

JN Semiconductor®

To kara more about Old Semiconductor, please visit our website at

Please note. As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

March 2025

FFG1040UC003X Single-Cell Fuel Gauge

Features

- Optional Battery Characterization Supported
- Typical Relative SOC Error ≈ 1%
- Support R_{SENSE} down to 3 mΩ to Reduce System Loss
- Low Power: <3 μA Shutdown Current 100 μA Active Current
- Integrated I²C Slave
- Interrupt Pin to Alert the Host Processor of Systems.
 Events (e.g. Low Battery, Low SOC)
- Capable of measuring both on-die and attery ack temperature using external thermistor
- Host Side or Battery Pack Gauging Chall
- I²C relay Master to Support School Slave
- Autonomous control of pack side 3105 hattery monitor and Privith onfiguralle auto politing
- Configura e l²C hacu nonito: for Auto Shute vn
- ____all (ip (Package (VLCSF))

A. nlications

- Cell Phories
- Mobile Devices
- Tablets

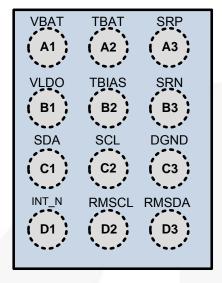
Description

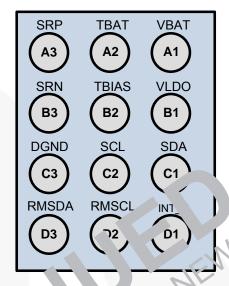
The FFG1040 fuel gauge is very occurate SOC reporting gauge designed be ed will cell phones, tablets and other portriol devices. Urga a proprietary algorithm that trach the gry to a curately report the Relative State-of-Corge RSOC. The FFG1040 also reports Use. State-Challe (USOC), which is an adjusted SOC value at is designed to be intuitive to the and us Times 1040 works with 1sXp (multiple ara more configurations.

F 31040 includes an integrated temperature from an element them istor. The FFG1040 algorithm uses battery voltage, current and temperature to provide the most accurate State-of-Charge to a user. The temperature readings are accessible via I2C for other system level decision.

In addition to RSOCE USOC, the FFG1040 also reports battery voltage, current, capacity, cycle count and battery resistance.

The FFG1040 has the unique capability to relay I²C commands to a secondary slave device.


When used in autonomous mode the FFG1040 can directly control the FFG3105 pack side monitor and ID device and report the temperature and cell voltage information directly from the battery pack.


The FFG1040 utilizes a 3 x 4 ball, 0.5 mm pitch, WLCSP with nominal dimensions of 1.51 x 1.96 mm.

Ordering Information

Part Number	Operating Temperature Range	Package	Packing Method
FFG1040UC003X	-40 to 85°C	1.51 x 1.96 mm, 12-Ball CSP, 0.5 mm Ball Pitch	Tape and Reel

Ball Map

TOP VIEW

ROI VIEW

Figure 1. All A right rents

Ball Descriptions

Name	Position	Туре	Descript on			
VBAT	A1	Power	Raw positive voltage input.			
TBIAS	B2	na. Outpi	rmistor s איני circuit bias resistor סיינייל. R _{TN} should be the same value as the thermistor at room temberature. This pin should be left floating (not connected) if the NTO feature is not used. This pin should not be loaded with more than 1 nF of capacitance.			
DGND	3	Dir al Ground	Cround			
AGND/ SON		Analog Ground	Aralca Ground and battery sense resistor negative input			
cob	Δ'	Analog Input	Sense resistor connection to negative battery terminal			
TBA.	A2	Analog !กวนใ	Batter / Chermistor input. If the NTC feature is not used, this pin should be connected to GND.			
h _N	CD1	Open Drain Digital Output	Interrupt output pin, LOW asserted. This pin should be connected to the VDD_IO through a pull-up resistor.			
SCL	C2	Cip∵n Drain Digital I/O	I ² C clock input pin. This pin should be connected to the VDD_IO through a pull-up resistor.			
SDA	CP	Open Drain Digital I/O	I ² C data I/O pin. This pin should be connected to the VDD_IO through a pull-up resistor.			
VLDO	B1	Power	Internal LDO voltage. An external decoupling capacitor of at least 0.1 µF should be connected between VLDO and GND. No external load should be connected to this pin.			
RMSCL	D2	Open Drain Digital I/O	I ² C Relay Master SCL - RMSCL. This pin should be connected to the VBAT through a pull-up resistor.			
RMSDA	D3	Open Drain Digital I/O	I ² C Relay Master SDA - RMSDA. This pin should be connected to the VBAT through a pull-up resistor.			

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
V_{BAT}	Positive Battery Supply Voltages	V _{GND} - 0.5	V _{GND} + 6.0	V	
V_{SRP}	Negative Battery Supply Voltages		V _{GND} - 0.5	V _{GND} + 2.0	V
V_{LDO}	Positive Core Digital Supply Voltages		V _{GND} - 0.5	V _{GND} + 2.0	V
V_{GND}	Negative Analog Supply Voltage		V _{BAT} - 6.0	V _{BAT} + 0.5	V
V _{I/O}	All Digital Input / Output Signals		V _{DGND} - 0.5	$V_{DGND} + 6.0$	V
V_{TBAT}	Temperature Bridge Input Voltage		V _{SRP} - 0.5	V _T , + 0	V
T_A	Operating Free-air Temperature		-40	. 5	°C C
$T_{\text{J} \text{MAX}}$	Maximum Junction Temperature		-40	+15	65
T _{STG}	Storage Temperature Range		-6	. 70	C
TL	Lead Soldering Temperature, 10 Seconds			+260	°C
/	Human-Body Model (HBM-JESD22-A114), All Pins		20	00	V
ESD	Charged Device Model (CDM-JESD22-C101)		50	00	V
ESD	IEC 61000-4-2 System ESD ⁽¹⁾ Air Gap AT, A	T		5	kν
	Contact, V AT, TB.	7	8	350 7	kV

Note:

1. Testing is performed with a TVS device

Recommended Operatin . 'd. 'ons

The Recommended Operating C inditions able define; the conditions for actual tevice operation. Recommended operating conditions are inequally ensured optimal performance to the data; here specifications. Fairchild does not recommend exceeding tem or destine of the Absolute Maximum Ratings. The recommended operating conditions assume the following: V = 2.5 to 4.5 V, V = 1.8 V to 4.5 V, V = 4.5 V. The recommended operating conditions assume the following: V = 2.5 to 4.5 V, V = 1.8 V to 4.5 V, V = 4.5 V.

Symbol	Parameter	Min.	Max.	Unit
V _R ^T	attery Sur ıy Volta qualitati	2.5	4.5	V
√ SNP	S se resistor Input Voltage	V _{AGND} - 0.052	V _{AGND} + 0.052	V
ъ	Thermistor Briage Input Voltage	V _{TBIAS} /2 - 0.5	$V_{TBIAS}/2 + 0.5$	V
	I2C ³ ull-ι:ρ Voltagε	1.62	3.63	V
V_{BAT}	Settery Supply Voltage Slew Rate	0.4		V/ms
C _{V',DO}	External LDO Deccu, iling Capacitor between VLDO and DGND	90	110	nF
C _{TBIAS}	TBIAS Reference Decoupling Capacitor	420	520	nF
Стват	TBAT filter Capacitor	200	250	nF
R _{SENSE}	External Sense Resistor between SRP and AGND ⁽³⁾	3	20	mΩ
V _{I_RANGE}	Current Sense Voltage Range	-51.2	+51.2	mV
R _{TBIAS}	Battery Thermistor Bias Resistance ⁽⁴⁾	1.5	100	kΩ
R _{I2CPU}	$\rm I^2C$ Pull up Resistor to $\rm V_{PU}$ (SDA, SCL, INT_N, RMSCL, RMSDA)	2	20	kΩ
T _A	Operating Free-air Temperature	-40	+85	°C
T_J	Operating Junction Temperature	-40	+85	°C

Notes:

- 2. V_{BAT} can tolerate ±200 mV system switching noise transients which are less than 50 μs in duration.
- 3. The value of the R_{SENSE} resistor should be chosen such that the maximum differential voltage across the resistor is less than 51 mV. This should include the voltage created by any peak currents.
- A nominal value of R_{TBIAS} ≥ 10 kΩ is recommended to minimize thermistor temperature measurement current.

DC Electrical Characteristics

The Recommended Operating Conditions for DC Electrical Characteristics assume $V_{BAT} = 2.5 \text{ V}$ to 4.5 V and $T_A = -20^{\circ}\text{C}$ to 70°C , unless otherwise noted. Typical values are at $T_A = 25^{\circ}\text{C}$, $V_{BAT} = 3.8 \text{ V}$, $V_{PU} = 1.8 \text{ V}$. Min./Max. values are guaranteed by design and/or characterization for process variations and the temperature range of $T_A = -20^{\circ}\text{C}$ to 70°C .

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
VLDO	LDO Output Voltage	VBAT = 2.5 to 4.5 V, CVLDO = 100 nF	1.7	1.8	1.9	٧
IIN	Input Leakage Current on Digital I/O pins	VBAT = 2.5 to 4.5 V, 0 ≤VIN ≤ VBAT		±1		μΑ
IOFF	Power-Off IO Leakage Current	VBAT = 0 VIN or VOUT = 4.5 V		±1		μΑ
	Shutdown Mode Average Current			2.6		45
ICC	Rest/Off/Hibernate Mode Average Current	VIN = VBAT or GND		72	N.	μA
100	Active Mode Average Current ⁽⁵⁾	VIIV - VBAT OF GND		101		μΑ
	Autonomous Master ⁽⁵⁾			397	ni a	17
SCL, SDA,	INT_N Pins ($T_A = -40$ °C to 85°C)		$\angle Q$	300	1/1),
V_{IH}	Input High Voltage ⁽⁶⁾		1.1		0.5 רויה	V
V_{IL}	Input Low Voltage ⁽⁶⁾	SUL	-0.50	ON	0.65	V
V _{OL}	Output Low Voltage	$\int_{C_L} = 3 \cdot dA, V_{PU} > 2 \cdot V$ $\int_{C_L} = 2 \cdot dA, V_{PU} \le 2 \cdot V$)O.	0,,	0.4	V
I _{IN}	Input Currer of SDA &	$0 \text{ is } X V_{B \setminus T} < V_{ V } < 0.9 \text{ x}$ $V_{b \wedge T}$	-10		10	μA
Cı	Cr acitance SD/ and	WILLE			10	pF
RMSCL an	RMSDA F IS (TA = -10°C to 85°	(C)				7
V _{IH}	In, High Voltage	KAI	0.65 x V _{BAT}		V_{BAT}	V
	Input Low Voltage		V_{DGND}		0.35 x V _{BAT}	V
V _{OL}	Output Low Voltage	Typical 1 mA			0.4	V
S lin	Input Current of NMSDA Pin	0.1 x V _{BAT} < V _{IN} < 0.9 x V _{BAT}	-10		10	μΑ
Cı	Capacitan e of RMSDAPin (5)				10	pF

Continued on the following page...

DC Electrical Characteristics (Continued)

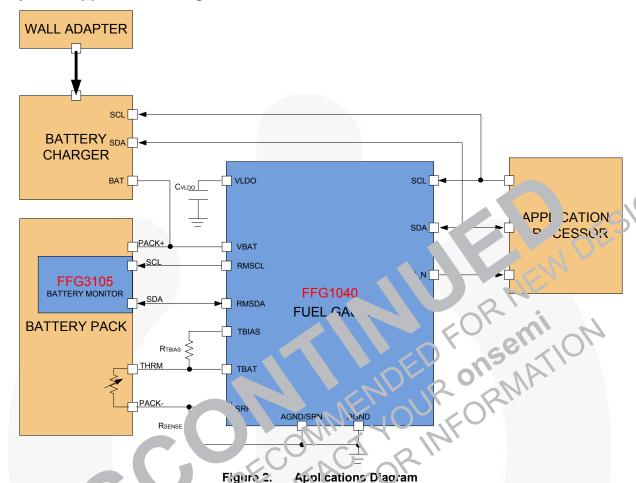
The Recommended Operating Conditions for DC Electrical Characteristics assume $V_{BAT} = 2.5 \text{ V}$ to 4.5 V and $T_A = -20^{\circ}\text{C}$ to 70°C , unless otherwise noted. Typical values are at $T_A = 25^{\circ}\text{C}$, $V_{BAT} = 3.8 \text{ V}$, $V_{PU} = 1.8 \text{ V}$. Min./Max. values are guaranteed by design and/or characterization for process variations and the temperature range of $T_A = -20^{\circ}\text{C}$ to 70°C .

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
PGA/ADC	Characteristics		-			
IG _{ERR}	Current Sense Gain Error		-1.0		1.0	%
VG _{ERR}	Voltage Sense Gain Error		-0.85		0.85	70
Thermisto	Characteristics					
		T _A = +25°C	-2		+4	
		$T_A = +0^{\circ}C^{(5)}$	-3		+3	, C
T_DIE	Accuracy ⁽¹¹⁾	$T_A = +50^{\circ}C^{(5)}$	-3		5	8
		$T_A = -40^{\circ}C (T_{MIN})^{(5)}$	-4		+4	V.
		$T_A = +85^{\circ}C (T_{MAX})^{(5)}$	4		+4	
TBAT _{OFF}	TBAT Amplifier Offset Error		-4		٠4.0	mV
TBAT _{GERR}	TBAT Amplifier Gain Error	$T_A = -30 \text{ to } +85^{\circ}\text{C}$	7.75		+0.75	%
TBAT _{LSB}	ADC TBAT Measurement LSB			31.2		P.U

Notes:

- 5. Guaranteed by design or characterization.
- 6. SCL, SDA only.
- 7. $V_{IH}(max) = V_{PU} + 0.5 \text{ V or } V_{BAT} \text{ whichev}$
- 8. It is assumed that the SCL, an School in the relation of the second resistors tied to an external supply V_{PU}.
- 9. V_{IH} and V_{IL} have been chose to be full compliant to !²C specification at V_{FU} = 1.8 V ± 10%. At 2.25V ≤ V_{PU} ≤ 3 to v the V_{IL} vides > 200 mV or noise margin to the required V_{OL(max)} of the transmitter.
- 10. I2C standar cifi $V_{OL(r)}$ for $V_{P'} \le 2.0$ V to be 0.2 x V_{PU} .
- 11. Accuracy expressed . = the difference between the FFG1040 output temperature and the measured temperature.

AC Electrical Characteristics (I²C Controller SDA, SCL)


The AC electrical characteristics assume VBAT = 2.5 V to 4.5 V and $T_A = -40^{\circ}\text{C}$ to 85°C , unless otherwise noted. Min./Max. values are guaranteed by design and/or characterization for process variations and the temperature range of $T_A = -40^{\circ}\text{C}$ to 85°C .

Cumab al	Devementer	Fas	t Mode	
Symbol	Parameter	Min.	Max.	Unit
f _{SCL}	SCL Clock Frequency	0	400	kHz
t _{HD;STA}	Hold Time (Repeated) Start Condition	0.6		μs
t _{LOW}	Low Period of SCL Clock	1.3 ⁽¹²⁾		μs
t _{HIGH}	High Period of SCL Clock	0.6		μs
t _{SU;STA}	Set-up Time for Repeated Start Condition	0.6		μs
t _{HD;DAT}	Data Hold Time (see Figure 11)	•		Į/S
t _{SU;DAT}	Data Set-up Time (see Figure 11)	00(13)		ns
t _{PS}	Set-up Time Required by SDA Input Buffer (Receiving Data)		11	ns
t _{PH}	Out Delay Required by SDA Output Buffer (Transmitting Data)	36	544	ns
t _r	Rise Time of SDA and SCL Signals	20 J.1C _b ^(14, 7)	300	ns
t _f	Fall Time of SDA and SCL Signals	20+0.10, (4.17)	300	ns
t _{SU;STO}	Set-up Time for Stop Condition	0.6	11,0	μs
t _{BUF}	Bus Free Time between a Stop and Start Cor. 'ions	1.3	710	μs
t _{SP}	Pulse Width of Spikes that Must Re Su, resseo , the Inpu' Filter	00	50	ns

Notes:

- 12. The FFG1040 can accept clock s_{a} is with t_{LOW} so low as in 1 μ s, provided that the received SDA signal $t_{HD;DAT}$ + $tr/f \le 1.1~\mu$ s. The FF = 1040 fe | une = 3 0 ns SDA in put set-up time; therefore, this parameter is not included in the above sociation
- 13. A Fast-Mode I2C By a device in a Standard-Mode I2C bus system, but the requirement that $t_{SU;DAT} \geq 250$ ns multiple met. This is the case if the device does not stretch the LOW period of the SCL signal. If a device does not stretch the LOW period of the SCL signal. If a device does not stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line tr_max + $t_{SU;DAT} = 1.00 \pm 0.00$ ns (according to the Standard-Mode I2C Bus specification) before the SCL line is releated.
- 14. Cheques the total capacitarics of one bis line in Fig. if mixed with High-Speed Mode devices, faster fall times are how according to the I2C specification.
- The F G1C+0 ensures that the SDF signal out must coincide with SCL low for worst-case SCL t_f max, time of 100 r. This requirement prevents data loss by preventing SDA-out transitions during the undefined region of the ... is edge of SCL. Consequently the FFG1040 fulfills the following requirement from the I2C specification (page 77, Note 2): "A de rice must internally provide a hold time of at least 300 ns for the SDA signal (referred to the Virgin of the SCL signal) to bridge the undefined region of the falling edge of SCL."
- 16. FC) 1340 I2C slave is fully compliant the NXP(Phillips) I2C specification, Rev. 0.3 UM10204 (2007) for both Standard Mode and Fest Mode.
- 17. The FFG1040 does not support 1 Mbps/s Fast Mode Plus or 3.4 Mbits/s High Speed Mode.

System Applications Diagram

Functiona Description

Overview

e FF '04 uses ar Analog-to-Digital Corverter (AC) to onlive the battery terminal voltage battery current, and temperature to accurately provide RSOC and SOC values. With only general information provided about the selected batteries, the FFG1040 gives accurate results. The FFC1040 tracks and compensates for battery aging effects. This information is used by a proprietary prognostication algorithm to automatically compensate the SOC estimation. The FFG1040 also provides a low SOC and Zero SOC alert using the host interrupt pin. The Low_SOC_Alarm level is programmable as a function of the percentage of SOC. The FFG1040 has user programmable low-voltage, and over and under-temperature thresholds. When these limits are exceeded these events are reported to the host system using the interrupt pin.

Voltage Monitoring

The integrated ADC allows battery terminal voltage monitoring with a high degree of accuracy (< 1% error).

Current Monitoring

The FFG1040 uses differential sensing and an external sense resistor to monitor the current flowing in and out of the battery. Coulomb counting is performed using the highly accurate, digitally filtered ADC output and internal time base.

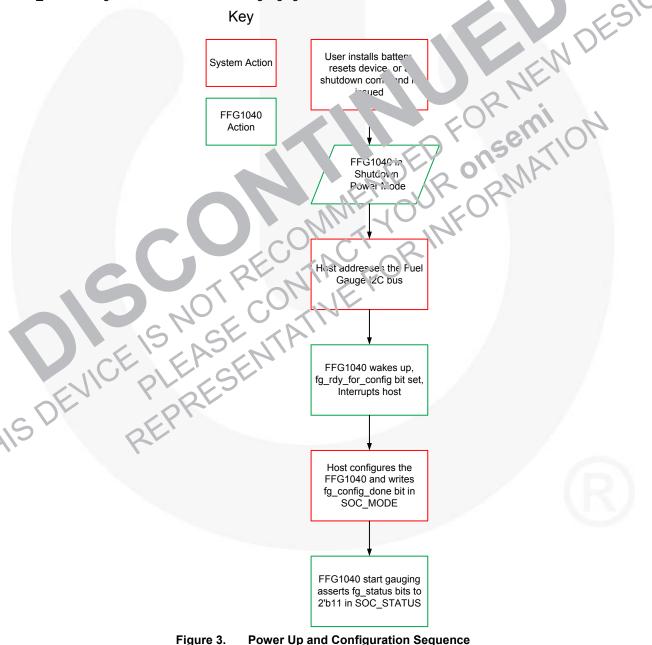
Relative State-of-Charge (RSOC) Error

Typical RSOC errors are < ±1%. The FFG1040 provides RSOC reporting error of less than ±1% while tracking actual load profiles.

Device Reset

The FFG1040 can be reset by the host processor using an I^2C write command to a register. Upon this change, the FFG1040 is reset and all register values return to default values. In this case, the $fg_rdy_for_config_int$ bit is set to 1 as soon as the reset sequence completes. Forcing it into SHUTDOWN can also reset the fuel gauge. See description of Mode below. Finally removing and reconnecting the **VBAT** supply can reset the device. Waking from reset is described below.

Power-Up, Leaving Reset or Leaving Shutdown


Upon receiving a valid Vbat supply or a device reset, the FFG1040 immediately powers the VBAT portion of the design and enter the SHUTDOWN state where it can monitor the I2C interface. The Host must wake up the fuel gauge by addressing it via I2C. The fuel gauge then wakes up and sets the fg_rdy_for_config_int bit in the SOC INTERRUPTS register and the fuel gauge signals the host with an interrupt. The system driver can then use I2C commands to configure the fuel gauge registers. Once the registers have been configured the host writes a bit in the SOC MODE register and the FFG1040 will start fuel gauging. The FFG1040 will then assert status in the SOC STATUS register to indicate that it is fuel gauging.

After Gauging is Started

After completing the startup and configuration sequence the only registers that should be modified are the FG_RUNTIME_INPUT_CONFIG,

FG_BATTERY_TEMP_RUNTIME_INPUT, SOC_INTERRUPT_MASKS,

SOC_INTERRUPT_CLRS, and the SOC_MODE registers. All other registers should remain unchanged as they were programmed during device configuration. Once gauging has started performing writes to registers, 0x20 to 0x3F are disabled, Writes to the reserved FG registers are also ignored while gauging. These registers cannot be updated until gauging has stopped.

Power Modes

The FFG1040 chip has three configurable power modes. The host system requests the device to enter a power mode by writing bits in the SOC_MODE register. Following is a brief description of each of these modes:

Active Power Mode (ACTIVE)

In the ACTIVE mode the FFG1040 is able to actively monitor the battery voltage and current, run the algorithm, and communicate status and results to the system.

Hibernate Power Mode (HIBERNATE)

Registers can be accessed and read or written to in HIBERNATE. The AFE is not powered up and the FFG1040 processor is not clocking. During this mode internal state is retained for memory and registers.

Shutdown Power Mode (SHUTDOWN)

In SHUTDOWN, the FFG1040 is off. No fuel gauging or monitoring is taking place and no registers can be read or written in SHUTDOWN. In SHUTDOWN the internal state of the memory and registers is not maintained. Once in SHUTDOWN, the host can awaken the FFG1040 with an I²C read addressing the FFG10/device. The FFG1040 does not acknowledge the act but wakes up if V_{BAT} is available and transions to ACTIVE. When this process is complete the FFC 1040 interrupts the host processor letting it kinds awake and ready to be configured with this awake and ready to be configured with thing a fg_rdy_for_config_int bit in the SOC_ 'TE RUPTS register. The fuel gauge then in rrupts to host. See Figure 3 above for configuration see sence

Fuel Gauge SOC Reporting

State-of-Charge (SOC)

There are two types of SOC values reported by the fuel gauge. They are the RSOC and a USOC. The Relative SOC is accurate with respect to the present temperature and load conditions. USOC filters out rapid or unexpected changes in RSOC and adjusts RSOC to make sense to an end user.

Relative SOC (RSOC)

RSOC takes into account the battery load or charge current and the temperature to calculate the SOC as a function of usable capacity. The FFG1040 tracks recent battery usage to determine available capacity.

100% RSOC is reported 'urn chart g when the conditions for end of chrige have en reached This is when Vbat > (full charty volting a reported to complete current.)

0% RSOC is ached here a average thattery terminal voltage in the the sutdown voltage. The impact of the ratery terminal voltage. The impact of the ratery here is also accounted for the ratery has a second of the ratery terminal voltage.

U Yr . TC (USOC)

USC is a filtered, rule based value. USOC filters RSOC so the results make sense to an end user. The USOC reported by the fuel gauge exhibits monotonic behavior during its charge or discharge trajectory as long as the sign of the riverage current flow remains constant.

For example: with 20 a charger attached, the reported SOC cannot increase. User SOC rules are configurable. The following are the default set of rules governing USOC reporting:

When no charger is attached the phone status is discharging and the User SOC will never increase.

Abrupt changes in environmental and load conditions will not result in abrupt changes in USOC. USOC outputs cannot change more than the values programmed in the FG_USOC_CHG_SLEW_LIMIT and FG_USOC_DISCHG_SLEW_LIMIT.

- 100% USOC is reported as a scaled value of RSOC where the upper bound is defined as 100% RSOC - FG_SOC_FS_DELTA. For example if FG_SOC_FS_DELTA=2% then the USOC=100% when RSOC >=98%.
- When a charger is removed USOC will decrease proportionally to the load even if the RSOC level exceeds the USOC 100% threshold.
- 3. 0% USOC is the lower bound and is defined by the same rules as 0% RSOC.

Description of Status, Alarms and Interrupts

The following status bits and alarms appear in the FG_STATUS register and provide the host system with status of the battery management system.

Charger Present Status

Reports the charger attach status as provided by the system driver via the runtime input.

Discharging Status

If the battery is discharging the discharging bit is set.

Low Voltage Alarm

The FFG1040 has a low voltage alarm which uses the FG_LOW_VOLTAGE_SET register. This alarm is set when the average measured battery terminal voltage (FG_AVG_VOLTAGE) falls below the threshold set. The alarm is cleared when the battery terminal voltage rises above the value in the FG_LOW_VOLTAGE_CLEAR register.

This alarm generates an interrupt and sets the fg_uv_int bit in the SOC INTERRUPTS register.

Temperature Out of Range Alarms

The fuel gauge notifies the system if the temperature exceeds the battery over-temperature or undertemperature user-defined thresholds set i. the FG BATTERY TEMP MAX nd ⁺ers. FG BATTERY TEMP MIN FG TEMPERATURE registe p. ride an instantaneous value of the temp ature a decomined by the source (external " sto. on die empera ure, or host input) as specif d in the F JNFIG register and is used to trigger to alarm. This alarm generates an interrupt an sets the ot i or fg_\it_in; alarm in the SOC INT DE 3 register depending on the cause of to alarm.

フィo と C. 'arm

The Zero SOC alarm indicates that the haitery has real add to SCC following a discharge. The alarm can be triggered by either the RSOC or USOC value. Setting a bit in the FC_CONFIG register chooses the reference SOC value. This alarm generates an interrupt and sets the 13_soc_zero_int bit in the SOC_INTERRUPTS register.

Low SOC Alarm

The Low SOC alarm indicates that the battery has reached the Low SOC threshold during discharge. This alarm can be triggered by either the RSOC or USOC value. The reference SOC value is chosen by setting a bit in the FG_CONFG register. This threshold is defined by the FG_LOW_SOC_THRESH register. The alarm generates an interrupt and sets the fg_soc_ltset_int bit in the SOC_INTERRUPTS register. During charge when the SOC level exceeds the FG_LOW_SOC_THRESH level the fg_soc_ltclr bit in the SOC_INTERRUPTS register is set and a second interrupt is generated to inform the host that the low SOC state no longer exists.

High SOC Alarm

The High SOC alarm is set when the SOC has risen to or above the High SOC Threshold level in the FG_HIGH_SOC_THRESH register. It is cleared when the SOC has fallen 1% or more below the High SOC Threshold level. The SOC compared to the threshold can be the USOC or RSOC as determined by a bit in the FG_CONFIG register. Entry into this alarm condition will set the fg_high_soc_int bit in the SOC_INTERRUPTS register.

Almost Full Alarm

The Almost Full Alarm is set wher ... OC approaches the full condition. This is proved to a packed. This alarm is reported wher the average of gets above the FG_FULL_VULTACE at the current and average current are positive but allow the current and average current continued. For _CHG_COMPLETE plus some materials.

Lin The K Awarm

is a mile of and the gauge function stop, en when an of e following exceed for specified bounds: FG_OLFAGE, FC_AVG_VCLTAGE, FC_CURRENT, FG_AVG_CURRENT, FC_TEMPERATURE, G_DIE_TEMPERATURE, G_DIE_TEMPERATURE, FC_FULL_CHARGE_CAPACITY_NOM, FC_FULL_CHARGE_CAPACITY, and FG_R0_NOM Entry into this alarm condition will set the following into the salarm condition will set the following into the reason for the alarm is stored in FG_SW_ENR_CODE. The gauge function is stopped and the FFG1040 transitions into the HIBERNATE

Battery Present Alarm

power state when this alarm is asserted.

The Battery Present Alarm reports the state of battery presence as provided by the system driver via the runtime input.

Fuel Gauging Status

The Device Status bits indicate if the algorithm is in the Device Active (11), Device Resting (10) or the Device Off (01) state. The fuel gauge activity status is determined by the values set in the FG_REST_TIME, FG_REST_CURRENT, and FG_OFF_CURRENT registers. Figure 4 describes how the fuel gauge transitions between each of these states. (Note the device must be ACTIVE Power Mode and Gauging must be enabled before the algorithm can be started and thus enter into any of these states). When the FFG1040 enters the Device Resting and Device Off states the data acquisition rate of the gauge and the SOC calculations are slowed to a lower rate.

Watch Dog Timer (WDT)

Internal to the FFG1040 there is a watch dog timer that tracks the progress of system and the fuel gauging engine. If this progress is interrupted for any reason, causing the internal the WDT to expire the **fg_wdt_int** bit will be set in the SOC_INTERRUPTS register.

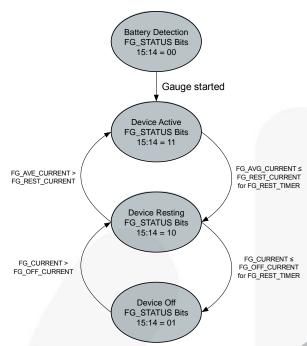


Figure 4. Gauging Modes

Interrupt Operation

The INT_N pin is an active LOW-assertc pen output that requires an external pull-up res to-The FFG1040 uses this pin to sign and ten of to use processor or any external device nen an vera occurs For example: immediately for cleeting low battery voltage, the FFG1040 wees the co. and using hit in the SOC_INTERRUPTS relater and asserts the INIT_N pin by pulling it LC' ... ne . 'C IN ERRUP'S register bit remains HIGH intil "how poessor writes a 1 to the corresponing on the SOC_INTERRUPT_CLRS regist The FFG1040 uses a write 1 to clear scheme. rup, at eage-triggered events. The interrupt c nut IN N, lice asserted, is held LOW until all the into upts are serviced and cleared by the external proc. ... Interrupt signaling is asynchronous to the I²C SCL line. All interrupts are by defauir enabled. Each interrupt has a corresponding mask bit and clear bit in SOC_INTERR'JFT_MASKS SOC_MTERRUPT_CLRS registers. The host system may disable individual interrupts by writing the corresponding mask bit for each interrupt in the SOC INTERRUPT MASKS register.

In all, there are 16 interrupts with mask and clear bits.

Interrupt Bits

The following interrupt bits are contained in the SOC_INTERRUPTS register and reported to the host.

- Bit 0 fg_ot_int Over-Temperature Interrupt
- Bit 1 fg_pack_commerr_int Pack Comm Error Interrupt
- Bit 2 fg_uv_int Under-Voltage Interrupt
- Bit 3 fg_high_soc_int High SOC
- Bit 4 fg_ut_int Under-Temperature Interrupt
- Bit 5 fg_heartbeat Heart Beat Interrupt
- Bit 6 fg_limit_check Limit Check Interrupt
- Bit 7 fg_soc_zero_int Zero SOC up
- Bit 8 fg_soc_ltset_int Low To shold & Interrupt
- Bit 9 fq soc Itclr int Low Three Id C' ar Interrupt
- Bit 11 fg_rc' for_c fig_ .eady for Config Interrupt
- Bit 12 -1 wdi it W in Dog Timer interrupt
- Bit fa ms. -1^2 C Vaster interrupt
 - 14 fg_a. st_fu!!_ir t Almost Fuir 'n.errupt
- Bit __pack_vcltage_int Pa k Voltage Interrupt

Each interruct bit has a corresponding mask bit and lear bit in the SCC_INTERPUPT_MASKS and SCC_INTERPUPT_CLRS registers respectively.

Fuel Gauge Configurations and Features

Save and Restore Feature

The FFG1040 has a feature which improves fuelgauging startup performance immediately after removing and reinserting the same battery. This feature is called the .save and restore" feature and allows the fuel gauge to resume gauging from where it left off prior to battery removal, provided the same battery is reinserted. If the system designer chooses to use this feature, the host processor saves off the values in the Save and Restore registers, 0x65-0x71 at some interval. The recommended interval is once per 1% change in SOC state or once every 10 minutes when the gauge is in the Active Device state and once per hour when the gauge is in the Resting device state. After each and every fuel gauge reset the driver configures the fuel gauge by writing the recently stored values from system memory back into the fuel gauge Save and Restore registers. When started, the fuel gauge algorithm determines if the newly inserted battery is the same battery that was most recently gauged. If so it uses the restored values allowing the fuel gauge to benefit from past learning to more accurately report the RSOC of the reinserted battery. For systems with a captive battery, the learned battery parameters can be restored setting a bit in the FG_CONFIG register before staking the gauge.

Temperature Sensing and Report

The FFG1040 has three possible methods a obtain temperature information used by the fuel auging algorithm. The first method is to neasur an external thermistor using the one para ADC and the TBAT pin. The FFG1040 supplies connecting an external thermistor and the description of the arropriate has voltage, VTBIAS, from the TP112 pin the thermistor network. The second method is the fuel gauge's internal temperature ensiting pability in both of these cases, the system of read the measured temperature from the FG_1 MPLICATURE register. The third method is for else end to provide a temperature reading to the fuel gauge FG_BATTER12TEMP_FUNTIME_INPUT register.

By default, the FFG1040 recours the internal temperature using its onboard temperature sensor. It measures and reports this value once every 10 seconds in the "Device Active" state and once every 20 seconds in the "Device Resting" state and uses this value as an input to the fuel gauge algorithm. For batteries or systems with a thermistor available, the FFG1040 can measure temperature using the thermistor as requested by setting the appropriate bit in the FG_CONFIG register. Additionally, the thermistor Beta value must be set in the FG_BATTERY_THERM_TEMPCO register, to configure temperature calculation.

Relay Master

In this mode the system level host, which controls the FFG1040, can use a series of register to "relay" I²C read and write commands to the relay master port. This port contains its own Relay Master Serial Clock (**RMSCL**), and Relay Master Serial Data (**RMSDA**). The system host sends and receives data from a downstream slave(s) connected to these two pins.

The relay master relies on the I2C_MSTR_ set of registers. These registers are a subset of the registers included in the FFG1040. The registers use the last seven addresses of the register space '0xF9-0xFF).

Autonomous Master

In this mode, the FFG10 s, utilize its in small firmware and controls the FFC 10F so record the halfest cell voltage and pack the ure. It is is done to reduce the system that invent it uring critical times like battery charge, which knowing the cell voltage and temperature in rove the charging process. The FFC 10 so accept as configuration inputs a pack arm force a pack polling rate voltage, a slow poll record in val in 50 ms steps, a fast polling rate voltage, a slow poll record in the val in 50 ms steps, and a maximum battery temperature. Once given a scort signer, the FFG1040 I2C master capability is used to trigger measurements by the FFC3 05 to read the voltage and temperature and room them in our put registers. If the voltage is below the polling rate voltage then the next reading will occur after the slow interval, otherwise it will occur after the fact interval.

Politing will continue until either;

- a) // stop signal is given
- The battery temperature exceeds the maximum temperature
- c) The battery voltage exceeds the alarm voltage
- d) A communication error occurs on the I²C interface between the FFG1040 and the FFG3105
- e) The FFG3105 does not respond with a valid temperature/voltage within 100 ms of the measurement trigger.

While polling is active the host cannot trigger I²C relay master transactions. Host writes to the I²C master register space will corrupt on-going transactions. A status bit is set to indicate to the host that automatic polling is in progress and I²C Master functionality is not currently available.

Upon termination of polling, an interrupt is set to indicate polling ceased due to a voltage or temperature alarm, and a second interrupt is set to indicate polling ceased due to a communication error or FFG3105 timeout.

I²C Interface

The FFG1040's serial interface is compatible with Standard and Fast I^2C bus specifications. The FFG1040's **SCL** line is an input and its SDA line is a bidirectional open-drain output; it can only pull down the bus when active. The **SDA** line only pulls LOW during data reads and when signaling ACK. All data is shifted in MSB (bit 7) first.

The FFG1040UC003X uses power from the VBAT node to power itself. When the battery is removed and the VBAT node is pulled low, the fuel gauge will hold **SDA**, **SCL** and **INT_N** low. Thus if the mobile device is expected to operate from a charger even if the battery is removed, it is recommended to connect the **SDA** and **SCL** to a separate I2C bus and the **INT_N** pin to its own GPI on the system processor. Please contact your Fairchild representative for questions pertaining to operation without a battery.

Slave Address

The FFG1040 slave address in hex notation is 0x70 = 01110000; where the device is addressed assuming a 0 LSB. This is the 7-bit slave address followed by the read/write bit. To read from the device use 01110001, and to initiate a write, use 01110000

Table 1. I²C Slave Address Byte

Bit	7	6	5	4	3	2		
Value	0	1	1	1	0	U	0	R/Vv

Other slave addresses can be ccomm tate upon request. Contact your Fair representation sentation.

Bus Timing

As shown in F' are o, da is no nally transferred when SCL is LCW. Of locked in on the rising edge of SCL. Typically, data to asitions at or shortly after the fall. The SC allow and the time for the data to up be reconnected to continue the state of the data to the state of the state of the data to the state of the state

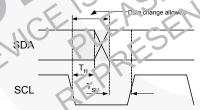


Figure 5. Data Transfer Timing

Each bus transaction begins and ends with **SDA** and **SCL** HIGH. A transaction begins with a START condition, which is defined as **SDA** transitioning from 1 to 0 with **SCL** HIGH.

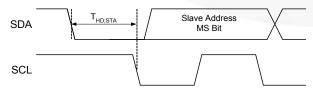
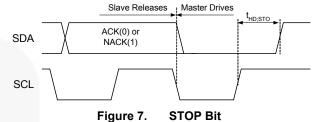



Figure 6. START Bit

A transaction ends with a STOP condition, which is defined as **SDA** transitioning from 0 to 1 with **SCL** HIGH.

During a read from the FFG104° and master issues a Repeated Start after sending to regist address and before resending the slave address. The appeated Start is a 1-to-0 transition or **JA** while The HIGH.

Figure 8. Repeated S.CP Timing

I²C lave Inactivity

The FFC 1040 contains of inactivity imer that monitors the slave interface. If the time between I²C writes to the device exceeds the value set in the FG_INACTIVITY_RESET_TIME the part will put itself into the SHUTDOWN state. This feature acts like a "keep alive" where the host system must do a write to the FFG1040 to prevent it from going into shutdown. Setting a bit in the FG_CONFIG register enables this feature.

A write to any register in the address range 0x40 to 0xFF is sufficient to reset the timer. It,s suggested that the FG_RUNTIME_INPUT_CONFIG or FG_RUNTIME_TEMPERATURE registers be used as the registers to be written by the host as these are normally run-time written registers. Reads from any register or writes to any registers outside of the address range 0x40 to 0xFF will not cause the timer to be reset, so they do not count as I²C activity for this feature.

I²C Master

The FFG1040 contains firmware that allows the device to use the RMSCL and RMSDA pins to communicate with external I^2C slaves. This interface is mastered by the FFG1040 in two different ways. The first, a more general use is as a "Relay Master". The second, the FFG3105 specific mode is as an "Autonomous Master". The external system host can enable the FFG1040 to use either of these modes and can control which mode the FFG1040 is in.

Refer to the FFG1040 Users Reference Manual for a detailed description of this functionality.

I²C Read Write Procedures

From Slave to Master

Figure 9 and Figure 10 illustrate compatible I²C write and read sequences. Register addresses are one byte (8-bits) and register data is 2 bytes (16-bits).

Single register read is initiated by Master with P immediately following second data byte

From Master to Slave Start Condition N NOT Acknowledge (SDA High) A Acknowledge (SDA Low)

I²C Write Sequence Figure 9.

P Stop Condition

Register address to read is specified with write. If register is not specified Master will gin re

From Master to Slave Start Condition Acknowledge (SDA Low) From Slave to Master

Stop Condition

ad Sequence Tire 1

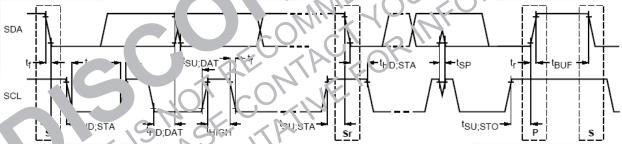


Figure 11. Definition of Timing for Full-Speed Mode Devices on the I2C Bus

Register Information

The Fuel Gauge has registers that are used to configure it and provide information to an external host. These registers are accessible to the host through the I²C slave controller and defined below. Any registers or bit fields marked as RESERVED or reserved should be left at their default values and not modified.

Table 2. Register Map

Name	Address	Туре	Description
System on Chip (SoC) Registers			
SOC_MODE	0x00	R/W	SoC Mode for power mode control
SOC_STATUS	0x01	RO	SoC Status
SOC_INTERRUPTS	0x0A	RO	Interrupt Status
SOC_INTERRUPT_MASKS	0x0B	R/W	Interrupt Mask
SOC_INTERRUPT_CLRS	0x0C	R/W/S C	Interrupt Clea
SOC_PART_ID	0x0F	RO	Part ID
AFE_OSC_TRIM	0x2C	R/W	^FE C. figu. 'ior
Fuel Gauge System Related Driver Configuration	on Registers		JE.
FG_CONFIG	0x40	۵W	Conon Cp'ions
FG_RSENSE_RESISTANCE	0x4?	٧v	nse Resistor Value in Ohms
FG_FULL_VOLTAGE	43	R ,	Full QCV Voltage L = '&'
FG_VOLTAGE_SHUTDOWN	0x	₹/W	System Shutdo vr. Voltage
FG_BATTERY_THERM_TEMPCO_LSW/N	×46-0 _λ 7	R/\V	Thermistor Temperature Coefficient
FG_VOFFSET_CORRECTION_LSW/***CW	8-0x49	RW	AFE Voltage Correction Factor
FG_IOFFSET_CORRECTION_L? //MSV	0x4A-ር.አላ ይ	R/W	A.FE Current Cifset Correction Factor
FG_PACK_ALARM_VOLT	Cx.1C	R/W	Pack Alarm Voltage (mV)
FG_PACK_POLLRATE_ 'OLTA' E	0×4L)	R/\v	Voltage threshold for determining pack poll rate (mV)
FG_RSERIES AD I WILL.	Cx4Ξ-0x4F	F/W	Rsense Adjustment Factor
FG_REST_ URRENT	0x50	R/W	Rest Current Threshold (mA)
F_REC I. E	0):51	R/W	Min. duration to be considered at rest (s)
FC OFF URREN'T	0x52	R/W	Current threshold used to determine if the load is inactive (mA)
FG_USOC_CHG_SLEW_LIMIT	0x53	R/W	USOC Slew Rate Limit during Charge
FG_USCC_DISCHG_SLEW_LIMIT	0x54	R/W	USOC Slew Rate Limit during Discharge
FG_USOC_FS_DELTA	0x55	R/W	Full Scale Delta for 100% USOC Calc (%)
FG_USOC_0ERR_PT	0x56	R/W	Set point for discharge scaling from full charge (%)

Continued on the following page...

Name	Address	Туре	Description
Fuel Gauge Alarm Configuration Registers	•	•	
FG_LOW_VOLTAGE_SET	0x57	R/W	Low Voltage Alarm Set Threshold (mV)
FG_LOW_VOLTAGE_CLEAR	0x58	R/W	Low Voltage Alarm Clear Threshold (mV)
FG_HIGH_SOC_THRESH	0x59	R/W	High SOC Alarm Threshold (%)
FG_BATTERY_TEMP_MAX	0x5A	R/W	Max. Temperature Alarm Level (0.1°C)
FG_BATTERY_TEMP_MIN	0x5B	R/W	Min. Temperature Alarm Level (0.1°C)
FG_LOW_SOC_THRESH	0x5C	R/W	Threshold for Low SOC Alarm (%)
Fuel Gauge Run Time Input Registers			
FG_RUNTIME_INPUT_CONFIG	0x5D	R/W	Run Time Configuration Options
FG_BATTERY_TEMP_RUNTIME_INPUT	0x5E	R/W	Run Time Temper are Va Input (0.1°C)
Fuel Gauge Output Registers			19
FG_STATUS	0x5F	R/W ⁽¹⁸⁾	Output St. 18 2 . Alars
FG_CURRENT	0x60	R/W ⁽¹⁸⁾	Instanction Batt , Current (m/k)
FG_VOLTAGE	0x61	R/W ⁽¹⁸⁾	tantar us Lattery (citage (mV)
FG_TEMPERATURE	0x62	₽W()	Ins. star ous Temperature (0.1°C)
FG_FULL_CHARGE_CAPACITY	0xe3	K W.	ll-charge Cabacity at Current remperature (mAh)
FG_FIRMWARE_REV	L `4	W 3)	Firmware Revision
FG_CC	0x7	R/W ⁽¹⁸⁾	Coulomb count output
FG_DIE_TEMPERATURE	0xDB	RWIE	Die 1 angerature
FG_SW_ERR_CODE	JxF1	P _J W ⁽¹⁸⁾	Software Error Codes for diagnostics
Fuel Gauge Save and Restore I gisters	- VIII	74	-NP
FG_AVG_CURRENT	0x65	R.W ⁽¹⁹⁾	Average Battery Current (mA)
FG_AVG_VOLTAGE	0,990	R/W ⁽¹⁹⁾	Average Battery Voltage (mV)
FG_RSOC	∂x67	RW ⁽¹⁹⁾	Relative State-of-Charge (%)
FG_USOL	0x68	R/W ⁽¹⁹⁾	User State-of-Charge (%)
F _FUL CH RGE_CAFACITY_NOM	0x6A	R/W ⁽¹⁹⁾	Measured Full Charge Capacity at 25°C (mAh)
FG YC' _COUNT	0x6B	R/W ⁽¹⁹⁾	Battery Cycle Counter
FG_L_NOM	0x6C	R/W ⁽¹⁹⁾	Measured Battery Resistance at 25°C
Fuel Gauge Driver Configured A'9 prithm Input	ts		
FG_RC_INIT	0x72	R/W	Nominal battery resistance seed value for algorithm (m Ω)
FG_QCAPACITY_DESIGN	0x73	R/W	Nominal battery capacity per manufacturer (mAh)
FG_ICHG_COMPLETE	0x74	R/W	Charge Current Complete (mA)
FG_AUTO_SD_VOLTAGE	0xCD	R/W	Auto Shutdown Voltage Threshold (mV)
FG_CAPEST_STARTING_RATIO	0xD0	R/W	Scaling Ratio for Design Capacity
FG_RSOC_SD_CAP	0xE3	R/W	Max. RSOC Relaxation at Shutdown

Continued on the following page...

Name	Address	Туре	Description
Fuel Gauge Driver Configured Algorithm Inpu	ts (Continued)		
To be supplied by Fairchild	0x75-0xCC, 0xCE-0xCF, 0xD1-0xDA, 0xDC-0xE2 0xE4-0xF0 0xF2-0xF5,	R/w	Algorithm configuration parameters supplied by Fairchild for driver.
FG_I2C_INACTIVE_RESET_TIME	0xF6	R/W	Time between I ² C writes to device before inactivity reset if enabled (s)
FG_TYPICAL_LOAD	0xF8	R/W	Load used for RSOC during Charging (mA)
I2C_MSTR_CONTROL	0xF9	R/W	I2C Relay Master Untro
I2C_MSTR_CONFIG	0xFA	R/W	I2C Relay M ver configuration
I2C_MSTR_STATUS	0xFB	R/W ⁽¹⁸⁾	I2C Rela Mast stat
I2C_MSTR_DATA0	0xFC	R/W	I2C i 'ay i 'ster 🗀 ta Byte 0
I2C_MSTR_DATA1	0xFD	R/W	'C Rei Ma er Dat i Byic 1
I2C_MSTR_DATA2	0xFE	R/M	liz Rel Master Data Byte 2
I2C_MSTR_DATA3	0xFF		?C Relay Masrer Data Byte 3

Notes:

- 18. Device output register. Writes to this register have a effect incornal operation and values will be over-written by the device normal operation.
- 19. Save and restore input/output register. Values hould to be written to these registers before gauging is started. After the gauge has been started write. In history have no effect on internal operation, but values will be over-written by the device norm.

Table 3. Register Type Pes ription

Mnemonic	Тур	Description
RC	Kead Only	These registers are read only. Their values are updated only by internal hardware
, W	Read/Write	These registers can be written or read
, W/s	ReadWrite/Self Clear	These register bits self clear to a 1'b0 after being written 1'b1.
R C	Read	These registers should only be read. Attempting a write may cause unpredictable behavior

Detailed Interrupt and Alarm Register Definitions

Detailed bit descriptions for select registers are included in this section. For a complete description of all register bit mappings, refer to the FFG1040 Users Reference Manual.

Interrupt Requests (SOC_INTERRUPTS)

Table 4. SoC Interrupts Register

	201			2 (2 2 4)				. T	,
	SOC_INTERRUPTS (0x0A)						Da	taType = 16	bit
Bit Location	15	14		13	12	11	10	9	8
Parameter	fg_pack_ voltage_int	fg_almost _full_int	fg	_i2cmstr _int	fg_wdt_int	fg_rdy_for _config_int	fg_ active_int	fg_soc_ltclr _int	fg_soc_ Itset_int
Default	0	0		0	0	0	0		0
Туре	RO	RO		RO	RO	RO	RC RC	RO	RO
SOC_INTER	RUPTS (0x0A)								160
Bit Location	7	6		5	4	3		N	0
Parameter	fg_soc_zero_int	fg_limit_ check_int	hea	fg_ artbeat_int	fg_ut_ +	hig s _in.	g_uv_int	ະງ_pack_ commerr_int	fg_ot_int
Default	0	0		0				3	0
Type	RO	RO		RC	RC	BO	RO	ROL	RO

Bit(s)	Name	Description
0	fg_ot_int	Fuel Gauge Over-Temperature (OT) Interrupt 0 = cleared, 1 = Set when battery pack is over-temperature
1	fg_pack_commerr_int	Fuel Gauge Pack Communications Error Interrupt 0 – cleared, 1 – Set when I2C error using internal master
2	fg_uv_int	Fuel Gauge Under-Voltage (UV) Interrupt 0 = cleared, 1 = set when battery pack experiences under-voltage
3	fg_high_soc_int	Fuel Gauge High SOC Interrupt 0 = cleared, 1 = set when SOC meets or exceeds the alarm threshold
4	fg_ut_int	Fuel Gauge Under-Temperature (UT) Interrupt 0 – cleared, 1 = Set when battery pack is under-temperature Description: This bit is set when an Under-Temperature Alai is declared.
5	fg_heartbeat_int	Fuel Gauge Heart Beat Interrupt 0 = cleared, 1 = set by fuel gauge firmware
6	fg_limit_check_int	Fuel Gauge Limit Check Interrupt 0 = cleared, 1 = set when limit check three old.
7	fg_soc_zero_int	Fuel Gauge Zero SOC Interru _k 0 = cleared, 1 = set by v ¬ Ze _i SO. in is declared
8	fg_soc_ltset_int	Fuel Gauge SOC o. Thre hold Interrupt 0 = cleared, 1 set wh. See has met or fallen below to FG low State-Of-Charge threund
9	fg_soc_ltclr_int	Fuel Gau, SOC v Threshold Clear Interrupt 0 = 30, = set when COC rises back above the i-G Low State-Of- Chains true Id
10	fg_active_int	Fu Ga ge Active Interrupt 0 : pleared, 1 - 3 set when fuel gauge is active.
11	fg_rdy_f _config_nt	r uel Gauge Ready for Configuration 0 - วเ-ared, 1 - se when fue gauge ready for configuration
12	ıg. dt_int	Fuel Gauge Watch Dug Timer Interrupt 0 = cleared, 1 = set when fuel gauge WDT has expired
13	fg_i2crostr_int	Fuel Gauge !2C Master Interrupt 0 = cleared. 1 = set when I2C master transaction completed
	fg_almost_full_int	Fie! Cauge Almost Full Interrupt 10 = cleared, 1 = set when SOC Almost Full
15	fg_pack_voltage_int	Fuel Gauge Pack Voltage Interrupt 0 = cleared, 1 = set when pack voltage exceeds threshold

Interrupt Masks (SOC_INTERRUPT_MASKS)

Table 5. SoC Interrupt Masks Register

	soc	Dat	aType = 16b	oit				
Bit Location	15	14	13	12	11	10	9	8
Parameter	fg_pack_ voltage_intm	fg_almost _full_intm	fg_i2cmstr _intm	fg_wdt _intm	fg_rdy_for _config_intm	fg_active _intm	fg_soc_ltclr _intm	fg_soc_ ltset_intm
Default	0	0	0	0	0	0	0	0
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
SOC_INTER	RRUPT_MAS	KS (0x0B)						
Bit Location	7	6	5	4	3	2		0
Parameter	fg_soc_zero _intm	fg_limit _check_intm	fg_ heartbeat_intm	fg_ut_intm	fg_high _soc_intm	uv : .n	r .k_ cc .er_intin	fg_ot _intm
Default	0	0	0	0	2		C	0
Туре	R/W	R/W	R/W	R/W	R .	R/W	P/W	R/W

Bit(s)	Name	L cription
0	fg_ot_intm	Fuel Gaug or-Tem, ratule (OT) Inverrupt Mask 0 = interrupt masked
1	fg_pack_commerr_intm	F Gaue Pack Communications Error Interrupt Mask 0 = าเอ. nabled. 1 = interrupt masked
2	fg_uv_intm	i el cuge Under Vollage (UT) Interrupt Mask interrupt enabled, 1 = interrupt masked
3	fg_high_soc_intm	uel Gauge High SCc Interrupt Mask 0 = interrupt enabled, 1 = interrupt masked
4	f~ ut	Fuel Gauge Under-Temperature (UT) Interrupt Mask 0 = interrupt enabled 1 = interrupt masked
	ftbeat_intra	Fuel Gauge Heart Beat Interrupt Mask 0 = interrupt et abled, 1 = interrupt masked
	fg_/imit_chk_intm	Fuel Caune Limit Check Interrupt Mask 0 = เกษ.rupt enabled, 1 = interrupt masked
7	fg_soc_zero_intm	Ze o SOC Interrupt Mask 0 = interrupt enabled, 1 = interrupt masked
8	fg_soc_ltset_intm	SOC Low Threshold Set Interrupt Mask 0 = interrupt enabled, 1 = interrupt masked
9	fg_soc_ltclr_intm	SOC Low Threshold Clear Interrupt Mask 0 = interrupt enabled, 1 = interrupt masked
10	fg_active_intm	Fuel Gauge Active Interrupt Mask 0 = interrupt enabled, 1 = interrupt masked
11	fg_rdy_for_config_intm	Fuel Gauge Ready for Config Interrupt Mask 0 = interrupt enabled, 1 = interrupt masked
12	fg_wdt_intm	Fuel Gauge Watch Dog Timer Interrupt Mask 0 = interrupt enabled, 1 = interrupt mask
13	fg_i2cmstr_intm	I2C Master Interrupt Mask 0 = interrupt enabled, 1 = interrupt masked
14	fg_almost_full_intm	Fuel Gauge Almost Full Interrupt Mask 0 = interrupt enabled, 1 = interrupt masked
15	fg_pack_voltage_intm	Fuel Gauge Pack Voltage Interrupt Mask 0 = interrupt enabled, 1 = interrupt masked

Interrupt Clears (SOC_INTERRUPT_CLRS)

Table 6. SoC Interrupt Clears Register

	SOC_INTERRUPT_CLRS (0x0C)							Sbit
Bit Location	15	14	13	12	11	10	9	8
Parameter	fg_pack_ voltage_int_clr	fg_almost_ full_int_clr	fg_i2cmstr _int_clr	fg_wdt_ int_clr	fg_rdy_for_ onfig_int_clr	fg_active _int_clr	fg_soc_ltclr _int_clr	fg_soc_ ltset_int_clr
Default	0	0	0	0	0	0	0	0
Туре	R/W/SC	R/W/SC	R/W/SC	R/W/SC	R/W/SC	R/W/SC	R/W/SC	R/W/SC
SOC_INTER	RUPT_CLRS (0	x0B)						
Bit Location	7	6	5	4	3	2		0
Parameter	fg_soc_zero _int_clr	fg_limit_ check_int_clr	fg_heartbe at_int_clr	fg_ut_int _clr	fg_high_soc _int_clr	fg_rr_ _clr	pack or	9-
Default	0	0	0	0	0		0	0
Туре	R/W/SC	R/W/SC	R/W/SC	R/W/SC	R/V SC	₹W	R/W/SC	R/W/SC

Bit(s)	Name	D. 'crip_ii
0	fg_ot_int_clr	Fuel Gauge Over Tring atu. (O1) Lerrupt Clear 0 = no-operation = sell part 'self and corresponding to [u] in Feg. CAh
1	fg_pack_commerr_int_clr	Fuel Gaug Pack Communications Error Interrupt Capar 0 = no operation, 1 = If clears itself and corresponding bit [2] in Reg. 0Ah
2	fg_uv_int_clr	Fuel ל יוק ב' יr Voltagr: (שני) interrup. Clear יר איז יr Voltagr: (שני) interrup. Clear יר איז יין יר Voltagr: יר איז
3	fg_high_so'r	Fuel auge High SOC Interrupt Clear 0 = r -operation, 1 = self clears itself and corresponding bit [3] in Reg. 0Ah
4	clr	Fuel Gauge Under Temporature (UT) Interrupt Clear 0 = no-operation 1 = self clears itself and corresponding bit [4] in Reg. 0Ah
5	fgeartb t_int_clr	Firel Gauge Heart Beat interrupt Clear 0 = no-operation, 1 = celf clears itself and corresponding bit [5] in Reg. 0Ah
6	fg_ mit_check_int_clr	Fuel Gauge Limit Check Interrupt Clear or no-operation, 1 = self clears itself and corresponding bit [6] in Reg. 0Ah
7	fg_soc_zero_int_clr	Fuel Cauge Zero SOC Interrupt Clear 0 - nc-operation, 1 = self clears itself and corresponding bit [7] in Reg. 0Ah
8	fg_soc_ltset_int_cir	Fuel Gauge SOC Low Threshold Set Interrupt Clear 0 = no-operation, 1 = self clears itself and corresponding bit [8] in Reg. 0Ah
1 29	fg_soc_itcr_int_clr	Fuel Gauge SOC Low Threshold Clear Interrupt Clear 0 = no-operation, 1 = self clears itself and corresponding bit [9] in Reg. 0Ah
10	fg_active_int_clr	Fuel Gauge Active Interrupt Clear 0 = no-operation, 1 = self clears itself and corresponding bit [10] in Reg. 0Ah
11	fg_rdy_for_config_clr	Fuel Gauge Ready for Config Interrupt Clear 0 = no-operation, 1 = self clears itself and corresponding bit [11] in Reg. 0Ah
12	fg_wdt_int_clr	Fuel Gauge Watch Dog Timer Interrupt Clear 0 = no-operation, 1 = self clears itself and corresponding bit [12] in Reg. 0Ah
13	fg_i2cmstr_clr	I2C Master Interrupt Clear 0 = no-operation, 1 = self clears itself and corresponding bit [13] in Reg. 0Ah
14	fg_almost_full_int_clr	Fuel Gauge Software Interrupt Clears 0 = no-operation, 1 = self clears itself and corresponding bit [14] in Reg. 0Ah
15	fg_pack_voltage_int_clr	Fuel Gauge Pack Voltage Interrupt Clear 0 = no-operation, 1 = self clears itself and corresponding bit [15] in Reg. 0Ah

High SOC Alarm Threshold (FG_HIGH_SOC_THRESH)

Table 7. FG High SOC Alarm Threshold Register

	FG_HIC	SH_SOC_T	HRESH (0x	59)		DataType	e = Short (u	nsigned)
Bit Location	15	14	13	12	11	10	9	8
Parameter				fg_high_soc_	_thresh[15:8]			
Driver Default				0x	00			
Туре		R/W						
	FG_HIG	H_SOC_TI	HRESH (0x	59)		Units = %		
Bit Location	7	6	5	4	3	2	1	0
Parameter				fg_high_soc	_thresh[7:0]			25
Driver Default				0x	5A			Or
Туре				R/	W			

Note:

20. Driver Default: 90 (90%).

Battery Temperature Alarm Level Max; .um -G_ BATTERY_TEMP_MAX)

Table 8. FG Battery Temperature Alarm. Threst. 'd Ma. .mum Register

	FG_BAT	TERY_TEM	14) 7x5A)	ND	DaτaType	= Short (u	ınsigned)
Bit Location	15		3 12	(1)	10	9	8
Parameter	fg_battery_temp_max[15.3]						
Driver Default			20,00	x02	•		
Туре	Type						
	rG AT	TERY_TEMP	MAX (0x5A)		Ur	nits = 0.1°	С
LOC. On	7,6	6	5 4	3	2	1	0
rame ·		2 A 2	fg_battery_t	emp_max[7:0]			
Driveefaul*	0	N'S	0	x26			
Type		221	F	R/W		y	

Note:

21 Driver Default: 55°C

Battery Temperature Alarm Level Minimum (FG_BATTERY_TEMP_MIN)

Table 9. FG Battery Temperature Alarm Threshold Maximum Register

	FG_BAT	TERY_TEN	/IP_MIN (0x	(5B)		DataType	e = Short (u	nsigned)
Bit Location	15	14	13	12	11	10	9	8
Parameter			f	fg_battery_te	mp_min[15:8	8]		
Driver Default				0x	00			
Туре		RW						
	FG_BAT	TERY_TEM	IP_MIN (0x	5B)		U	nits = 0.1°0	
Bit Location	7	6	5	4	3	2	1	0
Parameter				fg_battery_te	mp_min[7:0)]		25
Driver Default				0x	00			Or
Туре				R/	W			

Note:

22. Driver Default: 0°C.

Low State-of-Charge Alarm Threshold G_L W SOC_THRESH)

Table 10.FG Battery Temperature Alarm, Thresh, 'd Ma, mum Register

	FG_LOW_SOC_1	ΓΕ. ~Կ (∀5C)	7/2/1	DataType	- Short (u	nsigned)
Bit Location	15	'3 12	(1)	10	9	8
Parameter		†₫_ow_sc <i>ċ</i> _	thresh[15:8]	71,		
Driver Default		C C Ox	00			
Туре		R	W			
	FC_LOW_SOC_T	THRESH (0x5C)	•	7	Units = %	7
Loc. on	7 6	5 4	3	2	1	0
rame ·	- CAS	fg_low_soc	_thresh[7:0]			
Driveefaul*	J'OLF, C	0x	0A			
Туро	ORK	R/	W		У	

Note:

23 Driver Default: 10%

Run Time Input Registers

Implementation Overview

The FFG1040 has been optimized for system side fuel gauging applications internal to mobile phone or tablet. It can be used with both embedded and removable single-cell battery packs. That is the application example shown below. Additionally the fuel gauge can be used internal to a battery pack.

Internal to system the FFG1040 is connected to an Applications Processor that uses embedded firmware to control and access the device via I^2C . The Applications Processor contains the I^2C Master that uses read and write transactions to initiate commands and read from

and write data to the device. The FFG1040 contains an I^2C slave used to respond to these commands and data requests.

Figure 12 below shows the FFG1040 and the external components used to support its connection to the host and to the battery pack. The recommended values for the external components are shown below in Table 11. The recommended value for battery decoupling capacitance is dependent on the system and charger and is not defined below.

Typical Application

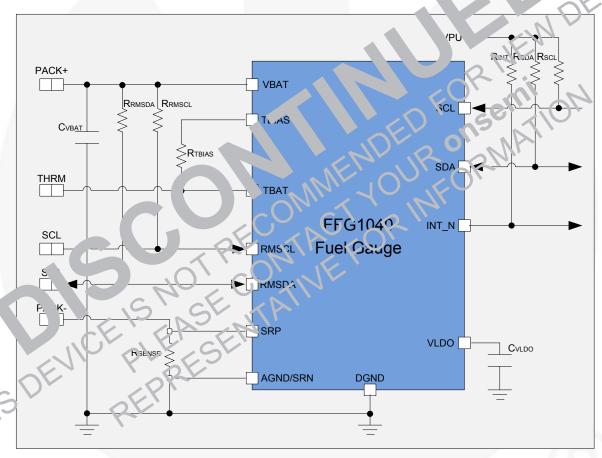
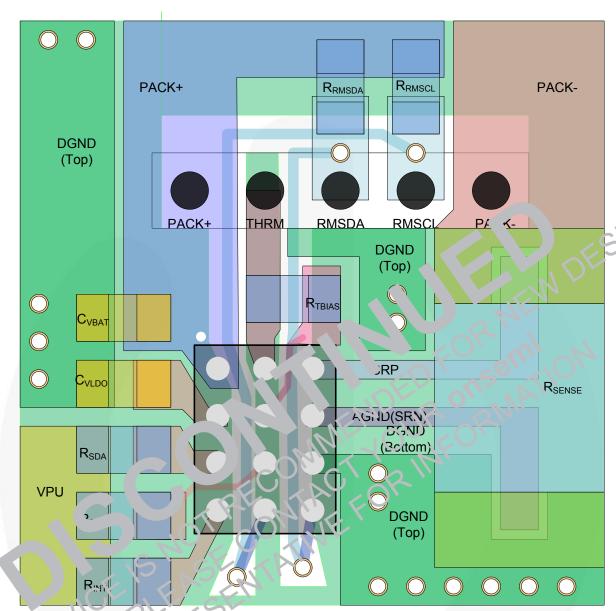
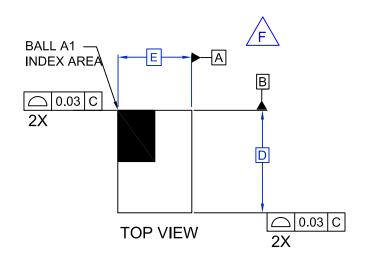
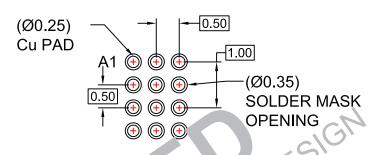


Figure 12. Simplified Schematic

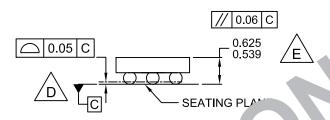
Table 11. Recommended External Components

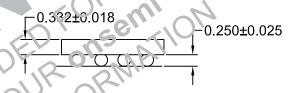
Component	Description	Typical	Unit
C _{VBAT}	CVBAT Decoupling Capacitor	100 ±10%	nF
C_{VLDO}	VLDO Compensation Capacitor	100 ±10%	nF
R _{SENSE}	External Sense Resistor between SRP and AGND	5 ±1%	mΩ
R _{TBIAS}	Battery Thermistor Bias Resistance	10 ±1%	kΩ
R _{SDA} , R _{SCL} , R _{MSDA} , R _{MSCL} , R _{INT}	I ² C Pull up Resistor to V _{PU} (SDA, SCL, INT_N)	10 ±10%	kΩ

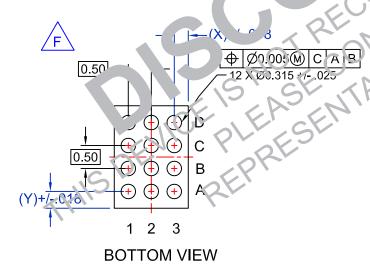




Figure 13. Recommended Layout

The table below pertair's to the packaging information on the following page.


Package Specific Dimensions


D (mm)	E (mm)	X (mm)	Y (mm)	
1.960	1.510	0.255	0.230	



RECOMME, DE. LAM'D PATTERN (NSMD)

SIDE VIEWS

NOTES:

- A. NO JEDEC REGISTRATION APPLIES.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
- DATUM C, THE SEATING PLANE, IS DEFINED BY THE SPHERICAL CROWNS OF THE BALLS.
- E. PACKAGE TYPICAL HEIGHT IS 582 MICRONS ± 38 MICRONS (539-625 MICRONS).
- F. FOR DIMENSIONS D, E, X, AND Y SEE PRODUCT DATASHEET.
- G. DRAWING FILENAME: MKT-UC012AArev2

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns me rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative