MOSFET – Power, N-Channel, DPAK/IPAK 9.0 A, 60 V

Designed for low voltage, high speed switching applications in power supplies, converters and power motor controls and bridge circuits.

Features

- NVD Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

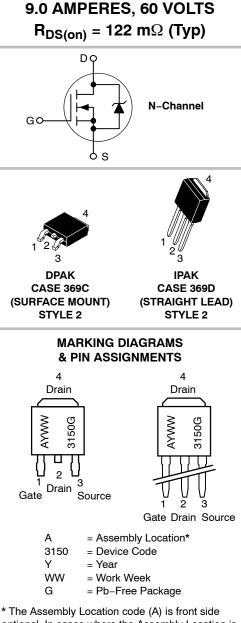
Typical Applications

- Power Supplies
- Converters
- Power Motor Controls
- Bridge Circuits

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	60	Vdc
Drain-to-Gate Voltage (R_{GS} = 10 M Ω)	V _{DGR}	60	Vdc
Gate–to–Source Voltage – Continuous – Non–repetitive (t _p ≤10 ms)	V _{GS} V _{GS}	±20 ±30	Vdc
Drain Current – Continuous @ T _A = 25°C – Continuous @ T _A = 100°C – Single Pulse (t _p ≤ 10 μs)	I _D ID IDM	9.0 3.0 27	Adc Apk
$ \begin{array}{l} \mbox{Total Power Dissipation } @ T_A = 25^{\circ}\mbox{C} \\ \mbox{Derate above } 25^{\circ}\mbox{C} \\ \mbox{Total Power Dissipation } @ T_A = 25^{\circ}\mbox{C (Note 1)} \\ \mbox{Total Power Dissipation } @ T_A = 25^{\circ}\mbox{C (Note 2)} \\ \end{array} $	P _D	28.8 0.19 2.1 1.5	W W/°C W W
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to 175	°C
$ Single Pulse Drain-to-Source Avalanche \\ Energy - Starting T_J = 25^{\circ}C \\ (V_{DD} = 25 \mbox{ Vdc}, \mbox{ V}_{GS} = 10 \mbox{ Vdc}, \\ L = 1.0 \mbox{ mH}, \mbox{ I}_L(pk) = 7.75 \mbox{ A}, \mbox{ V}_{DS} = 60 \mbox{ Vdc}) $	E _{AS}	30	mJ
Thermal Resistance – Junction-to-Case – Junction-to-Ambient (Note 1) – Junction-to-Ambient (Note 2)	$f{R}_{ heta JC} \ f{R}_{ heta JA} \ f{R}_{ heta JA}$	5.2 71.4 100	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	ΤL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


1. When surface mounted to an FR4 board using 0.5 sq in pad size.

When surface mounted to an FR4 board using minimum recommended pad size.

ON Semiconductor®

www.onsemi.com

* The Assembly Location code (A) is front side optional. In cases where the Assembly Location is stamped in the package, the front side assembly code may be blank.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

NTD3055-150, NVD3055-150

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

C	haracteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			•	-	•	
Drain-to-Source Breakdown (V _{GS} = 0 Vdc, I _D = 250 μAc Temperature Coefficient (Pos	V _{(BR)DSS}	60 -	70.2		Vdc mV/°C	
Zero Gate Voltage Drain Curr ($V_{DS} = 60$ Vdc, $V_{GS} = 0$ Vd ($V_{DS} = 60$ Vdc, $V_{GS} = 0$ Vd	I _{DSS}			1.0 10	μAdc	
Gate-Body Leakage Current	$(V_{GS} = \pm 20 \text{ Vdc}, \text{ V}_{DS} = 0 \text{ Vdc})$	I _{GSS}	-	-	±100	nAdc
ON CHARACTERISTICS (Not	e 3)					
Gate Threshold Voltage (Note $(V_{DS} = V_{GS}, I_D = 250 \mu Adc$ Threshold Temperature Coeff	V _{GS(th)}	2.0	3.0 6.4	4.0	Vdc mV/°C	
Static Drain-to-Source On-F $(V_{GS} = 10 \text{ Vdc}, I_D = 4.5 \text{ Ad})$	R _{DS(on)}	-	122	150	mΩ	
$\begin{array}{l} \mbox{Static Drain-to-Source On-V} \\ \mbox{(V}_{GS} = 10 \mbox{ Vdc}, \mbox{ I}_{D} = 9.0 \mbox{ Ad} \\ \mbox{(V}_{GS} = 10 \mbox{ Vdc}, \mbox{ I}_{D} = 4.5 \mbox{ Ad} \end{array}$	V _{DS(on)}		1.4 1.1	1.9 -	Vdc	
Forward Transconductance (I	Note 3) (V _{DS} = 7.0 Vdc, I _D = 6.0 Adc)	g fs	-	5.4	-	mhos
DYNAMIC CHARACTERISTIC	S					
Input Capacitance		C _{iss}	-	200	280	pF
Output Capacitance	(V _{DS} = 25 Vdc, V _{GS} = 0 Vdc, f = 1.0 MHz)	C _{oss}	-	70	100	
Transfer Capacitance		C _{rss}	-	26	40	
SWITCHING CHARACTERIS	TICS (Note 4)					
Turn-On Delay Time		t _{d(on)}	-	11.2	25	ns
Rise Time	(V _{DD} = 48 Vdc, I _D = 9.0 Adc, V _{GS} = 10 Vdc,	t _r	-	37.1	80	
Turn-Off Delay Time	$R_{\rm G} = 9.1 \ \Omega$) (Note 3)	t _{d(off)}	-	12.2	25	
Fall Time		t _f	-	23	50]
Gate Charge		QT	-	7.1	15	nC
	(V _{DS} = 48 Vdc, I _D = 9.0 Adc, V _{GS} = 10 Vdc) (Note 3)	Q ₁	-	1.7	-]
		Q ₂	-	3.5	-	
SOURCE-DRAIN DIODE CH	ARACTERISTICS					
Forward On-Voltage		V _{SD}		0.98 0.86	1.20 -	Vdc
Reverse Recovery Time		t _{rr}	-	28.9	-	ns
	(I _S = 9.0 Adc, V _{GS} = 0 Vdc, dI _S /dt = 100 A/µs) (Note 3)	t _a	-	21.6	-]
		t.	1	73		1

Reverse Recovery Stored Charge

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2%.

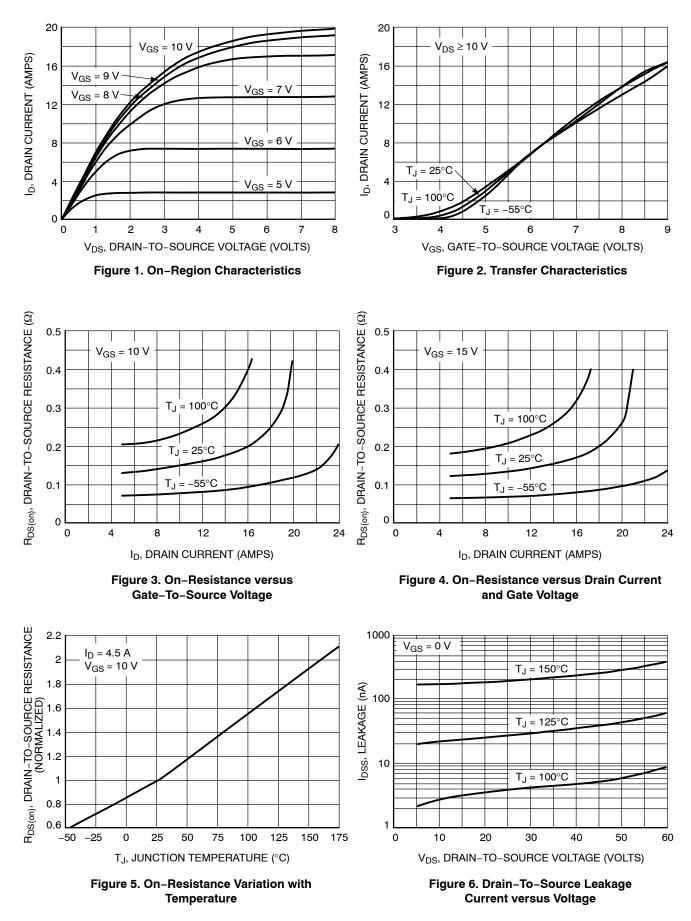
t_b

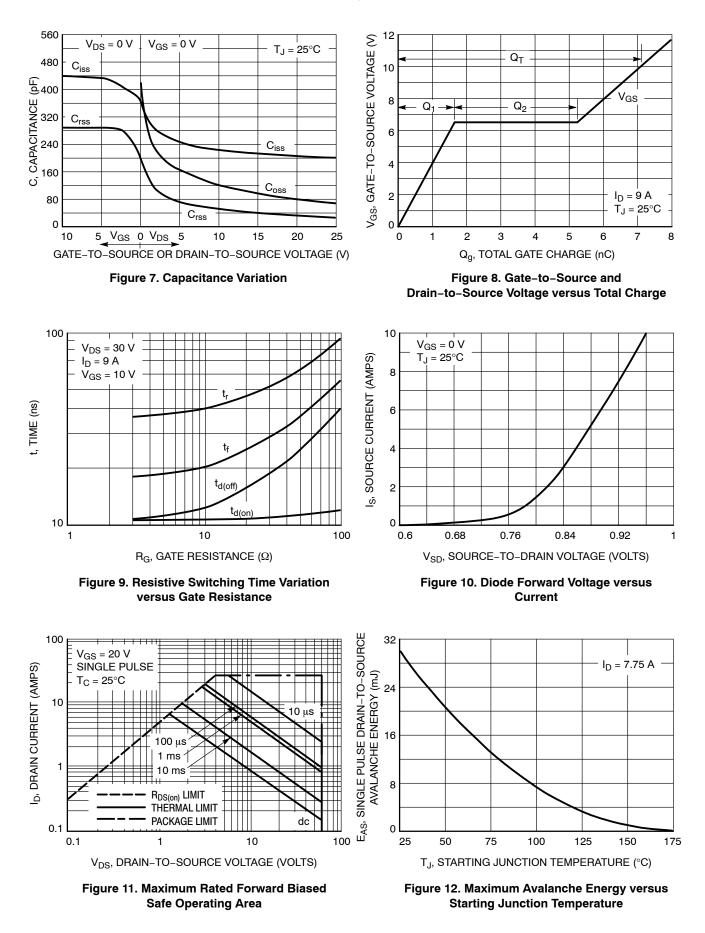
 $\mathsf{Q}_{\mathsf{R}\mathsf{R}}$

_

_

7.3


0.036


_

_

μC

4. Switching characteristics are independent of operating junction temperatures.

NTD3055-150, NVD3055-150

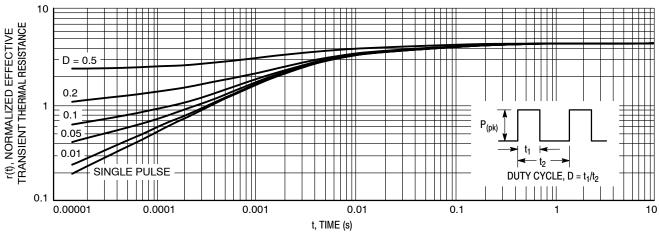


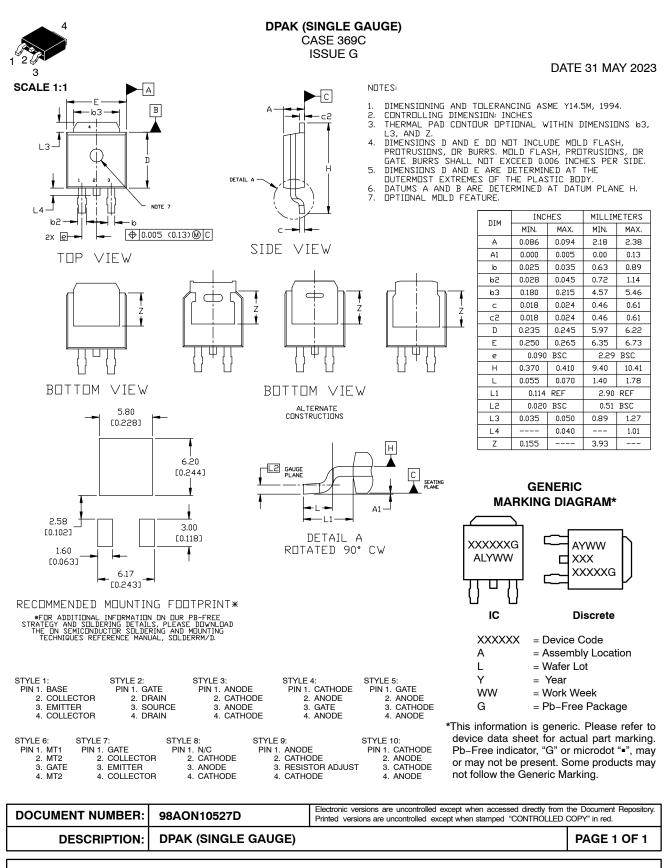
Figure 13. Thermal Response

ORDERING INFORMATION

Device	Package	Shipping [†]
NTD3055-150G	DPAK (Pb-Free)	75 Units / Rail
NTD3055-150-1G	IPAK (Pb-Free)	75 Units / Rail
NTD3055-150T4G	DPAK (Pb-Free)	2500 / Tape & Reel
NTD3055-150T4H	DPAK (Halide-Free)	2500 / Tape & Reel
NVD3055-150T4G*	DPAK (Pb-Free)	2500 / Tape & Reel
NVD3055-150T4G-VF01	DPAK (Pb-Free)	2500 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NVD Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.


DPAK INSERTION MOUNT CASE 369 ISSUE O DATE 02 JAN 2000 SCALE 1:1 С $B \rightarrow$ NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. Е R MILLIMETERS INCHES л DIM MIN MAX MIN MAX A 0.235 0.250 B 0.250 0.265 5.97 6.35 Δ 6.35 6.73 C 0.086 0.094 D 0.027 0.035 2.19 0.69 2.38 2 3 0.88 S E 0.033 0.040 F 0.037 0.047 0.84 1.01 0.94 -T-1.19 G 0.090 BSC 2.29 BSC SEATING H 0.034 0.040 J 0.018 0.023 0.87 1.01 0.46 0.58 K 0.350 0.380 8.89 9.65 **R** 0.175 0.215 4.45 5.46 0.050 0.090 1.27 J S 2.28 F V 0.030 0.050 н 0.77 1.27 D 3 PL G 🔫 ⊕ 0.13 (0.005) M T

STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:		STYLE 5:		STYLE 6:	
PIN 1.	BASE	PIN 1.	GATE	PIN 1.	ANODE	PIN 1.	CATHODE	PIN 1.	GATE	PIN 1.	MT1
2.	COLLECTOR	2.	DRAIN	2.	CATHODE	2.	ANODE	2.	ANODE	2.	MT2
3.	EMITTER	3.	SOURCE	3.	ANODE	3.	GATE	3.	CATHODE	3.	GATE
4.	COLLECTOR	4.	DRAIN	4.	CATHODE	4.	ANODE	4.	ANODE	4.	MT2

	DOCUMENT NUMBER:	NUMBER: 98ASB42319B	98ASB42319B Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION: DPAK INSERTION MOUNT PAGE 1 OF	DESCRIPTION:	CRIPTION: DPAK INSERTION MOUNT	r T	PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi

onsemi and ONSEMI: are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>