

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

December 2014

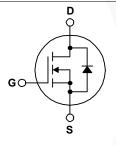
FCPF380N65FL1 — N-Channel SuperFET[®] II FRFET[®] MOSFET

FCPF380N65FL1 N-Channel SuperFET[®] II FRFET[®] MOSFET

650 V, 10.2 A, 380 m Ω

Features

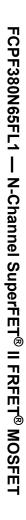
- 700 V @T_J = 150°C
- R_{DS(on)} = 320 mΩ (Typ.)
- Ultra Low Gate Charge (Typ. Q_g = 33 nC)
- Low Effective Output Capacitance (Typ. C_{oss(eff.)} = 165 pF)
- 100% Avalanche Tested
- RoHS Compliant

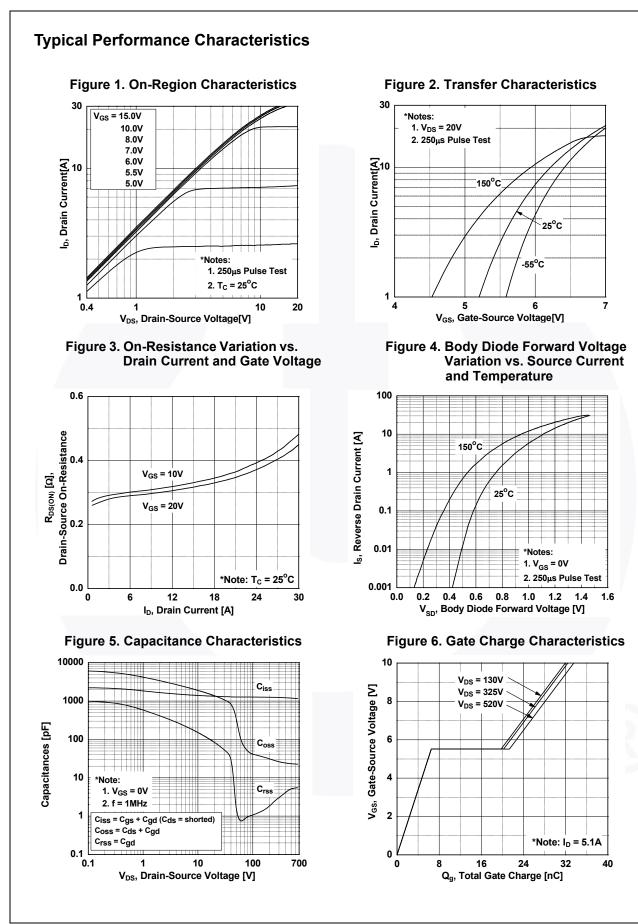

Applications

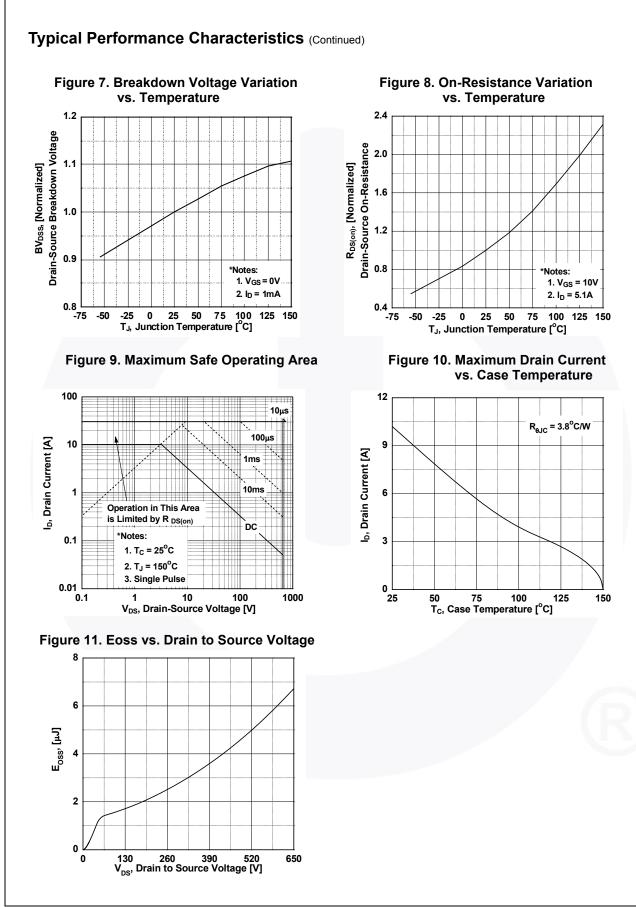
- LCD / LED / PDP TV Telecom / Server Power Supplies
- Solar Inverter
- AC DC Power Supply

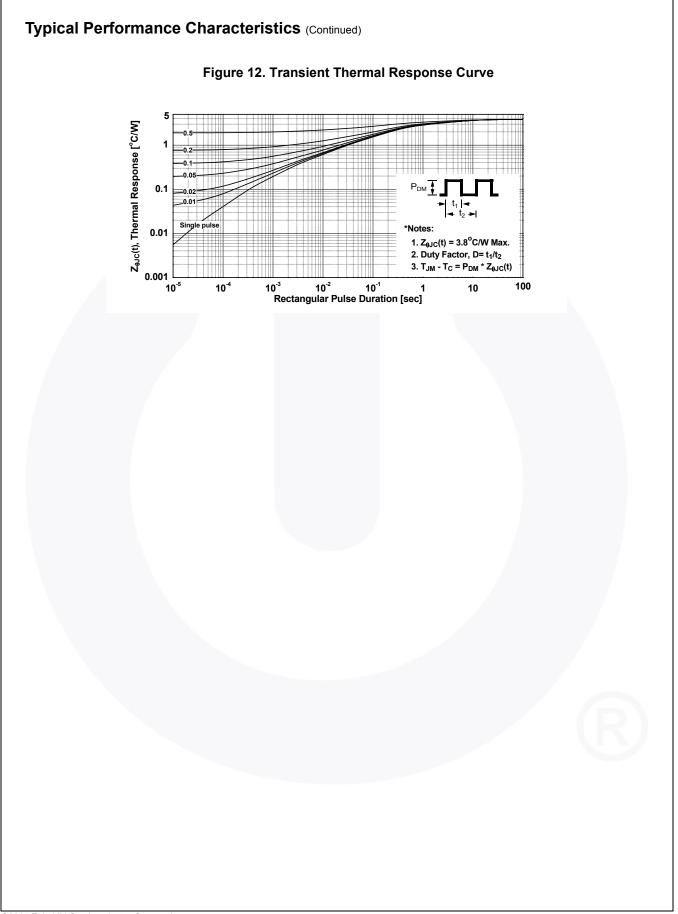
Description

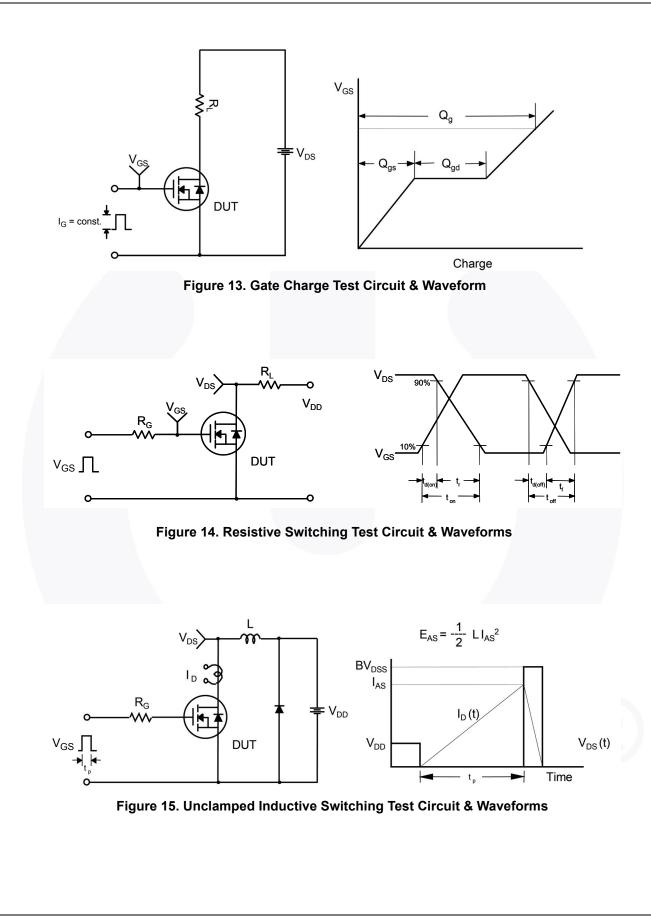
SuperFET[®] II MOSFET is Fairchild Semiconductor's brand-new high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This technology is tailored to minimize conduction loss, provide superior switching performance, dv/dt rate and higher avalanche energy. Consequently, SuperFET II MOSFET is very suitable for the switching power applications such as PFC, server/telecom power, FPD TV power, ATX power and industrial power applications. SuperFET II FRFET[®] MOSFET's optimized body diode reverse recovery performance can remove additional component and improve system reliability.

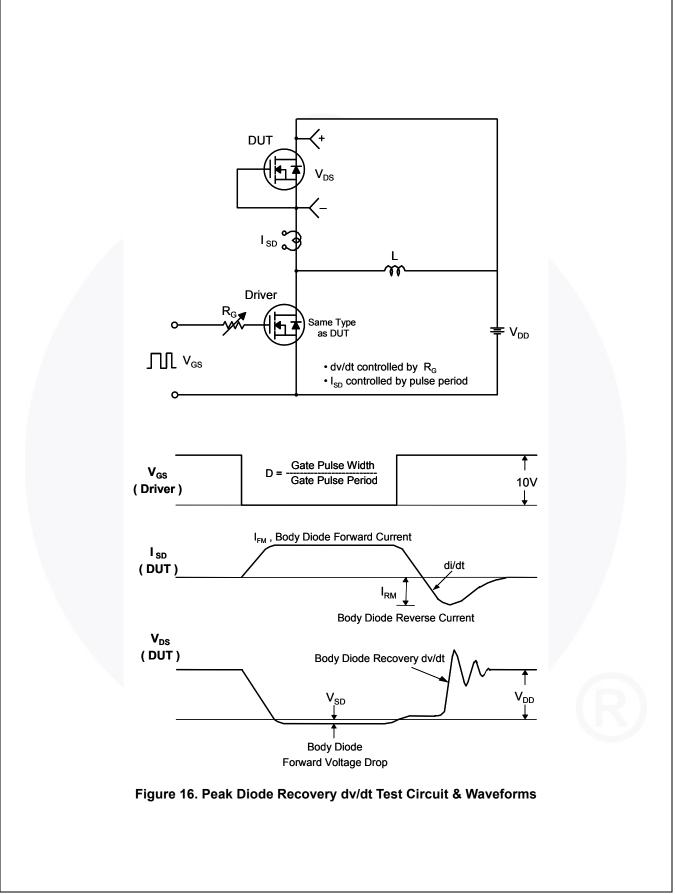

Absolute Maximum Ratings T_C = 25°C unless otherwise noted.


Symbol	Parameter		FCPF380N65FL1	Unit		
V _{DSS}	Drain to Source Voltage			650	V	
		- DC	/	±20	V	
V _{GSS}	Gate to Source Voltage	- AC	(f > 1 Hz)	±30		
ID	Drain Current	- Continuous (T _C = 25 ^o C)		10.2		
		- Continuous ($T_c = 100^{\circ}C$)		6.4	A	
I _{DM}	Drain Current	- Pulsed	(Note 1)	30.6	Α	
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		212	mJ		
I _{AR}	Avalanche Current (Note 1)		2.3	Α		
E _{AR}	Repetitive Avalanche Energy (Note 1)		0.33	mJ		
	MOSFET dv/dt			100		
dv/dt	Peak Diode Recovery dv/dt (Note 3)			50	V/ns	
P _D	Power Dissipation	(T _C = 25°C)		33	W	
		- Derate Above 25°C		0.26	W/ºC	
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C	
TI	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds		conds	300	°C	


Thermal Characteristics


Symbol	Parameter FCPF380N		Unit	
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case, Max.	3.8	°C/W	
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient, Max.	62.5	-0/00	


Parameter Parame	/oltage cure ent nt sistance	Tube Tube Test Condit V _{GS} = 0 V, I _D = 10 mA V _{GS} = 0 V, I _D = 10 mA I _D = 10 mA, Reference V _{DS} = 650 V, V _{GS} = 0 V _{DS} = 520 V, V _{GS} = 0 V _{GS} = V _{DS} , I _D = 1 mA V _{GS} = 10 V, I _D = 5.1 A V _{DS} = 20 V, I _D = 5.1 A V _{DS} = 380 V, V _{GS} = 0 V _{DS} = 380 V, V _{GS} = 0 V _{DS} = 0 V to 400 V, V	$V_{J} = 25^{\circ}C$ $V_{J} = 150^{\circ}C$ $V_{V,T_{C}} = 125^{\circ}C$ $V_{V,T_{C}} = 125^{\circ}C$ $V_{V,T_{C}} = 125^{\circ}C$ $V_{V,T_{C}} = 1000$ $V, f = 1 MHz$	Min. 650 700 - - - 3 - - - - - - - - - - - - -	N/A Typ. - - 0.72 - 40 - 40 - 320 9.9 1265 42 1.0 25	50 u Max. - - - - 10 - - 10 - - 10 - - - - - - -	Units Units Units V V V/°C μA μA V MΩ S PF pF pF pF
Parameter Parame	/oltage cure ent nt sistance	V _{GS} = 0 V, I _D = 10 mA V _{GS} = 0 V, I _D = 10 mA I _D = 10 mA, Reference V _{DS} = 650 V, V _{GS} = 0 V _{DS} = 520 V, V _{GS} = 0 V _{GS} = ±20 V, V _{DS} = 0 V _{GS} = 10 V, I _D = 5.1 A V _{DS} = 20 V, I _D = 5.1 A V _{DS} = 100 V, V _{GS} = 0 V _{DS} = 380 V, V _{GS} = 0 V _{DS} = 0 V to 400 V, V	$V_{J} = 25^{\circ}C$ $V_{J} = 150^{\circ}C$ $V_{V,T_{C}} = 125^{\circ}C$ $V_{V,T_{C}} = 125^{\circ}C$ $V_{V,T_{C}} = 125^{\circ}C$ $V_{V,T_{C}} = 1000$ $V, f = 1 MHz$	650 700 - - - 3 - -	- - - 40 - - 320 9.9 1265 42 1.0	- - 10 - ±100 5 380 - 1680	V V V/°C μA μA V PF pF pF
Parameter Parame	/oltage cure ent nt sistance	V _{GS} = 0 V, I _D = 10 mA V _{GS} = 0 V, I _D = 10 mA I _D = 10 mA, Reference V _{DS} = 650 V, V _{GS} = 0 V _{DS} = 520 V, V _{GS} = 0 V _{GS} = ±20 V, V _{DS} = 0 V _{GS} = 10 V, I _D = 5.1 A V _{DS} = 20 V, I _D = 5.1 A V _{DS} = 100 V, V _{GS} = 0 V _{DS} = 380 V, V _{GS} = 0 V _{DS} = 0 V to 400 V, V	$V_{J} = 25^{\circ}C$ $V_{J} = 150^{\circ}C$ $V_{V,T_{C}} = 125^{\circ}C$ $V_{V,T_{C}} = 125^{\circ}C$ $V_{V,T_{C}} = 125^{\circ}C$ $V_{V,T_{C}} = 1000$ $V, f = 1 MHz$	650 700 - - - 3 - -	- - - 40 - - 320 9.9 1265 42 1.0	- - 10 - ±100 5 380 - 1680	V V V/°C μA μA V PF pF pF
age Temperat age Drain Curre eakage Currer Voltage Source On Res conductance s ce ance er Capacitance ance t Capacitance ge at 10V Gate Charge	ent sistance	$ \begin{array}{c} \overline{V_{GS}} = 0 \ V, \ \overline{I_D} = 10 \ \text{mA} \\ \overline{I_D} = 10 \ \text{mA}, \ \text{Reference} \\ \overline{V_{DS}} = 650 \ V, \ \overline{V_{GS}} = 0 \\ \overline{V_{DS}} = 520 \ V, \ \overline{V_{GS}} = 0 \\ \overline{V_{GS}} = \pm 20 \ V, \ \overline{V_{DS}} = 0 \\ \overline{V_{GS}} = \pm 20 \ V, \ \overline{V_{DS}} = 0 \\ \overline{V_{GS}} = 10 \ V, \ \overline{I_D} = 5.1 \ \text{mA} \\ \overline{V_{DS}} = 20 \ V, \ \overline{I_D} = 5.1 \ \text{mA} \\ \overline{V_{DS}} = 20 \ V, \ \overline{I_D} = 5.1 \ \text{mA} \\ \overline{V_{DS}} = 20 \ V, \ \overline{I_D} = 5.1 \ \text{mA} \\ \overline{V_{DS}} = 380 \ V, \ \overline{V_{GS}} = 0 \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \ V \ V \ V \ V \ V \ V \ V \ $	$V, T_{J} = 150^{\circ}C$ ed to $25^{\circ}C$ V $V, T_{C} = 125^{\circ}C$ V V V V V V	700 - - - - 3 - -	- - - 40 - - 320 9.9 1265 42 1.0	- - ±100 5 380 - 1680	V V/°C μA μA V PF pF
age Temperat age Drain Curre eakage Currer Voltage Source On Res conductance s ce ance er Capacitance ance t Capacitance ge at 10V Gate Charge	ent sistance	$ \begin{array}{c} \overline{V_{GS}} = 0 \ V, \ \overline{I_D} = 10 \ \text{mA} \\ \overline{I_D} = 10 \ \text{mA}, \ \text{Reference} \\ \overline{V_{DS}} = 650 \ V, \ \overline{V_{GS}} = 0 \\ \overline{V_{DS}} = 520 \ V, \ \overline{V_{GS}} = 0 \\ \overline{V_{GS}} = \pm 20 \ V, \ \overline{V_{DS}} = 0 \\ \overline{V_{GS}} = \pm 20 \ V, \ \overline{V_{DS}} = 0 \\ \overline{V_{GS}} = 10 \ V, \ \overline{I_D} = 5.1 \ \text{mA} \\ \overline{V_{DS}} = 20 \ V, \ \overline{I_D} = 5.1 \ \text{mA} \\ \overline{V_{DS}} = 20 \ V, \ \overline{I_D} = 5.1 \ \text{mA} \\ \overline{V_{DS}} = 20 \ V, \ \overline{I_D} = 5.1 \ \text{mA} \\ \overline{V_{DS}} = 380 \ V, \ \overline{V_{GS}} = 0 \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \ V \ V \ V \ V \ V \ V \ V \ $	$V, T_{J} = 150^{\circ}C$ ed to $25^{\circ}C$ V $V, T_{C} = 125^{\circ}C$ V V V V V V	700 - - - - 3 - -	- 0.72 - 40 - 320 9.9 1265 42 1.0	- - ±100 5 380 - 1680	V V/°C μA μA V PF pF
age Temperat age Drain Curre eakage Currer Voltage Source On Res conductance s ce ance er Capacitance ance t Capacitance ge at 10V Gate Charge	ent sistance	$ \begin{array}{c} \overline{V_{GS}} = 0 \ V, \ \overline{I_D} = 10 \ \text{mA} \\ \overline{I_D} = 10 \ \text{mA}, \ \text{Reference} \\ \overline{V_{DS}} = 650 \ V, \ \overline{V_{GS}} = 0 \\ \overline{V_{DS}} = 520 \ V, \ \overline{V_{GS}} = 0 \\ \overline{V_{GS}} = \pm 20 \ V, \ \overline{V_{DS}} = 0 \\ \overline{V_{GS}} = \pm 20 \ V, \ \overline{V_{DS}} = 0 \\ \overline{V_{GS}} = 10 \ V, \ \overline{I_D} = 5.1 \ \text{mA} \\ \overline{V_{DS}} = 20 \ V, \ \overline{I_D} = 5.1 \ \text{mA} \\ \overline{V_{DS}} = 20 \ V, \ \overline{I_D} = 5.1 \ \text{mA} \\ \overline{V_{DS}} = 20 \ V, \ \overline{I_D} = 5.1 \ \text{mA} \\ \overline{V_{DS}} = 380 \ V, \ \overline{V_{GS}} = 0 \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \\ \overline{V_{DS}} = 0 \ V \ to \ 400 \ V, \ V \ V \ V \ V \ V \ V \ V \ V \ $	$V, T_{J} = 150^{\circ}C$ ed to $25^{\circ}C$ V $V, T_{C} = 125^{\circ}C$ V V V V V V	700 - - - - 3 - -	- 0.72 - 40 - 320 9.9 1265 42 1.0	- - ±100 5 380 - 1680	V V/°C μA μA V PF pF
age Drain Currer eakage Currer Voltage Source On Res conductance S cance er Capacitance ance t Capacitance rge at 10V Gate Charge	ent nt sistance	$I_{D} = 10 \text{ mA, Reference}$ $V_{DS} = 650 \text{ V}, V_{GS} = 0$ $V_{DS} = 520 \text{ V}, V_{GS} = 0$ $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0$ $V_{GS} = 10 \text{ V}, V_{DS} = 0$ $V_{GS} = 10 \text{ V}, I_{D} = 5.1 \text{ A}$ $V_{DS} = 20 \text{ V}, I_{D} = 5.1 \text{ A}$ $V_{DS} = 20 \text{ V}, I_{D} = 5.1 \text{ A}$ $V_{DS} = 100 \text{ V}, V_{GS} = 0$ $f = 1 \text{ MHz}$ $V_{DS} = 380 \text{ V}, V_{GS} = 0$ $V_{DS} = 0 \text{ V to 400 V}, V$	V V,T _C = 125°C V V V,T _C = 125°C V V	- - - 3 -	- 40 - 320 9.9 1265 42 1.0	- ±100 5 380 - 1680	μΑ μΑ V mΩ S PF pF
eakage Currer Voltage Source On Res conductance S cce ance er Capacitance ance t Capacitance rge at 10V Gate Charge	nt sistance	$V_{DS} = 520 \text{ V}, V_{GS} = 0$ $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0$ $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0$ $V_{GS} = 10 \text{ V}, I_D = 1 \text{ mA}$ $V_{DS} = 10 \text{ V}, I_D = 5.1 \text{ A}$ $V_{DS} = 20 \text{ V}, I_D = 5.1 \text{ A}$ $V_{DS} = 20 \text{ V}, I_D = 5.1 \text{ A}$ $V_{DS} = 100 \text{ V}, V_{GS} = 0$ $f = 1 \text{ MHz}$ $V_{DS} = 380 \text{ V}, V_{GS} = 0$ $V_{DS} = 0 \text{ V to 400 V}, V$	V,T _C = 125°C V V V V, V, f = 1 MHz	-	- 320 9.9 1265 42 1.0	- ±100 5 380 - 1680	μΑ ν ΜΩ S pF pF pF
eakage Currer Voltage Source On Res conductance S cce ance er Capacitance ance t Capacitance rge at 10V Gate Charge	nt sistance	$V_{GS} = \pm 20 \text{ V}, \text{ V}_{DS} = 0$ $V_{GS} = V_{DS}, \text{ I}_{D} = 1 \text{ mA}$ $V_{GS} = 10 \text{ V}, \text{ I}_{D} = 5.1 \text{ A}$ $V_{DS} = 20 \text{ V}, \text{ I}_{D} = 5.1 \text{ A}$ $V_{DS} = 100 \text{ V}, \text{ V}_{GS} = 0$ $f = 1 \text{ MHz}$ $V_{DS} = 380 \text{ V}, \text{ V}_{GS} = 0$ $V_{DS} = 0 \text{ V to 400 V}, \text{ V}$	V V V, V, f = 1 MHz	-	- 320 9.9 1265 42 1.0	5 380 - 1680	μΑ ν ΜΩ S pF pF pF
Voltage Source On Resconductance S ance er Capacitance ance t Capacitance rge at 10V Gate Charge	sistance	$V_{GS} = V_{DS}, I_{D} = 1 \text{ mA}$ $V_{GS} = 10 \text{ V}, I_{D} = 5.1 \text{ A}$ $V_{DS} = 20 \text{ V}, I_{D} = 5.1 \text{ A}$ $V_{DS} = 100 \text{ V}, V_{GS} = 0$ $f = 1 \text{ MHz}$ $V_{DS} = 380 \text{ V}, V_{GS} = 0$ $V_{DS} = 0 \text{ V to 400 V}, V$	V, f = 1 MHz	-	320 9.9 1265 42 1.0	5 380 - 1680	V mΩ S pF pF
Source On Res conductance s cce ance er Capacitance ance t Capacitance rge at 10V Gate Charge		$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 5.1 \text{ A}$ $V_{DS} = 20 \text{ V}, \text{ I}_{D} = 5.1 \text{ A}$ $V_{DS} = 100 \text{ V}, \text{ V}_{GS} = 0$ $f = 1 \text{ MHz}$ $V_{DS} = 380 \text{ V}, \text{ V}_{GS} = 0$ $V_{DS} = 0 \text{ V to 400 V}, \text{ V}$	V, f = 1 MHz	-	320 9.9 1265 42 1.0	380 - 1680	mΩ S pF pF pF
Source On Res conductance s cce ance er Capacitance ance t Capacitance rge at 10V Gate Charge		$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 5.1 \text{ A}$ $V_{DS} = 20 \text{ V}, \text{ I}_{D} = 5.1 \text{ A}$ $V_{DS} = 100 \text{ V}, \text{ V}_{GS} = 0$ $f = 1 \text{ MHz}$ $V_{DS} = 380 \text{ V}, \text{ V}_{GS} = 0$ $V_{DS} = 0 \text{ V to 400 V}, \text{ V}$	V, f = 1 MHz	-	320 9.9 1265 42 1.0	380 - 1680	mΩ S pF pF
Source On Res conductance s cce ance er Capacitance ance t Capacitance rge at 10V Gate Charge		$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 5.1 \text{ A}$ $V_{DS} = 20 \text{ V}, \text{ I}_{D} = 5.1 \text{ A}$ $V_{DS} = 100 \text{ V}, \text{ V}_{GS} = 0$ $f = 1 \text{ MHz}$ $V_{DS} = 380 \text{ V}, \text{ V}_{GS} = 0$ $V_{DS} = 0 \text{ V to 400 V}, \text{ V}$	V, f = 1 MHz		9.9 1265 42 1.0	- 1680	S pF pF
s ance er Capacitance ance t Capacitance rge at 10V Gate Charge	e	$V_{DS} = 20 \text{ V}, \text{ I}_{D} = 5.1 \text{ A}$ $-V_{DS} = 100 \text{ V}, \text{ V}_{GS} = 0$ $-f = 1 \text{ MHz}$ $V_{DS} = 380 \text{ V}, \text{ V}_{GS} = 0$ $V_{DS} = 0 \text{ V to 400 V}, \text{ V}$	V, f = 1 MHz		1265 42 1.0	1680	pF pF pF
ce ance er Capacitance ance t Capacitance rge at 10V Gate Charge	e		V, f = 1 MHz	· · · · · · · · · · · · · · · · · · ·	42 1.0		pF pF
ce ance er Capacitance ance t Capacitance rge at 10V Gate Charge	e		V, f = 1 MHz	-	42 1.0		pF pF
ance er Capacitance ance t Capacitance ge at 10V Gate Charge	e		V, f = 1 MHz	-	42 1.0		pF pF
er Capacitance ance t Capacitance ge at 10V Gate Charge	e		V, f = 1 MHz	-	1.0		pF
ance t Capacitance ge at 10V Gate Charge	e	V _{DS} = 0 V to 400 V, V		-		-	
t Capacitance ge at 10V Gate Charge		V _{DS} = 0 V to 400 V, V		-	25	-	
ge at 10V Gate Charge			GS = 0 V		405		
Gate Charge					165	-	pF
-		$V_{DS} = 380 \text{ V}, \text{ I}_{D} = 5.1 \text{ A},$		-	33 6.6	43	nC nC
Gate to Source Gate Charge Gate to Drain "Miller" Charge Equivalent Series Resistance		V _{GS} = 10 V (Note 4)		-	14	-	nC
		f = 1 MHz	(1000-1)	-	0.46	-	Ω
				-	0.40		52
cs					1		
-On Delay Time				-	18	46	ns
me		$V_{DD} = 380 \text{ V}, \text{ I}_D = 5.1 \text{ A},$ $V_{GS} = 10 \text{ V}, \text{ R}_g = 4.7 \Omega$		-	7.8	25.6	ns
Time				-		100	ns
Turn-Off Fall Time		(Note 4)		-	8	26	ns
aracteristic	s						
nuous Drain to	Source Diod	le Forward Current		-	-	10.2	Α
Maximum Pulsed Drain to Source Diode R		Forward Current		-	-	30.6	Α
Drain to Source Diode Forward Voltage		V _{GS} = 0 V, I _{SD} = 5.1 A		-	- /	1.2	V
ery Time		$V_{GS} = 0 V, I_{SD} = 5.1 A,$		-	84	-	ns
Reverse Recovery Charge		dI _F /dt = 100 A/μs		-	224	-	nC
	ime ne ime e racteristic uous Drain to Diode Forwar ry Time ry Charge naximum junction C	ime ne ime e racteristics uous Drain to Source Diode I Drain to Source Diode Fo Diode Forward Voltage ry Time ry Charge	ime $V_{DD} = 380 \text{ V}, I_D = 5.1 \text{ V}_{GS} = 10 \text{ V}, R_g = 4.7 \text{ s}$ ime $V_{GS} = 10 \text{ V}, R_g = 4.7 \text{ s}$ ie values of the second seco	ime $V_{DD} = 380 \text{ V}, I_D = 5.1 \text{ A},$ ime $V_{GS} = 10 \text{ V}, R_g = 4.7 \Omega$ ie (Note 4) racteristics uous Drain to Source Diode Forward Current d Drain to Source Diode Forward Current Diode Forward Voltage $V_{GS} = 0 \text{ V}, I_{SD} = 5.1 \text{ A}$ ry Time $V_{GS} = 0 \text{ V}, I_{SD} = 5.1 \text{ A}$ ry Charge $dI_F/dt = 100 \text{ A}/\mu \text{s}$ naximum junction temperature. C V, Starting T_J = 25°C V	ime-ne $V_{DD} = 380 \text{ V}, I_D = 5.1 \text{ A},$ $V_{GS} = 10 \text{ V}, R_g = 4.7 \Omega$ -imeimeimeimeimeimeimeimeimeimeimeimeimeImageImageImageImage <td>ime-18ne$V_{DD} = 380 \text{ V}, \text{ I}_D = 5.1 \text{ A},$ $V_{GS} = 10 \text{ V}, \text{ R}_g = 4.7 \Omega$-7.8ime-45ie(Note 4)-8racteristicsuous Drain to Source Diode Forward Currentd Drain to Source Diode Forward Currentd Drain to Source Diode Forward CurrentDiode Forward Voltage$V_{GS} = 0 \text{ V}, \text{ I}_{SD} = 5.1 \text{ A}$-ry Time$V_{GS} = 0 \text{ V}, \text{ I}_{SD} = 5.1 \text{ A},$-ry ChargedI_F/dt = 100 A/µs-aximum junction temperature.cC$V_{Starting T_J} = 25^{\circ}C$</td> <td>$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</td>	ime-18ne $V_{DD} = 380 \text{ V}, \text{ I}_D = 5.1 \text{ A},$ $V_{GS} = 10 \text{ V}, \text{ R}_g = 4.7 \Omega$ -7.8ime-45ie(Note 4)-8racteristicsuous Drain to Source Diode Forward Currentd Drain to Source Diode Forward Currentd Drain to Source Diode Forward CurrentDiode Forward Voltage $V_{GS} = 0 \text{ V}, \text{ I}_{SD} = 5.1 \text{ A}$ -ry Time $V_{GS} = 0 \text{ V}, \text{ I}_{SD} = 5.1 \text{ A},$ -ry ChargedI _F /dt = 100 A/µs-aximum junction temperature.cC $V_{Starting T_J} = 25^{\circ}C$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$



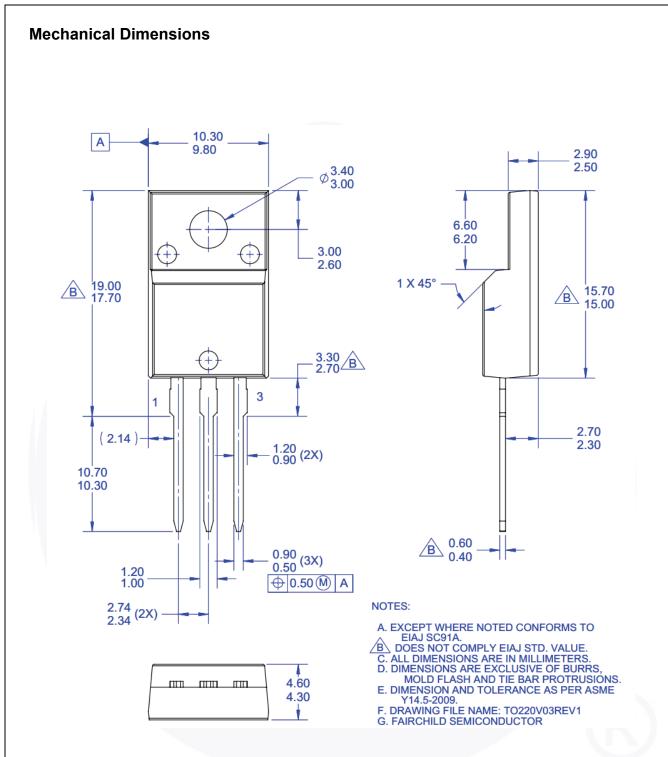


Figure 17. TO220, Molded, 3LD, Full Pack, EIAJ SC91, Takcheong

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TF220-0A3

FCPF380N65FL1 — N-Channel SuperFET[®] II FRFET[®] MOSFET

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower AttitudeEngine TMF-PFS TM FRFET®Awinda® Awinda® AX-CAP®* BitiSiCTMGlobal Power Resource Green Bridge TM Green FPS TM GOPLANAR TM Marking Small Speake and Better TM MolcoOCUPLER TM BegBuck TM BegBuck TM MicroPak TM MotionMax TM MotionGrid® MTI® FAST® FAST® FastvCore TM FETBench TM FPS TM OPTOLOGIC®For the product of the product	PowerTrench [®] PowerXS [™] Programmable Active Droop [™] QFET [®] QS [™] Quiet Series [™] RapidConfigure [™] saving our world, 1mW/W/kW at a time [™] SignalWise [™] SmartMax [™] SMART START [™] Solutions for Your Success [™] SPM [®] STEALTH [™] SuperSOT [™] -3 SuperSOT [™] -3 SuperSOT [™] -8 SuperSOT [™] -8	First for the form of the f
--	--	---

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

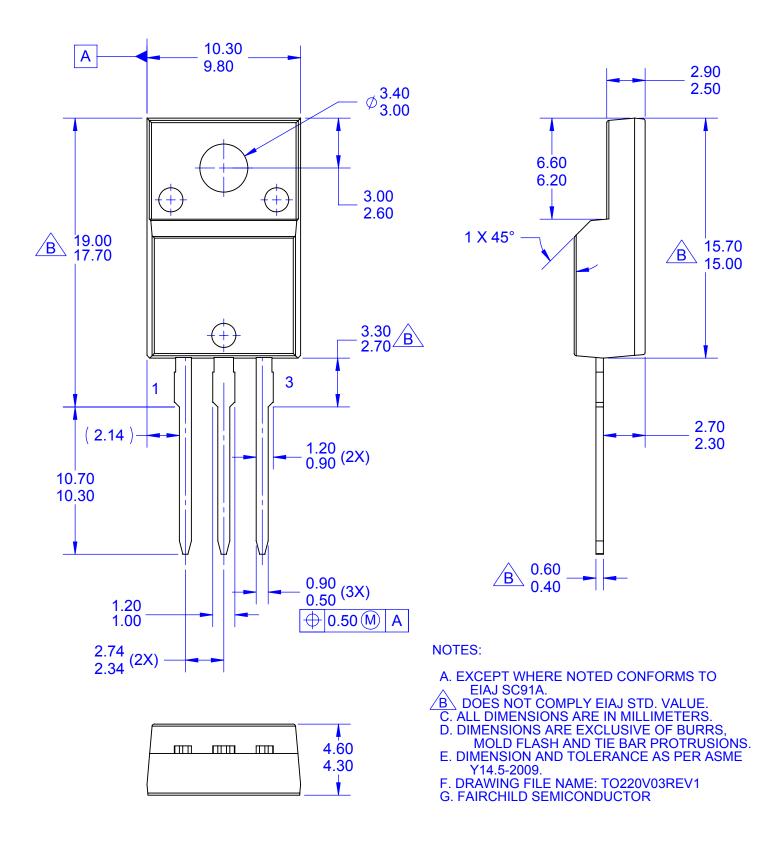
LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY


Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly ori indirectly, any claim of personal injury or death

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC