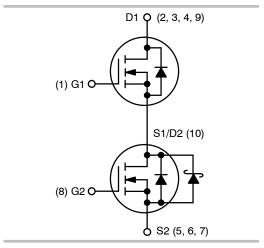
MOSFET – Power, Dual, N-Channel with Integrated Schottky, SO8FL

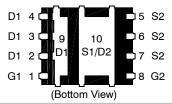
30 V, High Side 18 A / Low Side 23 A

Features

- Co-Packaged Power Stage Solution to Minimize Board Space
- Low Side MOSFET with Integrated Schottky
- Minimized Parasitic Inductances
- Optimized Devices to Reduce Power Losses
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications


- DC-DC Converters
- System Voltage Rails
- Point of Load


ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
Q1 Top FET	6.5 mΩ @ 10 V	10 /
30 V	10 mΩ @ 4.5 V	18 A
Q2 Bottom	4.1 mΩ @ 10 V	23 A
FET 30 V	6.2 mΩ @ 4.5 V	23 A

PIN CONNECTIONS

MARKING DIAGRAM

DFN8 CASE 506BX

4902NF = Specific Device Code A = Assembly Location

Y = Year
W = Work Week
ZZ = Lot Traceability

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise stated)

Parameter		Symbol	Value	Unit			
Drain-to-Source Voltage	Q1	V _{DSS}	30	V			
Drain-to-Source Voltage	Q2						
Gate-to-Source Voltage	Q1	V _{GS}	±20	V			
Gate-to-Source Voltage	Q2						
Continuous Drain Current R _{θJA} (Note 1)		T _A = 25°C	Q1	I _D	13.5		
		T _A = 85°C			9.7	1 .	
		T _A = 25°C	Q2		17.5	A	
		T _A = 85°C			12.6		
Power Dissipation		T _A = 25°C	Q1	P _D	1.90	W	
RθJA (Note 1)			Q2		1.99		
Continuous Drain Current $R_{\theta JA} \le 10 \text{ s (Note 1)}$		T _A = 25°C	Q1	I _D	18.2		
		T _A = 85°C			13.1	1	
	Steady	T _A = 25°C	Q2		23	- A	
	State	T _A = 85°C	1		16.6		
Power Dissipation		T _A = 25°C	Q1	P _D	3.45	W	
$R_{\theta JA} \le 10 \text{ s (Note 1)}$			Q2		3.45		
Continuous Drain Current		T _A = 25°C	Q1	I _D	10.3		
R _{θJA} (Note 2)		T _A = 85°C	1		7.4	1 .	
		T _A = 25°C	Q2		13.3	A	
		T _A = 85°C	1		9.6		
Power Dissipation		T _A = 25 °C	Q1	P_{D}	1.10	W	
R _{θJA} (Note 2)			Q2		1.16		
Pulsed Drain Current		TA = 25°C	Q1	I _{DM}	60	Α	
		tp = 10 μs	Q2		80		
Operating Junction and Storage Temperature		•	Q1	T _J , T _{STG}	-55 to +150	°C	
			Q2				
Source Current (Body Diode)	Q1	I _S	3.4	Α			
	Q2		4.9	1			
Drain to Source dV/dt		dV/dt	6.0	V/ns			
Single Pulse Drain-to-Source Avalanche Energy (T	Q1	EAS	28.8	mJ			
$V_{DD} = 50 \text{ V}, V_{GS} = 10 \text{ V}, I_L = XX A_{pk}, L = 0.1 \text{ mH}, R_0$	Q2	EAS	36.5	1			
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)							

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface-mounted on FR4 board using 1 sq-in pad, 2 oz Cu.

2. Surface-mounted on FR4 board using the minimum recommended pad size of 100 mm².

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	FET	Symbol	Value	Unit
Junction-to-Ambient - Steady State (Note 3)	Q1	$R_{\theta JA}$	65.9	
	Q2		62.8	
Junction-to-Ambient - Steady State (Note 4)	Q1	$R_{\theta JA}$	113.2	0000
	Q2		108	°C/W
Junction-to-Ambient - (t ≤ 10 s) (Note 3)	Q1	$R_{\theta JA}$	36.2	
	Q2		36.2]

- 3. Surface-mounted on FR4 board using 1 sq-in pad, 2 oz Cu.
- 4. Surface-mounted on FR4 board using the minimum recommended pad size of 100 mm².

FLECTRICAL CHARACTERISTICS (T. = 25°C unless otherwise specified)

Parameter	FET	Symbol	Test Co	ondition	Min	Тур	Max	Unit
OFF CHARACTERISTICS								
Drain-to-Source Break-	Q1	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		30			V
down Voltage	Q2		$V_{GS} = 0 V$,	I _D = 1.0 mA	30			
Drain-to-Source Break-	Q1	V _{(BR)DSS}				18		mV /
down Voltage Temperature Coefficient	Q2	T _J				15		°C
Zero Gate Voltage Drain	Q1	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			1	μΑ
Current			$V_{DS} = 24 V$	T _J = 125°C			10	1
	Q2		V _{GS} = 0 V, V _{DS} = 24 V	T _J = 25°C			500	
Gate-to-Source Leakage	Q1	I _{GSS}	V _{GS} = 0 V, V	VDS = ±20 V			±100	nA
Current	Q2						±100	1
ON CHARACTERISTICS (Not	e 5)				•	•		
Gate Threshold Voltage	Q1	V _{GS(TH)}	$V_{GS} = VDS$, $I_D = 250 \mu A$		1.2		2.2	V
	Q2						2.2	
Negative Threshold Temper-	Q1	V _{GS(TH)} /				4.5		mV /
ature Coefficient	Q2	TJ				4.0		°C
Drain-to-Source On Resist-	Q1	R _{DS(on)}	V _{GS} = 10 V	I _D = 10 A		5.2	6.5	
ance			V _{GS} = 4.5 V	I _D = 10 A		8.0	10	0
	Q2		V _{GS} = 10 V	I _D = 15 A		3.3	4.1	mΩ
			V _{GS} = 4.5 V	I _D = 15 A		5.0	6.2	
Forward Transconductance	Q1	9FS	V _{DS} = 1.5	V, I _D = 10 A		28		S
	Q2					35		
CHARGES, CAPACITANCES	& GATE	RESISTANCE	E					
Input Capacitance	Q1	0				1150		
	Q2	Q2 C _{ISS}				1590]
Output Capacitance	Q1		V 0V (4			360		
	Q2	C _{OSS}	$V_{GS} = 0 V, t = 1$	MHz, $V_{DS} = 15 \text{ V}$		813		pF
Deveres Consolitance	Q1					105		1
Reverse Capacitance	Q2 C _{RSS}				83		1	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulse Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$.

83

- 6. Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

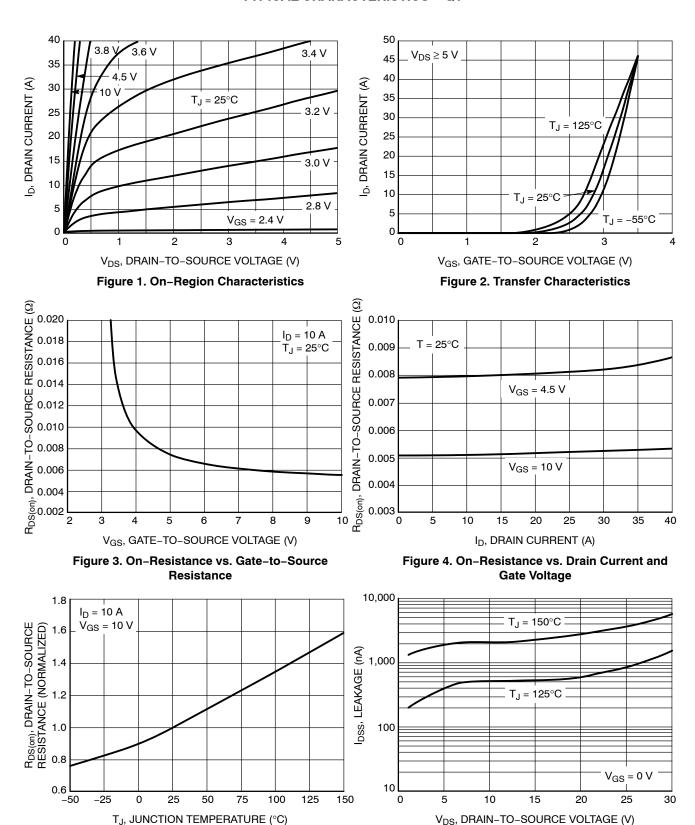
$V_{GS} = 0 \text{ V}, \qquad T_{J} = 25^{\circ}\text{C} \qquad 0.37 \qquad 0.70$	Parameter	FET	Symbol	Test Co	ondition	Min	Тур	Max	Unit	
Total Gate Charge Q2	CHARGES, CAPACITANCES	& GATE	RESISTANC	E		-	-	<u>-</u>	-	
Threshold Gate Charge Q1 Q2 Q3 Q3 Q4 Q5 Q5 Q5 Q5 Q5 Q5 Q5	T. 10 . 0	Q1					9.7			
Threshold Gate Charge Q2 Q3 Q3 Q4 Q4 Q4 Q5 Q5 Q5 Q5 Q5	Total Gate Charge	Q2	$Q_{G(TOT)}$				11.5		nC	
Cate	TI 1 110 1 01	Q1	0				1.1			
Gate - to - Source Charge Q1 QG QG QG QG 3.3 A 4.2 A.2 A.2 A.2 A.2 A.3.7 A.3.7 A.3.7 A.3.7 A.3.7 A.3.7 A.3.7 A.3.4 A.2 A.3.7 A.3.7 A.3.4 A.2 A.3.7	Threshold Gate Charge	Q2	Q _{G(TH)}		45.77		1.4			
Gate-to-Drain Charge Q1 Q2 Q3 Q4	0 0 0 .	Q1	_	$V_{GS} = 4.5 \text{ V}, V_{DS}$	= 15 V; I _D = 10 A		3.3			
Gate-to-Drain Charge Q2	Gate-to-Source Charge	Q2	Q_GS				4.2			
Total Gate Charge Q1	0	Q1					3.7			
Total Gate Charge Q2	Gate-to-Drain Charge	Q2	Q_GD				3.4			
SWITCHING CHARACTERISTICS (Note 6) 24.9	Table Oaks Observe	Q1	0		45.77.1 40.4		19.1		-0	
Turn-On Delay Time Q1	iotal Gate Charge	Q2	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS}	= 15 V; I _D = 10 A		24.9		nC	
Turn-On Delay Time	SWITCHING CHARACTERIS	STICS (No	te 6)							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Time On Dala Time	Q1					9.0			
Rise Time Q2	Rise Time	Q2	^t d(ON)	Vcc = 4.5 V Vcc = 15 V			10.5		ns	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Q1					15			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Q2	t _r				15.2			
Fall Time Q2		Q1	I _D = 10 A	$R_G = 3.0 \Omega$		14				
Fall Time Q2 t _f 4.7 4.7		Q2					17.7			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- u-	Q1					4.0			
	Fall Time	Q2	t _f				4.7		1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SWITCHING CHARACTERIS	STICS (No	te 6)							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	T O. Dala Tara	Q1					6.0			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Delay Time	Q2	^t d(ON)				7.0			
	Diag Time	Q1								
	rise time	Q2	τ _r	V _{GS} = 10 V,	Vce = 10 V. Vpe = 15 V.		14		1	
	T O" D-1 T	Q1		t _{d(OFF)}			17		ns	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-Off Delay Time	Q2	^t d(OFF)				22			
	E-II Too	Q1					3.0			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	rali IIme	Q2	2 t _f				3.3			
Forward Voltage V_{SD} V_{SD} $V_{GS} = 0 \text{ V},$ $V_{GS} = 0 \text{ V},$ $V_{J} = 125 \text{ °C}$ $V_{J} = 25 \text{ °C}$ $V_{J} = 2$	DRAIN-SOURCE DIODE CH	IARACTE	RISTICS							
Forward Voltage V_{SD} V_{SD} V_{SD} $V_{GS} = 0 \text{ V},$ $V_{J} = 125 ^{\circ}\text{C}$ 0.62 $V_{J} = 25 ^{\circ}\text{C}$ 0.37 0.70	Forward Voltage	6.		V _{GS} = 0 V.	T _J = 25°C		0.75	1.0		
$V_{GS} = 0 \text{ V}, \qquad I_J = 25 \text{ C} \qquad 0.37 \qquad 0.70$		Q1		I _S = 3 A	T _J = 125°C		0.62		1	
			V_{SD}	Voc = 0 V	T _J = 25°C		0.37	0.70	1 ∨	
		Q2		I _S = 2 A	T _J = 125°C		0.31			

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulse Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$. 6. Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS (T_{.1} = 25°C unless otherwise specified)

Parameter	FET	Symbol	Test Condition	Min	Тур	Max	Unit
DRAIN-SOURCE DIODE CH	ARACTE	RISTICS					
D D	Q1				23		
Reverse Recovery Time	Q2	t _{RR}			24.5		1
Charra Time	Q1	1-			12		l
Charge Time	Q2	ta	V 0V d /d 400 A / 5 L 0 A		13		ns
Disabassa Tisa	Q1	11-	$V_{GS} = 0 \text{ V}, d_{IS}/d_t = 100 \text{ A/}\mu\text{s}, I_S = 3 \text{ A}$		11		
Discharge Time	Q2	tb			11.5		
Daviera Daviera Charre	Q1	0			12		nC
Reverse Recovery Charge	Q2	Q _{RR}			24		
PACKAGE PARASITIC VALU	IES						
Source Inductance	Q1				0.38		ml !
Source inductance	Q2	L _S			0.65		nH
Duain Industria	Q1				0.054		11
Drain Inductance	Q2	L _D	T 0500		0.007		nH
Gate Inductance	Q1		T _A = 25°C		1.5		
	Q2	L _G			1.5		nH
Cata Basistanas	Q1			0.8		0	
Gate Resistance	Q2	R_{G}			0.8		Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.


ORDERING INFORMATION

Device	Package	Shipping [†]
NTMFD4902NFT1G	DFN8 (Pb-Free)	1500 / Tape & Reel
NTMFD4902NFT3G	DFN8 (Pb-Free)	5000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{6.} Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS - Q1

www.onsemi.com

Figure 6. Drain-to-Source Leakage Current

vs. Voltage

Figure 5. On-Resistance Variation with

Temperature

TYPICAL CHARACTERISTICS - Q1

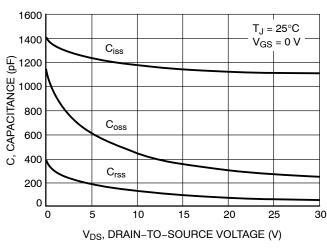


Figure 7. Capacitance Variation

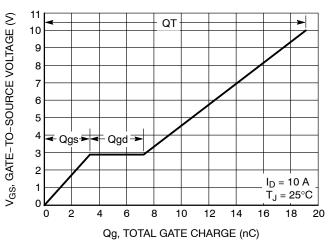


Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

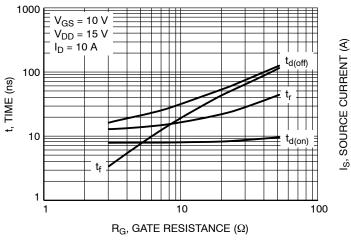


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

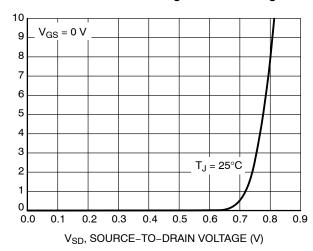
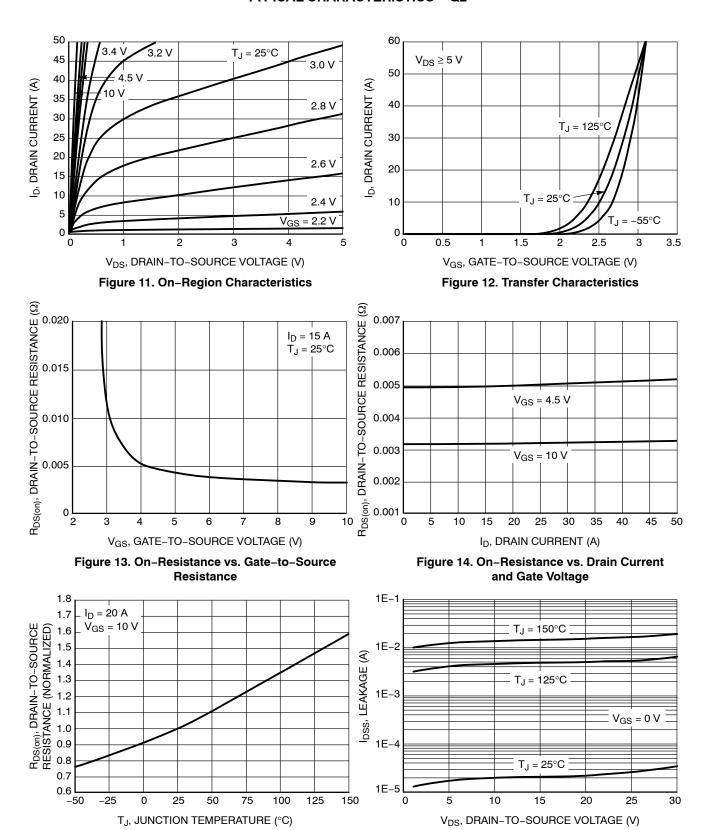



Figure 10. Diode Forward Voltage vs. Current

TYPICAL CHARACTERISTICS - Q2

www.onsemi.com

Figure 16. Drain-to-Source Leakage Current

vs. Voltage

Figure 15. On-Resistance Variation with

Temperature

TYPICAL CHARACTERISTICS - Q2

10

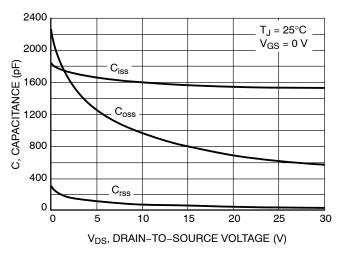
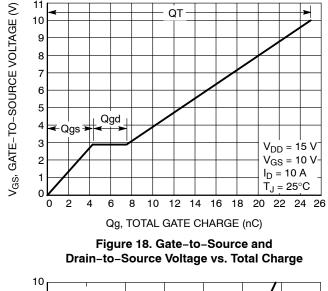



Figure 17. Capacitance Variation

QΤ

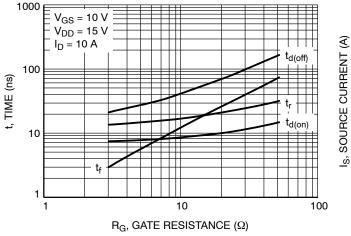


Figure 19. Resistive Switching Time Variation vs. Gate Resistance

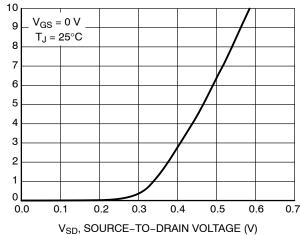
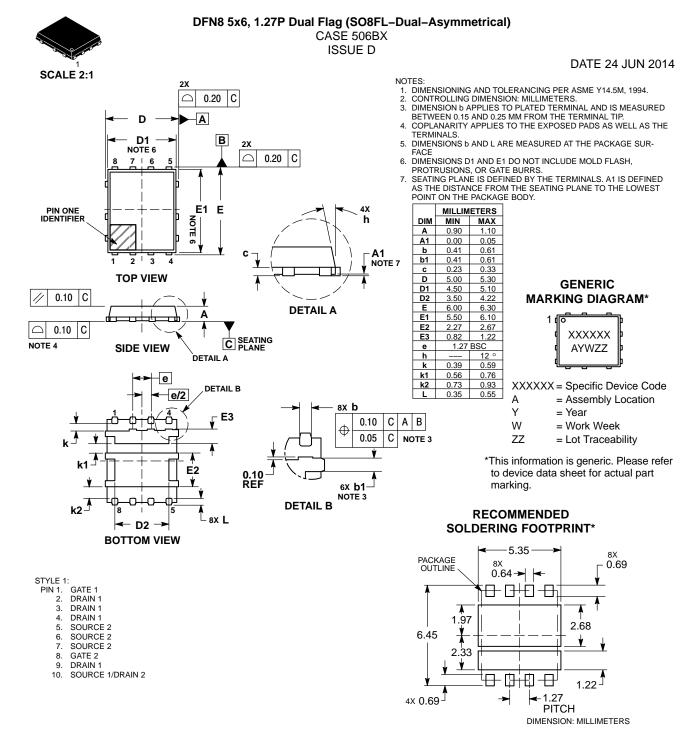



Figure 20. Diode Forward Voltage vs. Current

*For additional information on our Pb–Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON54291E	Electronic versions are uncontrolled except when accessed directly from the Document R Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	DFN8 5X6, 1.27P DUAL FL	AG (SO8FL-DUAL-ASYMMETRICAL)	PAGE 1 OF 1			

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales