

Small Signal BJT and MOSFET

30 V, 500 mA, PNP BJT with 20 V, 224 mA, N-Channel MOSFET

NSM3005NZ

Features

 These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

• Portable Devices

Q1 MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Value	Unit
Collector–Emitter Voltage	V _{CEO}	30	V
Collector-Base Voltage	V_{CBO}	40	V
Emitter-Base Voltage	V_{EBO}	5.0	V
Collector Current	Ic	500	mA
Base Current	Ι _Β	50	mA

Q2 MAXIMUM RATINGS (T_J = 25°C unless otherwise specified)

Parameter		Symbol	Value	Unit	
Drain-to-Source Voltage		V _{DSS}	20	V	
Gate-to-Source Voltage		V_{GS}	±8	V	
Continuous Drain	Steady State	T _A = 25°C	I _D	224	mA
Current (Note 1)		T _A = 85°C		162	
	t ≤ 5 s	T _A = 25°C		241	
Pulsed Drain Current $T_p = 10 \mu s$		I _{DM}	673	mA	
Source Current (Body Diode)		I _S	120	mA	

THERMAL CHARACTERISTICS

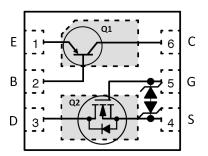
Parameter	Symbol	Value	Unit
Thermal Resistance Junction-to-Ambient (Note 1) Total Power Dissipation @ T _A = 25°C	$egin{array}{c} R_{ hetaJA} \ P_D \end{array}$	245 0.8	°C/W W
Operating Junction and Storage Temperature	T _J , T _{STG}	–55 to 150	°C
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)	T _L	260	°C

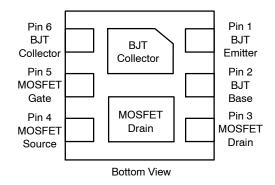
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface mounted on FR4 board using 1 in sq pad size (Cu. area = 1.127 in sq [1 oz] including traces).

MARKING DIAGRAM

UDFN6 CASE 517AT μCOOL™




AE = Specific Device Code M = Date Code

■ = Pb-Free Package

(Note: Microdot may be in either location) *Date Code orientation may vary depending upon manufacturing location.

PIN CONNECTIONS

ORDERING INFORMATION

Device	Package	Shipping [†]
NSM3005NZTAG	UDFN6 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Test Condition

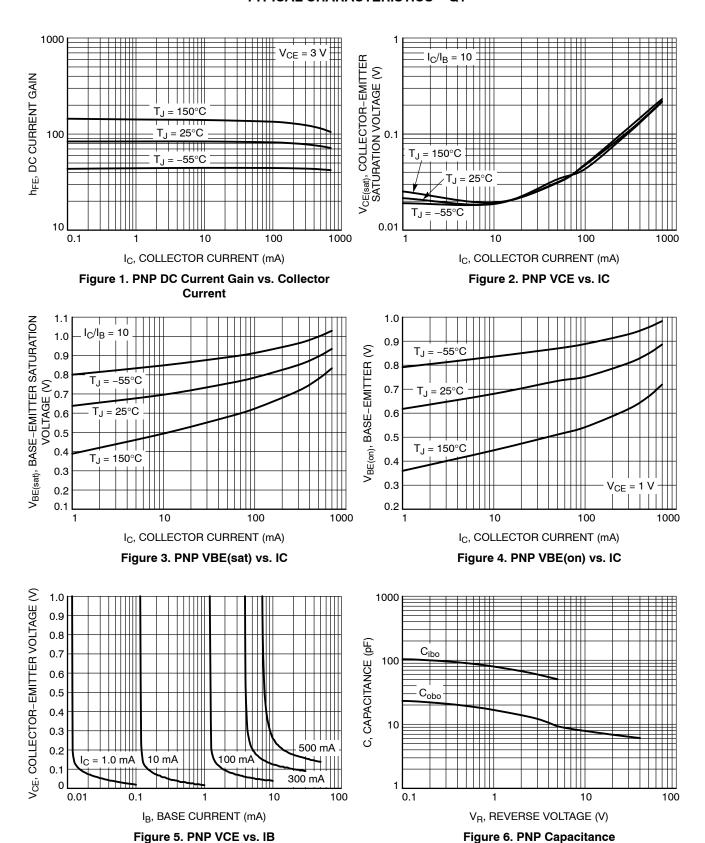
Min

Тур

Max

Unit

Q1 ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)


Symbol

Parameter

Faiailletei	Gyillboi	rest condition	IVIIII	קעי	IVIAA	Oilit
OFF CHARACTERISTICS						
Collector-Base Breakdown Voltage	V _{(BR)CBO}	I _C = 100 μA	40	_	_	V
Collector–Emitter Breakdown Voltage	V _{(BR)CEO}	I _C = 10 mA	30	-	_	V
Emitter-Base Breakdown Voltage	V _{(BR)EBO}	I _E = 100 μA	5.0	-	_	V
Collector Cutoff Current	I _{CBO}	V _{CB} = 25 V, I _E = 0 A	_	_	1.0	μΑ
Emitter Cutoff Current	I _{EBO}	V _{EB} = 5.0 V, I _C = 0 A	_	_	10	μA
ON CHARACTERISTICS (Note 2)	·EBO	TEB SIG 1, 10 ST				po t
DC Current Gain	h _{FE}	$V_{CE} = 3.0 \text{ V}, I_{C} = 30 \text{ mA}$	20	_	100	
Do Garretti Gairi	''FE	$V_{CE} = 3.0 \text{ V}, I_{C} = 100 \text{ mA}$	20	_	100	1
		$V_{CE} = 3.0 \text{ V}, I_{C} = 500 \text{ mA}$	20	_	100	1
Collector–Emitter Saturation Voltage	V _{CE(sat)}	I _C = 500 mA, I _B = 50 mA	_	_	0.4	V
Base–Emitter Saturation Voltage	V _{BE(sat)}	I _C = 500 mA, I _B = 50 mA	_	_	1.1	V
Base–Emitter Turn–On Voltage	V _{BE(on)}	V _{CE} = 1.0 V, I _C = 500 mA	_	_	1.0	V
	• BE(011)	1 CE 110 1, 10 000 11.21				<u> </u>
Q2 ELECTRICAL CHARACTERISTICS	(T _J = 25°C unle	ess otherwise specified)				
Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•			•		•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	20	_	_	V
Drain-to-Source Breakdown Voltage	V _{(BR)DSS} /T _J	I _D = -250 μA, ref to 25°C	_	19	_	mV/°C
Temperature Coefficient	(5.1,500 0					
Zero Gate Votlage Drain Current	I _{DSS}	$V_{GS} = 0 \text{ V}, V_{DS} = 16 \text{ V}, T_{J} = 25^{\circ}\text{C}$	-	-	1.0	μΑ
Gate-to-Source Leakage Current	I_{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 8.0 \text{ V}$	-	-	±2.0	μΑ
ON CHARACTERISTICS (Note 2)						
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 250 \mu A$	0.4	-	1.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J	-	1	1.9	ı	mV/°C
Drain-to-Source On Resistance	R _{DS(ON)}	$V_{GS} = 4.5 \text{ V}, I_D = 100 \text{ mA}$	ı	0.65	1.4	Ω
		$V_{GS} = 2.5 \text{ V}, I_D = 50 \text{ mA}$	İ	0.9	1.9	
		$V_{GS} = 1.8 \text{ V}, I_D = 20 \text{ mA}$	-	1.1	2.2	
		$V_{GS} = 1.5 \text{ V}, I_D = 10 \text{ mA}$		1.4	4.3	
Forward Transconductance	9FS	$V_{DS} = 5.0 \text{ V}, I_{D} = 100 \text{ mA}$	-	0.56	-	S
CHARGES AND CAPACITANCES						
Input Capacitance	C _{ISS}	f = 1.0 MHz, V _{GS} = 0 V,	-	15.8	-	pF
Output Capacitance	C _{OSS}	V _{DS} = 15 V	-	3.5	-	
Reverse Transfer Capacitance	C _{RSS}		ı	2.4	-	
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V};$	-	0.70	-	nC
Threshold Gate Charge	Q _{G(TH)}	I _D = 200 mA	-	0.05	-	
Gate-to-Source Charge	Q_{GS}		-	0.14	1	
Gate-to-Drain Charge	Q_{GD}		-	0.10	-	
SWITCHING CHARACTERISTICS, V _{GS} = 4.5	V (Note 3)					
Turn-On Delay Time	t _{d(ON)}	$V_{GS} = 4.5 \text{ V}, V_{DD} = 15 \text{ V},$	-	18	-	ns
Rise Time	t _r	$I_D = 200 \text{ mA}, R_G = 2 \Omega$	-	35	-	
Turn-Off Delay Time	T _{d(ON)}		-	201	_]
Fall Time	t _f		-	110	-	
DRAIN-SOURCE DIODE CHARACTERISTIC	S					
Forward Diode Voltage	V_{SD}	$V_{GS} = 0 \text{ V}, I_{S} = 10 \text{ mA}$	-	0.55	1.0	V
	-					•

Pulsed Condition: Pulse Width = 300 msec, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS - Q1

TYPICAL CHARACTERISTICS - Q2

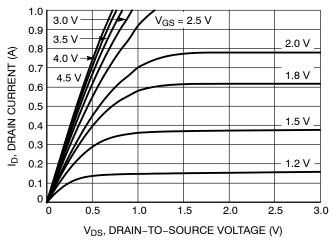


Figure 7. On-Region Characteristics

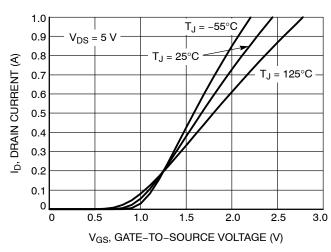


Figure 8. Transfer Characteristics

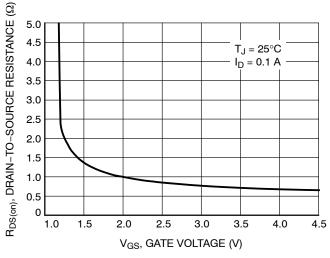


Figure 9. On-Resistance vs. Gate-to-Source Voltage

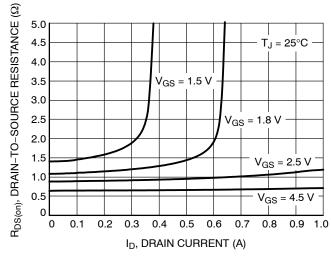


Figure 10. On-Resistance vs. Drain Current and Gate Voltage

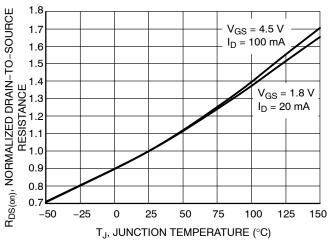


Figure 11. On–Resistance Variation with Temperature

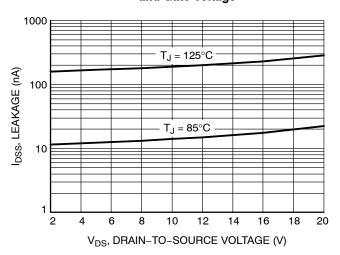



Figure 12. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS - Q2

0.85
0.75
0.75
0.65
0.65
0.45
0.45
0.35
0.35
0.35
TJ, TEMPERATURE (°C)

Figure 17. Threshold Voltage

0.05 C

DETAIL A

UDFN6 1.6x1.6, 0.5P CASE 517AT **ISSUE O**

DATE 02 SEP 2008

NOTES:

АЗ

OPTIONAL

CONSTRUCTION

- DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND
- 0.30 mm FROM TERMINAL.
 COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS			
DIM	MIN	MAX		
Α	0.45	0.55		
A1	0.00	0.05		
A3	0.13	0.13 REF		
b	0.20	0.30		
D	1.60 BSC			
E	1.60 BSC			
е	0.50 BSC			
D1	1.14	1.34		
D2	0.38	0.58		
E1	0.54	0.74		
K	0.20			
L	0.15	0.35		
L1		0.10		

GENERIC MARKING DIAGRAM*

XX = Specific Device Code

M = Date Code

■ = Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

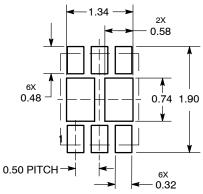
·D В 0.10 C **DETAIL A** PIN ONE REFERENCE OPTIONAL CONSTRUCTION 0.10 C MOLD CMPD EXPOSED Cu-**TOP VIEW** (A3) **DETAIL B** 0.05 С **A1 DETAIL B**

C SEATING

C A B

С поте з

0.10


0.05

SOLDERMASK DEFINED MOUNTING FOOTPRINT*

BOTTOM VIEW

E1

SIDE VIEW

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON32372E	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	UDFN6, 1.6X1.6, 0.5P		PAGE 1 OF 1	

onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales