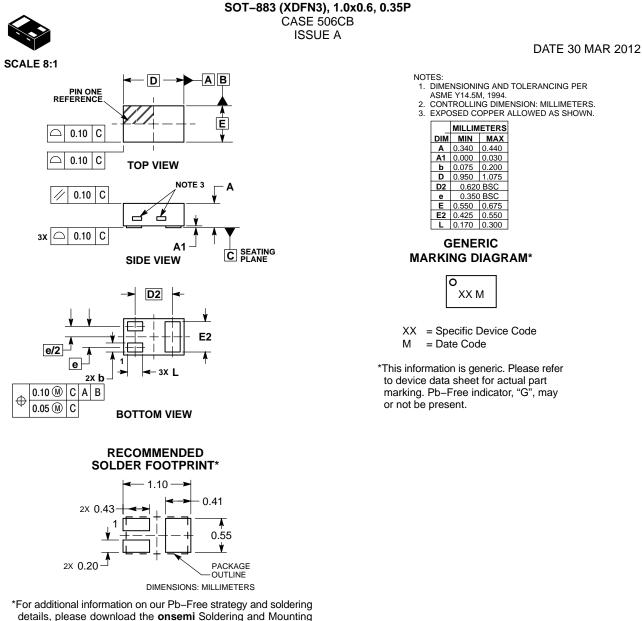
ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise stated)


Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 250 μ A	20			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J	$I_D = 250 \ \mu A$, ref to $25^{\circ}C$		23		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 \text{ V}, \text{ V}_{DS} = 20 \text{ V}$ $T_J = 25^{\circ}\text{C}$			1	μA
Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{GS} = ±5 V			±10	μA
ON CHARACTERISTICS (Note 4)						
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 250 \ \mu A$	0.4		1.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J			1.8		mV/°C
		V _{GS} = 4.5 V, I _D = 200 mA		0.5	0.7	Ω
		V_{GS} = 2.5 V, I _D = 100 mA		0.7	1.0	
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 1.8 V, I _D = 50 mA		1.0	2.0	
		V _{GS} = 1.5 V, I _D = 10 mA		1.2	4.0	
Forward Transconductance	9 _{FS}	$V_{DS} = 5 \text{ V}, \text{ I}_{D} = 200 \text{ mA}$		1.26		S
Source-Drain Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = 100 mA		0.75	1.2	V
CHARGES & CAPACITANCES						-
Input Capacitance	C _{ISS}			24		
Output Capacitance	C _{OSS}	V_{GS} = 0 V, freq = 1 MHz, V_{DS} = 10 V		5.0		pF
Reverse Transfer Capacitance	C _{RSS}			3.4		
Total Gate Charge	Q _{G(TOT)}			0.8		
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 4.5 V, V _{DS} = 10 V;		0.1		
Gate-to-Source Charge	Q _{GS}	I _D = 200 mA		0.2		nC
Gate-to-Drain Charge	Q _{GD}			0.1		1
SWITCHING CHARACTERISTICS, VGS	6 = 4.5 V (Note	4)				
Turn-On Delay Time	t _{d(ON)}			10		
Rise Time	t _r	V _{GS} = 4.5 V, V _{DD} = 10 V,		11		1
Turn-Off Delay Time	t _{d(OFF)}	V_{GS} = 4.5 V, V_{DD} = 10 V, I_{D} = 200 mA, R_{G} = 2 Ω		67		ns
Fall Time	t _f			31		

4. Switching characteristics are independent of operating junction temperatures

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS



$R_{\theta JA} = 806^{\circ}C/W$ Steady State 900 R(t), EFFECTIVE TRANSIENT THER-800 (%700 600 500 400 200 WAL RESPONSE (%C/%) 400 200 |||||| ŦŦŦŀ Duty Cycle = 0.5 0.01 -0.05 0.02 $| \rangle |$ 0.2 NIL 0.1 100 Single Pulse 0 1E-02 1E-05 1E-03 1E-06 1E-04 1E-01 1E+00 1E+01 1E+02 1E+03 t, TIME (s)

TYPICAL CHARACTERISTICS

Figure 13. FET Thermal Response

onsemi

Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON65407E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	PTION: SOT-883 (XDFN3), 1.0X0.6, 0.35P		PAGE 1 OF 1		
onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation					

special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>