<u>MOSFET</u> – Power, P-Channel, ChipFET

-20 V, -5.3 A

Features

- Low R_{DS(on)}
- Higher Efficiency Extending Battery Life
- Logic Level Gate Drive
- Miniature ChipFET Surface Mount Package
- Pb–Free Package is Available

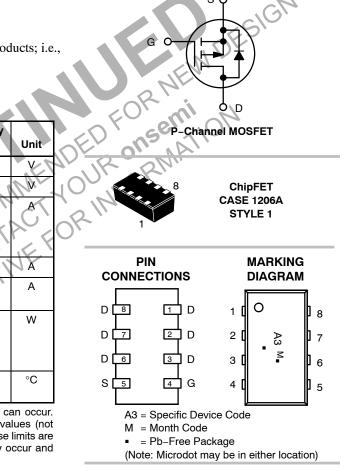
Applications

• Power Management in Portable and Battery–Powered Products; i.e., Cellular and Cordless Telephones and PCMCIA Cards

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Rating	Symbol	5 sec	Steady State	Unit
Drain-Source Voltage	V _{DS}		20	V
Gate-Source Voltage	V _{GS}	ŧ	12	N
Continuous Drain Current $(T_J = 150^{\circ}C)$ (Note 1) $T_A = 25^{\circ}C$ $T_A = 85^{\circ}C$	I _D	-5.3 -3.8	-3.9 -2.8	A
Pulsed Drain Current	IDM) (€	20	J X
Continuous Source Current (Note 1)	(SIS)	5-5.8	-3.9	A
Maximum Power Dissipation (Note 1) $T_A = 25^{\circ}C$ $T_A = 85^{\circ}C$	PPB-	2.5 1.3	1.3 0.7	W
Operating Junction and Storage Temperature Range	T _J , T _{stg}	–55 to	+150	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.


1. Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.27 in sq [1 oz] including traces).

ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX
–20 V	46 mΩ @ –4.5 V	–5.3 A

ORDERING INFORMATION

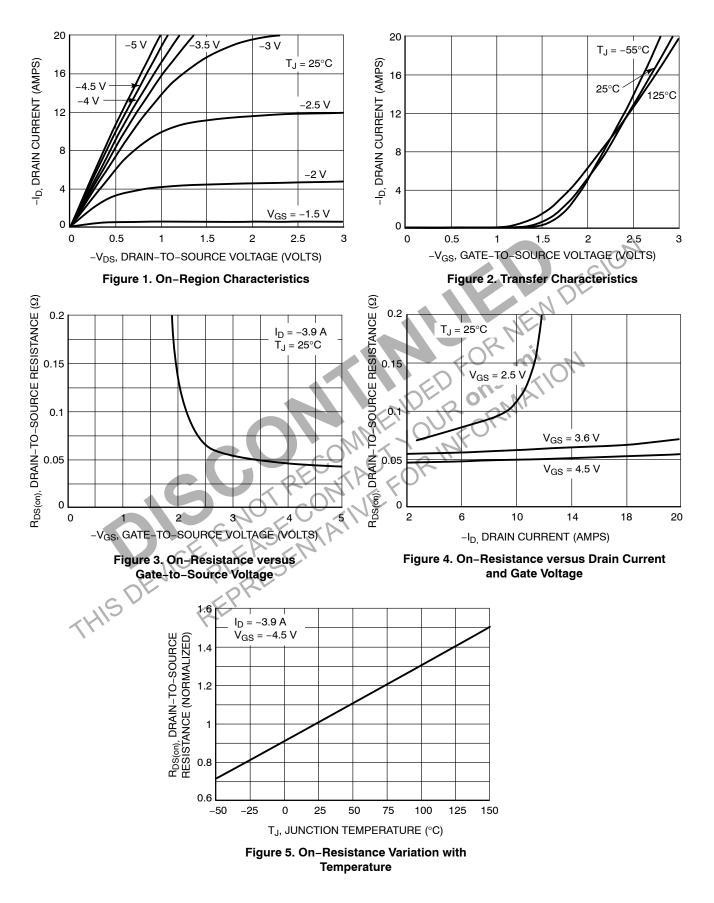
Device	Package	Shipping [†]
NTHS5441T1	ChipFET	3000/Tape & Reel
NTHS5441T1G	ChipFET (Pb–Free)	3000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit
Maximum Junction–to–Ambient (Note 2) t ≤ 5 sec Steady State	R _{θJA}	40 80	50 95	°C/W
Maximum Junction-to-Foot (Drain) Steady State	R_{\thetaJF}	15	20	°C/W

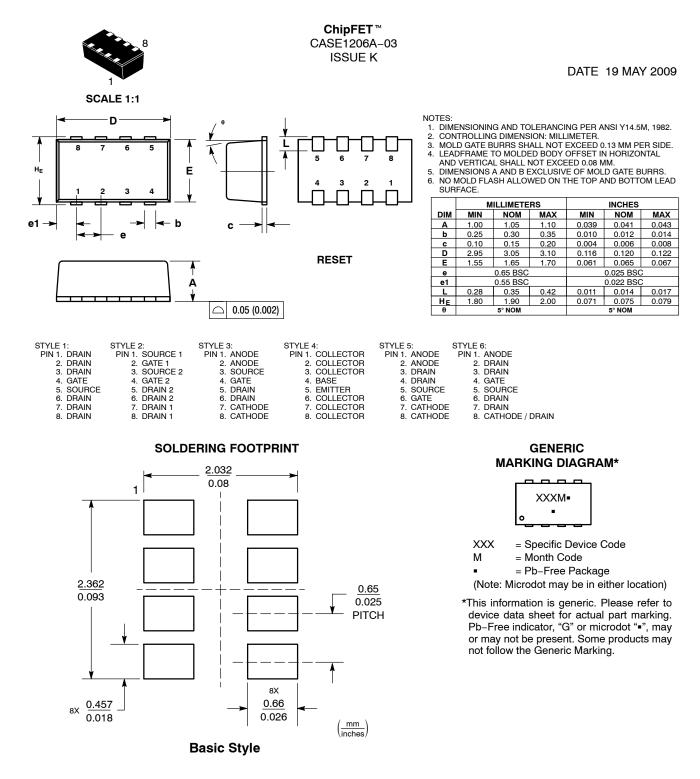
ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)


Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
Static						

Static						
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = -250 \ \mu A$	-0.6		-1.2	V
Gate-Body Leakage	I _{GSS}	V_{DS} = 0 V, V_{GS} = \pm 12 V			±100	nA
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = -16 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$			-1.0	μA
		$V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 85^{\circ}\text{C}$			-5.0	
On-State Drain Current (Note 3)	I _{D(on)}	V_{DS} \leq –5.0 V, V_{GS} = –4.5 V	-20		SV	А
Drain-Source On-State Resistance (Note 3)	r _{DS(on)}	V_{GS} = -3.6 V, I_D = -3.7 A V_{GS} = -4.5 V, I_D = -3.9 A	-	0.050 0.046	0.06 -	Ω
		$V_{GS} = -2.5 \text{ V}, 1_D = -3.1 \text{ A}$	NE	0.070	0.083	
Forward Transconductance (Note 3)	9fs	$V_{DS} = -10 \text{ V}, \text{ I}_{D} = -3.9 \text{ A}$	R	12		mhos
Diode Forward Voltage (Note 3)	V _{SD}	$I_{\rm S}$ = -2.1 A, $V_{\rm GS}$ = 0 V	an	-0.8	-1.2	V
Dynamic (Note 4)						

Total Gate Charge	Q _G	NPR	Sphr	9.7	22	nC
Gate-Source Charge	Q _{GS}	$V_{DS} = -10 \text{ V}, V_{GS} = -4.5 \text{ V},$ $I_D = -3.9 \text{ A}$	$\mathcal{Y}_{\mathcal{U}}$	1.2		
Gate-Drain Charge	Q _{GD}	ONITYONN		3.6		
Input Capacitance	C _{iss}	C C R		710		pF
Output Capacitance	C _{oss}	V_{DS} = -5.0 Vdc, V_{GS} = 0 Vdc, f = 1.0 MHz		400		
Reverse Transfer Capacitance	C _{rss}	UNE		140		
Turn-On Delay Time	td(on)	XA'		14	30	ns
Rise Time	tr	V_{DD} = −10 V, R _L = 10 Ω I _D ≅ −1.0 A, V _{GEN} = −4.5 V,		22	55	
Turn-Off Delay Time	t _{d(off)}	$R_{\rm G} = 6 \Omega$		42	100	
Fall Time	t _f			35	70	
Source-Drain Reverse Recovery Time	t _{rr}	I _F = -1.1 A, di/dt = 100 A/μs		30	60	

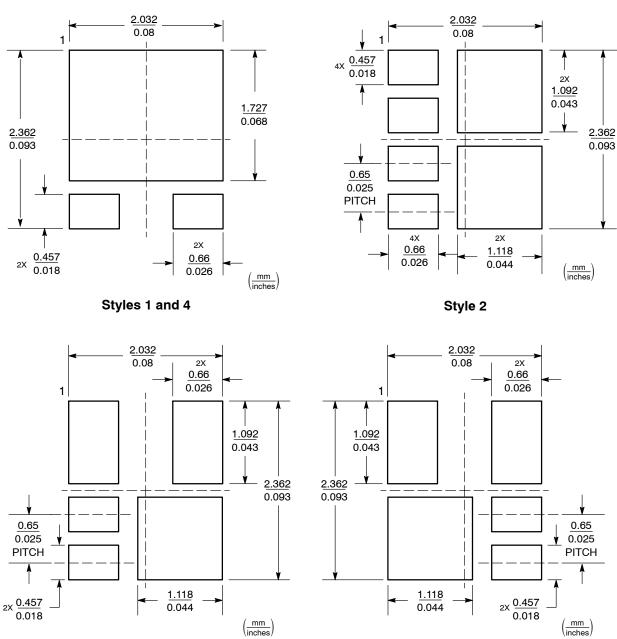
Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.27 in sq [1 oz] including traces).
Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
Guaranteed by design, not subject to production testing.


TYPICAL ELECTRICAL CHARACTERISTICS

-VDS, DRAIN-TO-SOURCE VOLTS) 1500 5 -V_{GS,} GATE-TO-SOURCE VOLTAGE (VOLTS) Q_G 006 (pF) 009 006 (pF) 009 006 (pF) TJ = 25°C 4 $V_{GS} = 0$ 8 7 3 6 5 Ciss Q_{GS} Q_{GD} -) 2 4 3 Coss $I_{\rm D} = -3.9$ A $T_J = 25^{\circ}C$ 1 2 300 Crss $Q_{GD}/Q_{GS} = 3.0$ 1 0 0 0 1 Ō 0 4 8 12 16 20 -V_{DS}, DRAIN-TO-SOURCE VOLTAGE () Q_G, TOTAL GATE CHARGE (nC) Figure 7. Gate-to-Source and Figure 6. Capacitance Variation Drain-to-Source Voltage versus Total Charge NORMALIZED EFFECTIVE TRANSIENT Duty Cycle = 0.5 THERMAL IMPEDANCE 0.2 0.1 P_{DM} 0.1 Å 0.05 PER UNIT BASE = $R_{\theta JA}$ = 80°C/W $T_{JM} - T_A = P_{DM}Z_{\Theta JA}(t)$ t₁ 0.02 SURFACE MOUNTED _____ t₂ DUTY CYCLE, $D = t_1/t_2$ THIS DEF 5 Single Pulse 0.01 100 1000 -IS, SOURCE CURRENT (AMPS) 4 $V_{GS} = 0 V$ T_J = 25°C 3 2 1 0 0.1 0.3 0.5 0.7 0.9 -V_{SD}, SOURCE-TO-DRAIN VOLTAGE (VOLTS) Figure 9. Diode Forward Voltage versus Current

TYPICAL ELECTRICAL CHARACTERISTICS

onsemi


OPTIONAL SOLDERING FOOTPRINTS ON PAGE 2

DOCUMENT NUMBER:	98AON03078D	Electronic versions are uncontrolled except when accessed directly from the Document Repose Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	ChipFET		PAGE 1 OF 2

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

ChipFET™ CASE 1206A-03 **ISSUE K**

DATE 19 MAY 2009

ADDITIONAL SOLDERING FOOTPRINTS*

Style 3

*For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Style 5

DOCUMENT NUMBER:	98AON03078D	Electronic versions are uncontrolled except when accessed directly from the Document Reposition Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DESCRIPTION: ChipFET PAGE 2 OF 2			
onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.				

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>