35 V, 5 A, Low V_{CE(sat)} PNP Transistor ON Semiconductor's e²PowerEdge family of low $V_{CE(sat)}$ transistors are miniature surface mount devices featuring ultra low saturation voltage ($V_{CE(sat)}$) and high current gain capability. These are designed for use in low voltage, high speed switching applications where affordable efficient energy control is important. Typical application are DC-DC converters and power management in portable and battery powered products such as cellular and cordless phones, PDAs, computers, printers, digital cameras and MP3 players. Other applications are low voltage motor controls in mass storage products such as disc drives and tape drives. In the automotive industry they can be used in air bag deployment and in the instrument cluster. The high current gain allows e²PowerEdge devices to be driven directly from PMU's control outputs, and the Linear Gain (Beta) makes them ideal components in analog amplifiers. #### **Features** - S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable - These Devices are Pb-Free and are RoHS Compliant* # **MAXIMUM RATINGS** $(T_A = 25^{\circ}C)$ | Rating | Symbol | Max | Unit | |--------------------------------|-----------------|---------------------------|------| | Collector-Emitter Voltage | V_{CEO} | -35 | Vdc | | Collector-Base Voltage | V_{CBO} | -55 | Vdc | | Emitter-Base Voltage | V_{EBO} | -5.0 | Vdc | | Collector Current - Continuous | I _C | -2.0 | Adc | | Collector Current - Peak | I _{CM} | -5.0 | Α | | Electrostatic Discharge | ESD | HBM Class 3
MM Class C | | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. # ON Semiconductor® http://onsemi.com # \$ 5.0 AMPS PNP LOW $V_{CE(sat)}$ TRANSISTOR EQUIVALENT $R_{DS(on)}$ 100 $m\Omega$ TSOP-6 CASE 318G STYLE 6 #### **MARKING DIAGRAM** VS8 = Device Code M = Date Code* • = Pb-Free Package (*Note: Microdot may be in either location) *Date Code orientation may vary depending upon manufacturing location. #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |-----------------|---------------------|------------------------| | NSS35200MR6T1G | TSOP-6
(Pb-Free) | 3,000 /
Tape & Reel | | SNSS35200MR6T1G | TSOP-6
(Pb-Free) | 3,000 /
Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. # THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |--|---------------------------------------|-------------|-------------| | Total Device Dissipation T _A = 25°C Derate above 25°C | P _D (Note 1) | 625
5.0 | mW
mW/°C | | Thermal Resistance,
Junction-to-Ambient | R _{θJA} (Note 1) | 200 | °C/W | | Total Device Dissipation T _A = 25°C Derate above 25°C | P _D (Note 2) | 1.0
8.0 | W
mW/°C | | Thermal Resistance,
Junction-to-Ambient | R _{θJA} (Note 2) | 120 | °C/W | | Thermal Resistance,
Junction-to-Lead #1 | $R_{ hetaJL}$ | 80 | °C/W | | Total Device Dissipation
(Single Pulse < 10 sec.) | P _{Dsingle}
(Notes 2 & 3) | 1.75 | W | | Junction and Storage Temperature Range | T _J , T _{stg} | -55 to +150 | °C | ^{1.} FR-4 @ Minimum Pad. 2. FR-4 @ 1.0 X 1.0 inch Pad. 3. Refer to Figure 8. # **ELECTRICAL CHARACTERISTICS** ($T_A = 25^{\circ}C$ unless otherwise noted) | Characteristic | Symbol | Min | Typical | Max | Unit | |--|----------------------|-------------------|----------------------------|-------------------------|------| | OFF CHARACTERISTICS | • | • | • | • | • | | Collector – Emitter Breakdown Voltage ($I_C = -10$ mAdc, $I_B = 0$) | V _{(BR)CEO} | -35 | -45 | _ | Vdc | | Collector – Base Breakdown Voltage $(I_C = -0.1 \text{ mAdc}, I_E = 0)$ | V _{(BR)CBO} | -55 | -65 | - | Vdc | | Emitter – Base Breakdown Voltage $(I_E = -0.1 \text{ mAdc}, I_C = 0)$ | V _{(BR)EBO} | -5.0 | -7.0 | - | Vdc | | Collector Cutoff Current (V _{CB} = -35 Vdc, I _E = 0) | I _{CBO} | _ | -0.03 | -0.1 | μAdc | | Collector-Emitter Cutoff Current (V _{CES} = -35 Vdc) | I _{CES} | - | -0.03 | -0.1 | μAdc | | Emitter Cutoff Current (V _{EB} = -4.0 Vdc) | I _{EBO} | - | -0.01 | -0.1 | μAdc | | ON CHARACTERISTICS | - | | • | | | | DC Current Gain (Note 4)
($I_C = -1.0 \text{ A}, V_{CE} = -1.5 \text{ V}$)
($I_C = -1.5 \text{ A}, V_{CE} = -1.5 \text{ V}$)
($I_C = -2.0 \text{ A}, V_{CE} = -3.0 \text{ V}$) | h _{FE} | 100
100
100 | 200
200
200 | -
400
- | | | Collector – Emitter Saturation Voltage (Note 4)
($I_C = -0.8 \text{ A}, I_B = -0.008 \text{ A}$)
($I_C = -1.2 \text{ A}, I_B = -0.012 \text{ A}$)
($I_C = -2.0 \text{ A}, I_B = -0.02 \text{ A}$) | V _{CE(sat)} | -
-
- | -0.125
-0.175
-0.260 | -0.15
-0.20
-0.31 | V | | Base – Emitter Saturation Voltage (Note 4) $(I_C = -1.2 \text{ A}, I_B = -0.012 \text{ A})$ | V _{BE(sat)} | _ | -0.68 | -0.85 | V | | Base – Emitter Turn–on Voltage (Note 4) $(I_C = -2.0 \text{ A, } V_{CE} = -3.0 \text{ V})$ | V _{BE(on)} | _ | -0.81 | -0.875 | V | | Cutoff Frequency ($I_C = -100 \text{ mA}$, $V_{CE} = -5.0 \text{ V}$, $f = 100 \text{ MHz}$) | f _T | 100 | - | - | MHz | | Input Capacitance (V _{EB} = -0.5 V, f = 1.0 MHz) | Cibo | - | 600 | 650 | pF | | Output Capacitance (V _{CB} = -3.0 V, f = 1.0 MHz) | Cobo | - | 85 | 100 | pF | | Turn-on Time (V_{CC} = -10 V, I_{B1} = -100 mA, I_{C} = -1 A, R_{L} = 3 Ω) | t _{on} | - | 35 | - | nS | | Turn-off Time (V_{CC} = -10 V, I_{B1} = I_{B2} = -100 mA, I_{C} = 1 A, R_{L} = 3 Ω) | t _{off} | - | 225 | - | nS | ^{4.} Pulsed Condition: Pulse Width = 300 μ sec, Duty Cycle \leq 2%. Figure 1. Collector Emitter Saturation Voltage versus Collector Current Figure 2. Collector Emitter Saturation Voltage versus Collector Current Figure 3. DC Current Gain versus Collector Current Figure 4. Base Emitter Saturation Voltage versus Collector Current Figure 5. Base Emitter Turn-On Voltage versus Collector Current Figure 6. Capacitance Figure 7. Safe Operating Area Figure 8. Normalized Thermal Response ## TSOP-6 3.00x1.50x0.90, 0.95P **CASE 318G ISSUE W** **DATE 26 FEB 2024** #### NOTES - DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018. - CONTROLLING DIMENSION: MILLIMETERS. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. - 4. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSIONS D AND E1 ARE DETERMINED AT DATUM H. 5. PIN 1 INDICATOR MUST BE LOCATED IN THE INDICATED ZONE | MILLIMETERS | | | | | | |-------------|----------|------|------|--|--| | DIM | MIN | NDM | MAX | | | | А | 0.90 | 1.00 | 1.10 | | | | A1 | 0.01 | 0.06 | 0.10 | | | | A2 | 0.80 | 0.90 | 1.00 | | | | b | 0.25 | 0.38 | 0.50 | | | | U | 0.10 | 0.18 | 0,26 | | | | D | 2.90 | 3.00 | 3.10 | | | | E | 2.50 | 2.75 | 3.00 | | | | E1 | 1.30 | 1.50 | 1.70 | | | | е | 0.85 | 0.95 | 1,05 | | | | L | 0.20 | 0.40 | 0.60 | | | | L2 | 0.25 BSC | | | | | | М | 0° | | 10° | | | # RECOMMENDED MOUNTING FOOTPRINT *For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference manual, SDLDERRM/D. | DOCUMENT NUMBER: | 98ASB14888C | Electronic versions are uncontrolled except when accessed directly from the Document Repos
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|---------------------------|---|--| | DESCRIPTION: | TSOP-6 3.00x1.50x0.90, 0. | TSOP-6 3.00x1.50x0.90, 0.95P | | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others. ## TSOP-6 3.00x1.50x0.90, 0.95P CASE 318G ISSUE W **DATE 26 FEB 2024** # GENERIC MARKING DIAGRAM* XXX M= 0 = 1 | | | XXX = Specific Device Code XXX = Specific Device Code A =Assembly Location M = Date Code Y = Year ■ = Pb-Free Package W = Work Week ■ Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. | STYLE 1:
PIN 1. DRAIN
2. DRAIN
3. GATE
4. SOURCE
5. DRAIN
6. DRAIN | STYLE 2: PIN 1. EMITTER 2 2. BASE 1 3. COLLECTOR 1 4. EMITTER 1 5. BASE 2 6. COLLECTOR 2 | STYLE 3:
PIN 1. ENABLE
2. N/C
3. R BOOST
4. Vz
5. V in
6. V out | STYLE 4:
PIN 1. N/C
2. V in
3. NOT USED
4. GROUND
5. ENABLE
6. LOAD | STYLE 5: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2 | STYLE 6: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. EMITTER 5. COLLECTOR 6. COLLECTOR | |--|---|--|--|--|---| | STYLE 7: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. N/C 5. COLLECTOR 6. EMITTER | STYLE 8: PIN 1. Vbus 2. D(in) 3. D(in)+ 4. D(out)+ 5. D(out) 6. GND | STYLE 9:
PIN 1. LOW VOLTAGE GATE
2. DRAIN
3. SOURCE
4. DRAIN
5. DRAIN
6. HIGH VOLTAGE GATE | STYLE 10:
PIN 1. D(OUT)+
2. GND
3. D(OUT)-
4. D(IN)-
5. VBUS
6. D(IN)+ | STYLE 11: PIN 1. SOURCE 1 2. DRAIN 2 3. DRAIN 2 4. SOURCE 2 5. GATE 1 6. DRAIN 1/GATE 2 | STYLE 12:
PIN 1. I/O
2. GROUND
3. I/O
4. I/O
5. VCC
6. I/O | | STYLE 13: PIN 1. GATE 1 2. SOURCE 2 3. GATE 2 4. DRAIN 2 5. SOURCE 1 6. DRAIN 1 | STYLE 14: PIN 1. ANODE 2. SOURCE 3. GATE 4. CATHODE/DRAIN 5. CATHODE/DRAIN 6. CATHODE/DRAIN | PIN 1. ANODE PIN
2. SOURCE
3. GATE
4. DRAIN
5. N/C | LE 16: 1. ANODE/CATHODE 2. BASE 3. EMITTER 4. COLLECTOR 5. ANODE 6. CATHODE | STYLE 17: PIN 1. EMITTER 2. BASE 3. ANODE/CATHODE 4. ANODE 5. CATHODE 6. COLLECTOR | | | DOCUMENT NUMBER: | 98ASB14888C | Electronic versions are uncontrolled except when accessed directly from the Document Repositor
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|------------------------------|---|-------------| | DESCRIPTION: | TSOP-6 3.00x1.50x0.90, 0.95P | | PAGE 2 OF 2 | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales