Surface Mount **Schottky Power Rectifier**

SMB Power Surface Mount Package

This device employs the Schottky Barrier principle in a metal-to-silicon power rectifier. Features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for low voltage, high frequency switching power supplies; free wheeling diodes and polarity protection diodes.

Features

- Compact Package with J–Bend Leads Ideal for Automated Handling
- Highly Stable Oxide Passivated Junction
- Guardring for Over–Voltage Protection
- Low Forward Voltage Drop
- Pb-Free Package is Available

Mechanical Characteristics:

- Case: Molded Epoxy
- Epoxy Meets UL 94 V-0 @ 0.125 in
- Weight: 95 mg (Approximately)
- Cathode Polarity Band
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	40	V
Average Rectified Forward Current (At Rated V_R , T_C = 110°C)	Ι _Ο	1.0	A
Peak Repetitive Forward Current (At Rated V_R , Square Wave, 100 kHz, $T_C = 110^{\circ}C$)	I _{FRM}	2.0	A
Non–Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	40	A
Storage / Operating Case Temperature	T _{stg} , T _C	-55 to +150	°C
Operating Junction Temperature	TJ	-55 to +125	°C
Voltage Rate of Change (Rated V_R , T_J = 25°C)	dv/dt	10,000	V/μs

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ON Semiconductor®

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 1.0 AMPERE – 40 VOLTS

SMB CASE 403A PLASTIC

MARKING DIAGRAM

B14L = Specific Device Code А

- = Assembly Location
- γ = Year

WW = Work Week

= Pb-Free Package

(Note: Microdot may be in either location)

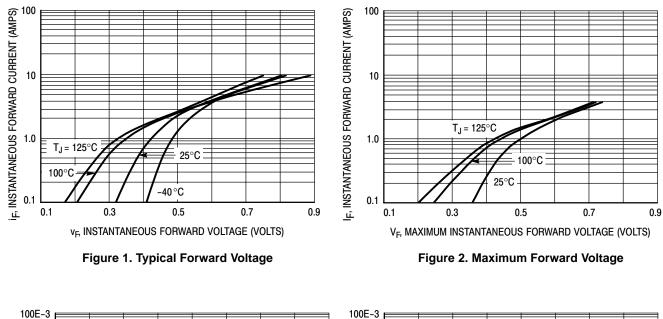
ORDERING INFORMATION

Device	Package	Shipping [†]
MBRS140LT3	SMB	2500/Tape & Reel
MBRS140LT3G	SMB (Pb–Free)	2500/Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

© Semiconductor Components Industries, LLC, 2007 October, 2007 - Rev. 3

THERMAL CHARACTERISTICS


Characteristic	Symbol	Мах	Unit
Thermal Resistance, Junction-to-Lead (Note 1)	$R_{\theta JL}$	24	°C/W
Thermal Resistance, Junction-to-Ambient (Note 2)	R_{\thetaJA}	80	°C/W

Mounted with minimum recommended pad size, PC Board FR4.
1 inch square pad size (1 x 0.5 inch for each lead) on FR4 board.

ELECTRICAL CHARACTERISTICS

Characteristic		Symbol	$T_J = 25^{\circ}C$	T _J = 125°C	Unit
Maximum Instantaneous Forward Voltage (Note 3)	(i – 1 0 A)	٧ _F	0.5 0.6	0.425 0.58	V
see Figure 2	(i _F = 1.0 A) (i _F = 2.0 A)		0.0	0.00	
Maximum Instantaneous Devenes Overset (Nate 2)			T _J = 25°C	T _J = 100°C	
Maximum Instantaneous Reverse Current (Note 3)	(V _R = 40 V)	I _R	0.4	10	mA
see Figure 4	(V _R = 40 V) (V _R = 20 V)		0.02	5.0	

3. Pulse Test: Pulse Width \leq 250 µs, Duty Cycle \leq 2.0%.

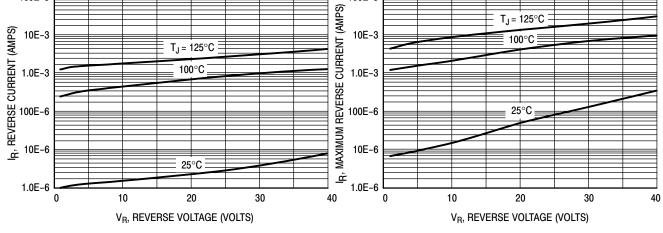
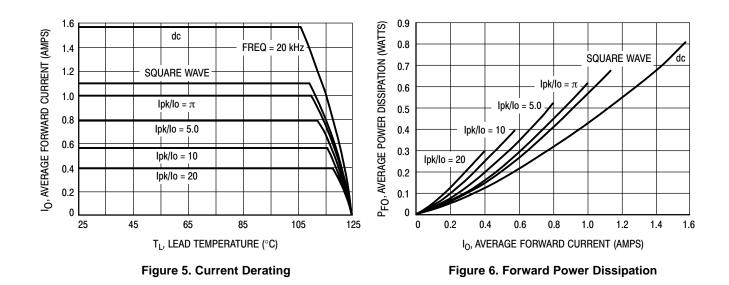
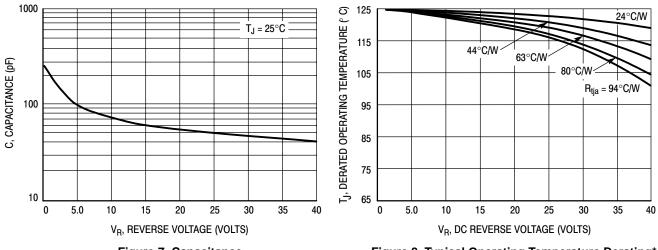
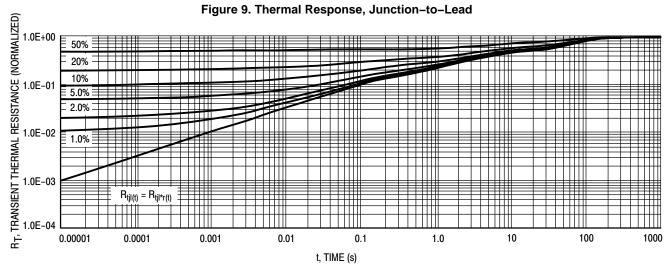




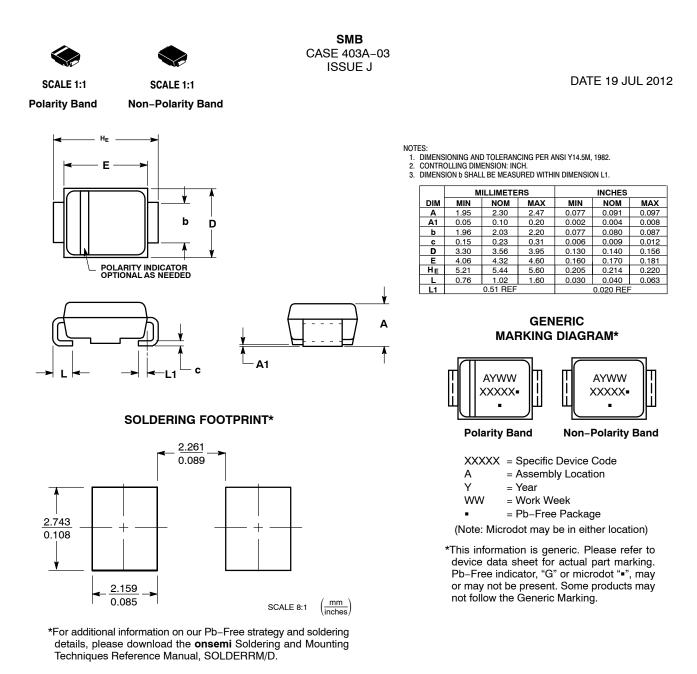
Figure 3. Typical Reverse Current

Figure 4. Maximum Reverse Current



* Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any reverse voltage conditions. Calculations of T_J therefore must include forward and reverse power effects. The allowable operating T_{.1} may be calculated from the equation: $T_J = T_{Jmax} - r(t)(Pf + Pr)$ where

r(t) = thermal impedance under given conditions, Pf = forward power dissipation, and


Pr = reverse power dissipation This graph displays the derated allowable T_J due to reverse bias under DC conditions only and is calculated as $T_J = T_{Jmax} - r(t)Pr$, where r(t) = Rthja. For other power applications further calculations must be performed. R_{T} , TRANSIENT THERMAL RESISTANCE (NORMALIZED) 1.0E+00 50% 20% HH 10% 1.0E-01 5.0% H 2.0% 1.0E-02 1.0% 1.0E-03 $R_{tjl(t)} = R_{tjl*r(t)}$ Ш 1.0E-04 0.00001 0.0001 0.001 0.01 10 100 1000 0.1 1.0

onsemi

DOCUMENT NUMBER:	98ASB42669B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION: SMB		PAGE 1 OF 1			
onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.					

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>