USB 2.0 + Audio Switch

The NL3S22S is a double-pole/double-throw (DPDT) analog switch for routing high speed differential data and audio. The high-speed data path is compliant with High Speed USB 2.0, Full Speed USB 1.1, Low Speed USB 1.0 and any generic UART protocol. The multi-purpose audio path is capable of passing signals with negative voltages as low as 2 V below ground and features shunt resistors to reduce Pop and Click noise in the audio system.

Features

- V_{CC} Range: 2.7 V to 5.5 V
- Control Pins Compatible with 1.8 V Interfaces
- I_{CC}: 23 μA (Typ)
- ESD Performance: 4 kV HBM
- Available in1.4 mm x 1.8 mm UQFN10
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

High Speed Data Path

- Input Signal Range: 0 V to 3.7 V
- $R_{DS(on)}$: 5 Ω (Typ)
- C_{ON}: 4.5 pF (Typ)
- RECONTACT • Data Rate: USB 2.0–Compliant – up to 480 Mbps

Audio Path

- Input Signal Range: -2.0 V to 2.0 V
- R_{DSON}: 3 Ω (Typ)
- R_{ON(FLAT)}: 0.002 Ω (Typ)
- THD: 0.002% (R_L = 16 Ω / V_{IS} = 0.4 V_{RMS})

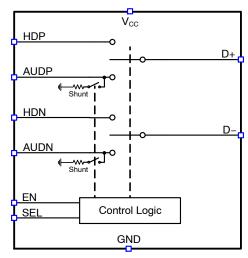
Applications

- Smartphones
- Tablets
- USB 2.0 Hosts/Peripherals
- Audio / High-Speeds Data Switching

ON Semiconductor®

www.onsemi.com

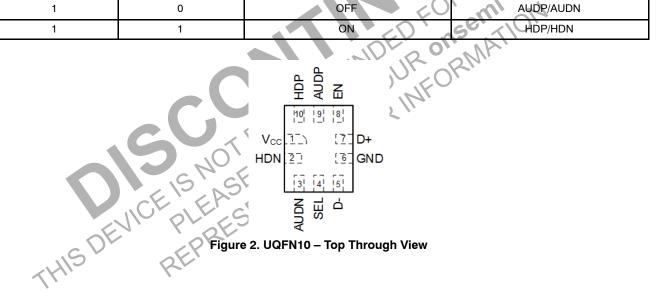
MARKING DIAGRAM


(Note: Microdot may be in either location)

OORDERING INFORMATION

Device	Package	Shipping [†]
NL3S22SMUTAG	UQFN10 (Pb-Free)	3000 / Tape & Reel

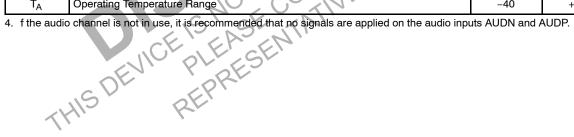
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.


1

FUNCTION TABLE

FUNCTION TABLE		Figure 1. Block Diagram
EN	SEL	Shunt Status D+/D- Function
0	Х	ON No Connect
1	0	OFF AUDP/AUDN
1	1	ON HDP/HDN

PIN DESCRIPTION


Pin Name	Pin	Description	
V _{CC}	1	Power Supply	
HDN	2	High Speed Differential Data (-)	
AUDN	3	Audio Signal (-)	
SEL	4	Function Select	
D-	5	Audio/Data Common I/O (-)	
GND	6	Ground	
D+	7	Audio/Data Common I/O (+)	
EN	8	Chip Enable	
AUDP	9	Audio Signal (+)	
HDP	10	High Speed Differential Data (+)	

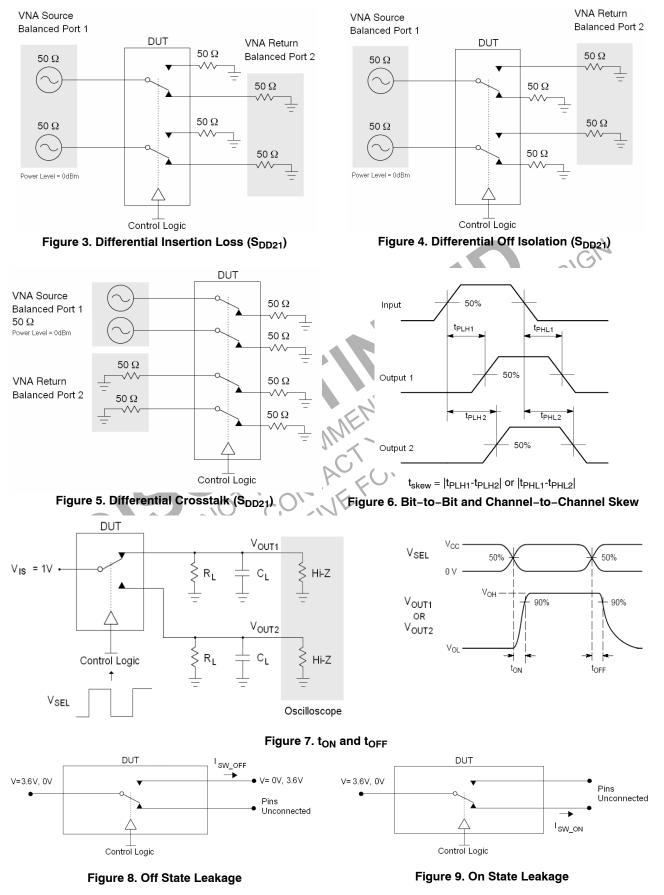
MAXIMUM RATINGS

Rating	Sy	Value	Unit	
V _{CC}	Positive DC Supply Voltage	ve DC Supply Voltage		V
V _{IS}	Analog Input/Output Voltage	HDP, HDN	-0.3 to +5.5	V
		AUDP, AUDN	-2.5 to V _{CC} + 0.3	
		D+, D-	-2.5 to +5.5	
V _{IN}	Digital Control Pin Voltage on EN, SEL	-0.3 to V _{CC} + 0.3	V	
Ts	Storage Temperature	-55 to +150	°C	
ΤL	Lead Temperature, 1 mm from Case for	10 seconds	260	°C
Τ _J	Junction Temperature Under Bias		150	°C
MSL	Moisture Sensitivity (Note 1)		Level 1	
I _{LU}	Latchup Current (Note 2)		±100	mA
ESD	ESD Protection (Note 3)	Human Body Model	4000	V

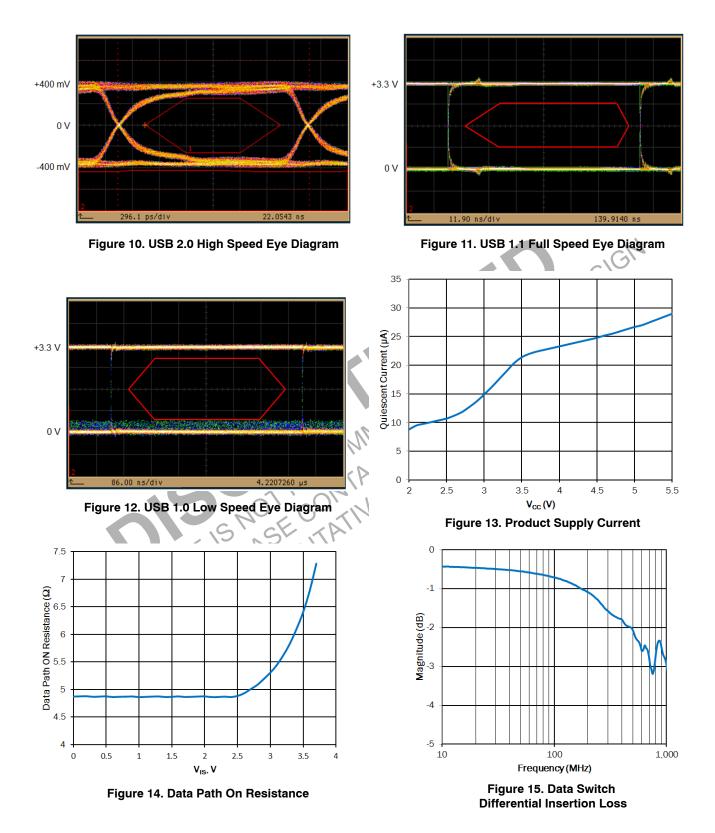
RECOMMENDED OPERATING CONDITIONS

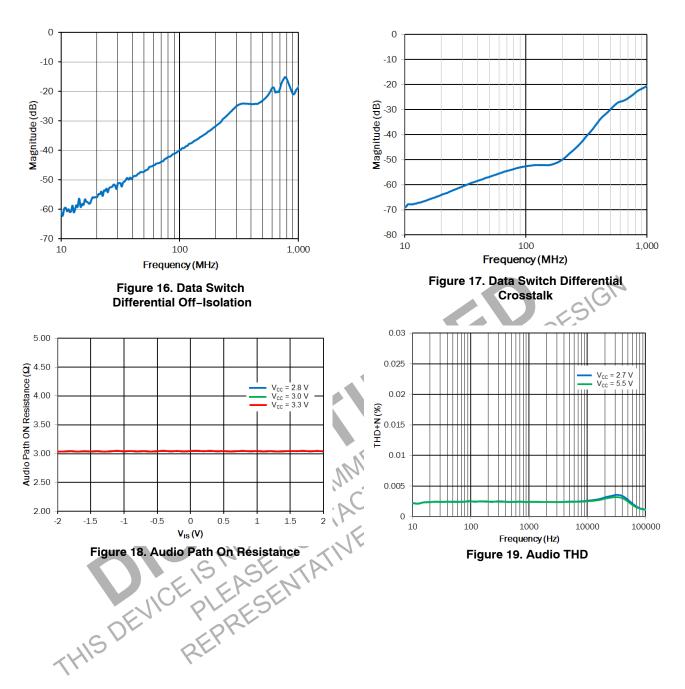
 Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: J-STD-020A. Latch up Current Maximum Rating: ±100 mA per JEDEC standard: JESD78. This device series contains ESD protection and passes the following tests: Human Body Model (HBM) ±4.0 kV per JEDEC standard: JESD22-A114 for all pins. 							
Symbol	Parameter	Parameter Min Max Unit					
V _{CCEN}	Positive DC Supply Voltage	2.7	5.5	V			
V _{IS}	Switch Input / Output Voltage (Note 4)	0	3.7	V			
	AUDP, AUDN	-2.0	2.0				
		-2.0	3.7				
V _{IN}	Digital Control Input Voltage	GND	V _{CC}	V			
T _A	Operating Temperature Range	-40	+85	°C			

DC ELECTRICAL CHARACTERISTICS (Typical values are at V_{CC} = +3.6 V and T_A = +25 \ ^{o}C)

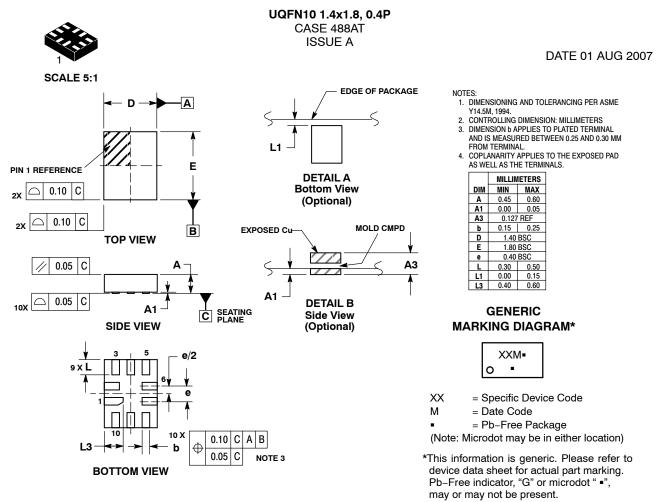

				-40	0 °C to 85	°C	
Symbol	Parameter	Test Conditions	V _{CC} (V)	Min	Тур	Max	Unit
POWER SU	PPLY						
I _{CC}	Supply Current	I _{IS} = 0 mA	4.2	-	23	105	μA
Control Log	jic (EN, SEL)						
V _{IH}	Input High Voltage		4.2	1.5	_	-	V
			3.6	1.4	_	-	
			2.7	1.3	_	-	
VIL	Input Low Voltage		4.2	-	-	0.4	V
			3.6	-	_	0.4	
			2.7	-	_	0.4	
V _{IHYS}	Input Hysteresis		2.7 – 5.5		250		mV
I _{IN}	Leakage Current		2.7 – 5.5	-	-	±150	nA
AUDIO SWI	TCH (AUDP/AUDN ↔ D+/D–)				A C	5	
R _{ON}	ON-Resistance	V_{IS} = -2.0 V to 2.0 V, I_{IS} = 50 mA	3.0	-	3	5	Ω
ΔR_{ON}	ON-Resistance Matching Between Channels	V_{IS} = -2.0 V to 2.0 V, I_{IS} = 50 mA	3.0	NE	0.05	-	Ω
R _{FLAT(ON)}	ON Resistance Flatness	$V_{IS} = -2.0$ V to 2.0 V, $I_{IS} = 50$ mA	3.0	105	0.002	-	Ω
R _{SH}	Shunt Resistance		3.6	5-1	125	200	Ω
DATA SWIT	CH (HDP/HDN ↔ D+/D–)		0	ANA.			
R _{ON}	ON-Resistance	$V_{IS} = 0$ V to 1.7 V, $I_{IS} = 15$ mA	3.0	2	5	7.5	Ω
ΔR_{ON}	ON-Resistance Matching Between Channels	$V_{1S} = 0 V$ to 1.7 V, $H_{1S} = 15 \text{ mA}$	3.0	-	0.02	-	Ω
R _{FLAT(ON)}	ON Resistance Flatness	$V_{IS} = 0 V$ to 1.7 V, $I_{IS} = 15 \text{ mA}$	3.0	-	0.003	-	Ω
I _{SW(OFF)}	OFF-State Leakage ON-State Leakage	V _{IS} = 0 V to 3.6	3.6	-	-	200	nA
	ON-State Leakage	V ₁₅ = 0 V to 3.6	3.6	_	-	±200	nA

AC ELECTRICAL CHARACTERISTICS (Typical values are at V_{CC} = +3.6 V and T_A = +25 \ ^{o}C)

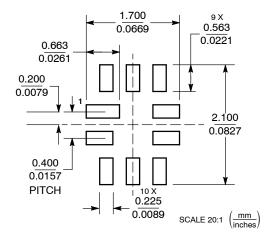

				-4	0 °C to 85	°C	
Symbol	Parameter	Test Conditions	V _{CC} (V)	Min	Тур	Max	Unit
	ı ITCH (AUDP/AUDN ↔ D+/D-)				1		
THD	Audio THD	f = 20 Hz to 20 kHz, V _{IS} = 0.4 V _{RMS} , DC Bias = 0 V, R _L = 16 Ω	2.7 – 5.5	-	0.002	-	%
PSRR	Power Supply Ripple Rejection	From V _{CC} unto AUDP/AUDN, f = 217 Hz, R _L = 16 Ω	2.7 – 5.5	-	118	-	dB
DATA SWIT	TCH (HDP/HDN ↔ D+/D–)						
C _{ON}	Equivalent ON–Capacitance	Switch ON, f = 1 MHz	3.6	-	4.84	-	pF
C _{OFF}	Equivalent OFF–Capacitance	Switch OFF, f = 1 MHz	3.6	-	2.06	-	pF
D _{IL}	Differential Insertion Loss	f = 10 MHz	2.7 – 5.5	-	-0.42	-	dB
	LUSS	f = 800 MHz	2.7 – 5.5		-1.89	, GN	
		f = 1.1 GHz	2.7 – 5.5	-	-3.01	S	
D _{ISO}	Differential Off-Isolation	f = 10 MHz	2.7 – 5.5	-	-60	-	dB
		f = 800 MHz	2.7 – 5.5		-15	-	
		f = 1.1 GHz	2.7 – 5.5	Br	-15	-	
D _{CTK}	Differential Crosstalk	f = 10 MHz	2.7 - 5.5	<u>5</u>	-67	-	dB
		f = 800 MHz	2.7 – 5.5	<u> </u>	-23	-	
		f = 1.1 GHz	2.7 – 5.5	An ~	-19	-	
PSRR	Power Supply Ripple Rejection	From V _{CC} unto D+/D-, f = 217 Hz, R _L = 50 Ω	2.7 - 5.5	2	108	-	dB
DYNAMIC 1	ГIMING	CON CT	121				
t _{PD}	Propagation Delay (Notes 5 and 6)	$V_{NOn} \text{ or } V_{NCn} = 0V, R_L = 50 \Omega,$	2.7 – 5.5	-	0.25	-	ns
t _{ON}	Turn-On Time	V_{IS} = 1 V, R_L = 50 Ω , C_L = 7 pF (fix- ture only)	2.7 – 5.5				μs
	CEIS	EN or SEL to AUDP/AUDN		-	2.2	-	
	ICE	EN or SEL to HDP/HDN		-	6.2	-	
t _{OFF}	Turn-Off Time	V_{IS} = 1 V, R _L = 50 Ω , C _L = 7 pF (fix- ture only)	2.7 – 5.5				ns
	IS RE	EN or SEL to AUDP/AUDN		-	67	-	
		EN or SEL to HDP/HDN		-	1200	-	
t _{sk(b-b)}	Bit to bit skew	Within the same differential channel	2.7 – 5.5	-	5	-	ps
$t_{sk(ch-ch)}$	Channel to channel skew	Maximum skew between all chan- nels	2.7 – 5.5	-	5	-	ps


Guaranteed by design.
 No other delays than the RC network formed by the load resistance and the load capacitance of the switch are added on the bus. For a 10 pF load, this delay is 5 ns which is much smaller than rise and fall time of typical driving systems. Propagation delays on the bus are determined by the driving circuit on the driving side and its interactions with the load of the driven side.

PARAMETER MEASUREMENT INFORMATION



TYPICAL OPERATING CHARACTERISTICS



onsemi

MOUNTING FOOTPRINT

DOCUMENT NUMBER:	98AON22493D	the Document Repository. COPY" in red.	
DESCRIPTION:	10 PIN UQFN, 1.4 X 1.8, 0.4P		PAGE 1 OF 1

onsemi and ONSEMI: are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>