SensorRF-GEVK

SensorRF-GEVK Evaluation

Board User’s Manual

SensorRF-GEVK Developer’s Guide

Introduction

The SensorRF-GEVK IoT Development Platform allows
you to develop your own applications using battery-free
wireless sensors from ON Semiconductor based on the
Magnus®-S chip. SensorRF-GEVK allows you to control
the AMS Radon Reader to read sensor tags and display the
results to the user on a display or send the data to a remote
user through either a UART, TCP, CAN, I2C or SPI
interface.

ON Semiconductor®

www.onsemi.com

EVAL BOARD USER’S MANUAL

gy

P) L b
SRCEEN VY by el

449949949944

Figure 1. Photo of Development Platform

The Developer’s Tool
Everything you need to develop a custom application for

SensorRF-GEVK is included in the software image

pre-installed in the kit. The image includes:

® The Debian Version of the Linux® Operating System
which Includes the Linux Socket Interface

® The Qt Toolkit

® The QWT Library

® The AMS Radon Reader Application Programming
Interface (API)

© Semiconductor Components Industries, LLC, 2016

June, 2016 - Rev. 0

® The GNU Compiler Collection (GCC)
® The GDB Debugger

You can use the Integrated Development Environment or
the programming editor of your choice available for Linux.

To begin development, you can learn about the
SensorRF-GEVK Demo application which is described in
this document.

Publication Order Number:
EVBUM2479/D

http://onsemi.com

SensorRF-GEVK

SensorRF-GEVK Demo Software Architecture

The SensorRF-GEVK Demo application uses the
Model-View-Controller (MVC) design pattern. There are
two views, the Graphical User Interface (GUI) view and the
Remote User Interface (RUI) view. These two views
translate user requests for setting the AMS Radon Reader
settings and controlling its operations. In response to screen
selections or commands received through one of the remote
interfaces (i.e. UART, TCP, CAN, I2C, or SPI), the
Controller carries out those requests by utilizing the
operations available from the Model. The Model in turn
maintains the state of the Reader which is its settings and
results of reads and controls the Reader. The Model makes

use of the Reader API, which makes available a set of
commands to set the Reader’s settings and read tags among
other operations. The Model signals the GUI when the
settings of the Reader have been changed or when there are
results of reads available. The GUI subsequently requests
that data from the Model to display it to the user. The RUI
signals the GUI when it wants to display the commands it has
received through one of the remote interfaces and the
responses it has sent back. The RUI gets commands to search
for tags, measure tags, send back Reader settings, and set
Reader settings. Please see Figure 2 for a depiction of the
modules.

Signal

¢ User Settings/Control

User Settings/Control

Requests

GUI

Controller

Requests

RUI

Signals

Operation Requests

Data Requests

Model

Data Requests

Operation Requests

AMS Radon
Reader API

Figure 2. Demo Application Software Architecture

When the user requests to start the Temperature or
Moisture demonstrations available on the application,
which use the Reader to perform continuous reads and is an
intensive operation, the application spawns a Chart thread to
offload that operation from the GUI thread. This allows the
GUI thread to be available to handle user selections on the
screen so that the screen does not become unresponsive.
When one of the remote interfaces is started on the

application, the interface selected is continuously monitored
for commands and once a command is received, that
command is processed and a response generated and sent
back. This is an intensive operation as well. Therefore, the
application spawns a RUI thread to offload this operation
from the GUI thread to again prevent the screen from
becoming unresponsive. Please see Figure 3 for a depiction
of these threads.

!

e (——

\Controller/

— 1 gru

\

|

[
|

Chart Thread —>()

\ |<—— RUI Thread

AMS Radgn
Reader API

Figure 3. Demo Application Worker Threads

www.onsemi.com

2

http://onsemi.com

SensorRF-GEVK

SensorRF-GEVK Application Programming Interface
The SensorRF-GEVK Demo application was developed
in C++/C and utilizes the Qt Toolkit along with the QWT
graphical library for the Temperature and Moisture
demonstrations. The application makes use of the Linux
Socket interface to communicate with the Reader and to
communicate with external devices through one of the
remote interfaces available. We have developed our own

API for the AMS Radon Reader, which makes available a set
of commands to perform the operations that demonstrate the
capabilities of battery-free sensors from ON Semiconductor
and more. The API makes use of the commands made
available by the AMS Radon Reader firmware, which we
also modified for the API. Please see Figure 4 below for
a depiction of the APIs available with the SensorRF-GEVK
platform.

C++/C

Linux® Socket
Interface

Figure 4. SensorRF-GEVK Platform APIs

The Modules of the Demo Application
Now that we have described the Software Architecture of

® chart: Defines both the Temperature and the Moisture

the Demo application and the APIs it uses, we can move to charts.
descri'bing its modules' in more detail. We will focus on the e chart_thread: Defines the Chart thread that is spawned
most important operations performed by those modules. to offload the intense process of collecting temperature
Graphical User Interface (GUI) and sensor codes for the Temperature and Moisture

The GUI module is depicted in the figure below. The charts from the GUI thread.
module is defined in the gui view files and it utilizes the e configdialog: Defines the Details, Settings, Calibration
hermes, chart, chart_thread and configdialog files to carry and Help dialogs found in the Temperature and
out its operations. The configdialog files in turn utilize the Moisture Demo windows.
pages files to carry out its operations. The most important e pages: Defines the pages of the dialogs mentioned
operations these files contain are as follows: above, which includes all the controls and indicators for
® gui_view: Defines the resources needed for the GUI, each dialog.

most importantly the hermes wizard.
® hermes: Defines the Main, Temperature, and Moisture

windows (or pages) of the GUI, which includes all the

controls and indicators for each window.

GUI
gui_view .h/.cpp

/

hermes .h/.cpp

chart .h/.cpp

|

/

chart_thread .h/.c

\

configdialog .h/.c

|

pages

Figure 5. Demo Application GUI Module

www.onsemi.com

3

http://onsemi.com

SensorRF-GEVK

Controller
The Controller module is depicted in Figure 6. The

module is defined in the kit_controller files and no other file

fall within this module. The module does perform some of
the most important operations of the system which are as
follows:

® short launchRUI(QString interfaceType): Starts
the RUI listening on interfaceType, which can be
UART, TCP, CAN, I2C or SPI. Returns 0 if successful.

® void stopRUI(): Stops the RUI. SensorRF-GEVK
stops listening for commands.

® RUIThread* getRUIThreadPointer(): Returns the
pointer to the RUI Thread. The pointer is used to
connect the thread to the console on the GUI so that it
can display status messages.

® void turnReaderOn(): Applies power to the AMS
Radon Reader, turning it on.

® void turnReaderOff(): Removes power from the AMS
Radon Reader, turning it off.

® double measureTempCodeForCalibration(): Returns
the current Temp Code for the tag currently selected.
Used to calibrate tag.

® void searchForTempTags(): Performs a search for
Temp tags in the field using the Reader. Results are put
in the Model’s Temp Tags list.

® void searchForMoistureTags(): Performs a search for
Moisture tags in the field using the Reader. Results are
put in the Model’s Moisture Tags list.

® void measureTempTags(): Performs a read of the
tags’s On-Chip RSSI codes and Temp codes. Results
are put in the Model’s Temp Tag list.

® void measureMoistureTags(): Performs a read of the
tags’s On-Chip RSSI codes and Sensor codes. Results
are put in the Model’s Moisture Tag list.

® int clearTempTags(): Clears the Temp Tags list and
measurement time history along with the Temperature
Demo chart. Returns 0 always.

® int clearMoistTags(): Clears the Moisture Tags list and
measurement time history along with the Moisture
Demo chart. Returns 0 always.

o int setMoistLinearFit(bool setting): Enables the use
of the Linear Fit algorithm to produce measurements
from raw Sensor, On-Chip RSSI, and Temp code reads.
Returns 0 always.

int setTempAutoPower(bool setting): Sets Temp Auto
Power on or off. Returns 0 always.

int setMoistAutoPower(bool setting): Sets Moisture
Auto Power on or off. Returns 0 always.

int setTempMaxPowerLevel(int dBm): Sets Temp
Max Power level. Returns 0 always. dBm can be 18-30.
int setMoistMaxPowerLevel(int dBm): Sets Moisture
Max Power level. Returns 0 always. dBm can be 18-30.
int setTempSamplesPerMeasurement(QString s):
Sets the minimum number of samples used to produce
a measurement for On-Chip RSSI and Temp code.
Returns 0 always. s can be 2, 5, 10, 20.

int setMoistSamplesPerMeasurement(QString s):
Sets the minimum number of samples used to produce
a measurement for On-Chip RSSI and Moisture code.
Returns 0 always. s can be 2, 5, 10, 20.

int setTempOnChipRssiTargetMin(int t): Sets the
minimum value for the On-Chip RSSI code for a Temp
code read to be valid. Returns 0 always.

t can be between 0 and 31. Min < Max.

int setTempOnChipRssiTargetMax(int t): Sets the
maximum value for the On-Chip RSSI code for a Temp
code read to be valid. Returns 0 always.

t can be between 0 and 31. Max > Min.

int setMoistOnChipRssiTargetMin(int t): Sets the
minimum value for the On-Chip RSSI code for

a Sensor code read to be valid. Returns 0 always.

t can be between 0 and 31. Min < Max.

int setMoistOnChipRssiTargetMax(int t): Sets the
maximum value for the On-Chip RSSI code for

a Sensor code read to be valid. Returns 0 always.

t can be between 0 and 31. Max > Min.

int setMoistThreshold(int threshold): Sets the
threshold value for the Sensor code read to indicate that
the tag is detecting moisture. Returns 0 always.

int setMoistAboveThreshold(bool above): Sets if the
Sensor code read has to go above or below the Moisture
Threshold to indicate that the tag has detected moisture.
Returns 0 always.

int setBandRegion(FreqBandEnum band): Sets the
frequency band and tunes the Reader for that band.
Band can be FCC, ETSI, PRC, JAPAN, FCC_center,
and ETSI_center. Returns 0 if successful.

Controller

kit_controller .h/.cpp

Figure 6. Demo Application Controller Module

www.onsemi.com

4

http://onsemi.com

SensorRF-GEVK

Remote User Interface (RUI)

The RUI module is depicted in Figure 7. The module is)
defined in the rui_view files and it utilizes the rui_thread and
interfaces files to carry out its operations. The interfaces
files in turn utilize the can, i2¢, spi, tcp_server, and uart files.
The most important operations contained in these files are as
follows:
® rui_view: Defines the resources needed for the RUI,

most importantly the interfaces object.
® rui_thread: Defines the RUI thread that is spawned to

offload the intense process of listening for commands,
processing them, and sending back responses from the

GUI thread.

interfaces: Defines the generic interface that is used to
connect SensorRF-GEVK to an external device either
through the UART, TCP, CAN, SPI or I2C interfaces.

can: Defines the CAN Linux socket.

i2c: Defines the I2C Linux socket.

spi: Defines the SPI Linux socket.

tcp_server: Defines the TCP Server Linux socket.
uart: Defines the UART Linux socket.

RUI

A

rui_view .h/.cpp

rui_thread .h/.cpp interfaces h/ cpp

can .h/.cpp /

i2c .h/.cpp

spi.h/.cop tcp_server .h/.cpp

uart .h/.cpp

Figure 7. Demo Application RUI Module

Model
The Model module is depicted in Figure 8. The module is °

defined in the kit_model files and it utilizes the sensorTag,

GPIO, util, and utility files to carry out its operations. Some °

of the most important system operations are contained in

these files and are as follows:

® kit_model: Defines the resources needed for the
Model, most importantly the reader object, the
sensorTag lists, and the functions available to set the
Reader settings and perform reads. The most important
operations available in the Model will be described
below.

sensorTag: Defines the data structures used to store
sensor reads, sensor measurements, and sensor data.
GPIO: Defines the object through which the
BeagleBone’s GPIOs can be accessed, which is used to
turn the Reader on/off and to connect the UART, IC or
SPI ports on the board to the BeagleBone when one of
those interfaces is selected.

util: Defines helper functions for GPIO.

utility: Defines helper functions for performing data
conversions.

Model

kit_model .h/.cpp

util .h/.cpp

utility .h/. cpp/ sensorTag .h/.cpp

GPIO .h/.cpp

Figure 8. Demo Application Model Module

www.onsemi.com

5

http://onsemi.com

SensorRF-GEVK

Some of the most important operations performed by
SensorRF-GEVK are defined in the kit_model files and are

described below:

void turnReaderOn(): Applies power to the AMS
Radon Reader, turning it on.

void turnReaderOff(): Removes power from the AMS
Radon Reader, turning it off.

void selectForMeasurement(QString
measurementType, QString tagLabel, bool select):
Marks the tag with taglabel in the measurementType
(Temperature or Moisture Demo) in the (Temperature
or Moisture) Tag list.

int setPower(char value): Sets the attenuation factor
for the AMS Reader chip (AS3993). Value can be
between 6 and 19. Returns 0 if successful.

int setFrequencyBand(FreqBandEnum band): Sets
the frequency band and tunes the Reader for that band.
Band can be FCC, ETSI, PRC, JAPAN, FCC_center,
and ETSI_center. Returns 0 if successful.

void addTagToList(TagData tag, QString
measurementType): Adds the tag returned by the
Reader to the measurementType (Temperature or
Moisture) Tag list.

float calculateTemperature(QString tagEpc,

int minOnChipRssi, int maxOnChipRssi,

int minNumberSuccessfulReads): Returns the
temperature in degrees C from the temp code average
for a tag.

void addSensorReading(TagData tag, QString
measurementType): Adds a tag’s raw Sensor, Temp,
and On-Chip RSSI code to the measurementType
(Temperature or Moisture) Tag list.

int findTags(int numInventories, QString
measurementType): Search for tags in the area
performing a number of inventories (numInventories)
of the type measurementType (Temperature or
Moisture). Returns 0 if successful.

int searchForTempTags(): Perform a search for Temp
tags using the findTags function adjusting the power
until the user clicks the Stop button on the Temperature
screen. Returns 0 always.

int searchForMoistTags(): Perform a search for
Moisture tags using the findTags function adjusting the
power until the user clicks the Stop button on the
Moisture screen. Returns 0 always.

int setSelectsForReading(): Sets up the Select
commands in the Reader in preparation for reading
Temp or Moisture tags. It does not perform the Select
commands. The Select commands are performed when
the Reader is instructed to perform an inventory.
Returns 0 if successful.

int writeDataToTag(QString epc, char bankCode,
int address, QString dataHexString): Writes data to

the bankCode (0=Reserved, 1=EPC, 2=TID, 3=User) at
the address (in Hex), the dataHexString for the tag with
epc. Returns 0 if successful.

int readTags(int numInventories, QString
measurementType): Perform a number of inventories
(numlInventories) of the measurementType
(Temperature or Moisture) type to read the tags Sensor,
Temp and On-Chip RSSI codes. Returns 0 if successful.
bool findOptimumPower (int tagIndex, QString
measurementType): Adjust the power level for the tag
with tagIndex of the measurementType (Temperature or
Moisture) to obtain a valid read. This is executed only
if Auto Power is set to true in the Temperature or
Moisture Demo settings. Returns true if the optimum
power was found.

int autotune(int c): Instructs the Reader to perform an
auto tuning for the frequency c and place the resulting
antenna tuning parameters in the tuning table for that
frequency for future use during inventories. Returns 0 if
successful.

int measureTempTags(): Reads Temp tags in the area
to obtain their Temp and On-Chip RSSI codes, using
auto power if set. Returns 0 if successful.

int measureMoistTags(): Reads Moisture tags in the
area to obtain their Sensor and On-Chip RSSI codes,
using auto power if set. Returns O if successful.

double measureTempCodeForCalibration(): Returns
the Temp code for a tag currently selected to use for
calibrating the tag. Returns —1000 if it fails.

void updateTempTagsSignal(QList<SensorTag>):
Signals the GUI thread to update the Temperature chart
with the list of sensor tags passed.

void updateTempTagSelectionsSignal(): Signals the
GUI thread to check the Temp Tag list and update the
Temperature Demo chart because a tag has been
selected or unselected for measurement.

void updateMoistTagsSignal(QList<SensorTag>):
Signals the GUI thread to update the Moisture chart
with the list of sensor tags passed.

void updateMoistTagSelectionsSignal(): Signals the
GUI thread to check the Moisture Tag list and update
the Moisture Demo chart because a tag has been
selected or unselected for measurement.

void antennaTuningSignal(int, int): Signals the GUI
thread to update the splash screen or the tuning progress
bar of the Temperature or Moisture Other Settings tab
with the latest percentage completion of the Set
Frequency Band operation.

void bandChangedSignal(FreqBandEnum): Signals
the GUI thread to update the Band Region Combo box
of the Temperature or Moisture Demo Other Settings
tab with the new band selected.

www.onsemi.com

6

http://onsemi.com

SensorRF-GEVK

AMS Radon Reader API

The AMS Radon Reader API module is depicted in
Figure 9. The module is defined in the ams_radon_reader
files. The file contains the API for the Reader and the data
structure in which raw tag information returned from the
Reader is stored. The API was developed to mirror as much
as possible the commands that the AMS Radon Reader
Firmware makes available. For some commands
encompassing multiple sub-commands, we decided to
create separate, individual commands for those sub-
commands in our API. We customized the inventoryGen2()
firmware command by creating two inventory types to meet
our performance and data needs. One inventory type
(tidAndFast = 0x03) is used for obtaining Temperature
Calibration data and the TID and another (tidAndFast =
0x05) for obtaining Sensor, Temp, and On-Chip RSSI code
from our tags. In the API we created our own command
(getTagData()) to obtain inventory results (or tag data) that
doesn’t have a counterpart in the firmware. This commands
is described below.

® short getTagData(vector<TagData> &tags,
char &inventoryType, char &inventoryResult,
char &numberOfTagsFound):

+ This command fills a vector of tag data structures
with the tag data returned by the Reader firmware.
It also returns the inventory type that generated the
data, the inventory results (whether the data is valid
or not), and the number of tags found. The return
value of the function indicates whether the command
was executed successfully or not.

+ The TagData data structure or class is in the
ams_radon_reader.h file and it’s simple and
self-explanatory and hence, we will not discuss it
here.

Other than the changes described above, the Reader API
follows the firmware command set closely and we will refer
the reader to the AMS Radon Kit’s Firmware documentation
for a description of those commands.

AMS Radon Reader API

ams_radon_reader .h/.cpp

Figure 9. Demo Application AMS Radon Reader APl Module

Related Resources

We have discussed mainly the software architecture of the
Demo application and the AMS Radon Reader API. For
a discussion of the other tools available to the developer,
please refer to the following resources:

® C++/C: http://www.cplusplus.com/doc/tutorial/

® Linux Socket Interface:
http://www.linuxhowtos.org/C C++/socket.htm

o Qt Toolkit: http://doc.qt.io/
® QWT Library: http://qwt.sourceforge.net/

® GCC: https://gcc.gnu.org/
e GDB: https://www.gnu.org/software/gdb/

Linux is a registered trademark of Linus Torvalds. Magnus is a registered trademark of RFMicron. All other brand names and product
names appearing in this document are registered trademarks or trademarks of their respective holders.

www.onsemi.com

7

http://onsemi.com
http://www.cplusplus.com/doc/tutorial/
http://www.linuxhowtos.org/C_C++/socket.htm
http://doc.qt.io/
http://qwt.sourceforge.net/
https://gcc.gnu.org/
https://www.gnu.org/software/gdb/

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A
listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi is an Equal Opportunity/Affirmative Action Employer. This
literature is subject to all applicable copyright laws and is not for resale in any manner.

The evaluation board/kit (research and development board/kit) (hereinafter the “board”) is not a finished product and is not available for sale to consumers. The board is only intended
for research, development, demonstration and evaluation purposes and will only be used in laboratory/development areas by persons with an engineering/technical training and familiar
with the risks associated with handling electrical/mechanical components, systems and subsystems. This person assumes full responsibility/liability for proper and safe handling. Any
other use, resale or redistribution for any other purpose is strictly prohibited.

THE BOARD IS PROVIDED BY ONSEMI TO YOU “AS IS” AND WITHOUT ANY REPRESENTATIONS OR WARRANTIES WHATSOEVER. WITHOUT LIMITING THE FOREGOING,
ONSEMI (AND ITS LICENSORS/SUPPLIERS) HEREBY DISCLAIMS ANY AND ALL REPRESENTATIONS AND WARRANTIES IN RELATION TO THE BOARD, ANY
MODIFICATIONS, OR THIS AGREEMENT, WHETHER EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING WITHOUT LIMITATION ANY AND ALL
REPRESENTATIONS AND WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, AND THOSE ARISING FROM A
COURSE OF DEALING, TRADE USAGE, TRADE CUSTOM OR TRADE PRACTICE.

onsemi reserves the right to make changes without further notice to any board.

You are responsible for determining whether the board will be suitable for your intended use or application or will achieve your intended results. Prior to using or distributing any systems
that have been evaluated, designed or tested using the board, you agree to test and validate your design to confirm the functionality for your application. Any technical, applications or
design information or advice, quality characterization, reliability data or other services provided by onsemi shall not constitute any representation or warranty by onsemi, and no additional
obligations or liabilities shall arise from onsemi having provided such information or services.

onsemi products including the boards are not designed, intended, or authorized for use in life support systems, or any FDA Class 3 medical devices or medical devices with a similar
or equivalent classification in a foreign jurisdiction, or any devices intended for implantation in the human body. You agree to indemnify, defend and hold harmless onsemi, its directors,
officers, employees, representatives, agents, subsidiaries, affiliates, distributors, and assigns, against any and all liabilities, losses, costs, damages, judgments, and expenses, arising
out of any claim, demand, investigation, lawsuit, regulatory action or cause of action arising out of or associated with any unauthorized use, even if such claim alleges that onsemi was
negligent regarding the design or manufacture of any products and/or the board.

This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC,
CE or UL, and may not meet the technical requirements of these or other related directives.

FCC WARNING — This evaluation board/kit is intended for use for engineering development, demonstration, or evaluation purposes only and is not considered by onsemi to be a finished
end product fit for general consumer use. It may generate, use, or radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant
to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment may cause interference with radio
communications, in which case the user shall be responsible, at its expense, to take whatever measures may be required to correct this interference.

onsemi does not convey any license under its patent rights nor the rights of others.

LIMITATIONS OF LIABILITY: onsemi shall not be liable for any special, consequential, incidental, indirect or punitive damages, including, but not limited to the costs of requalification,
delay, loss of profits or goodwill, arising out of or in connection with the board, even if onsemi is advised of the possibility of such damages. In no event shall onsemi’s aggregate liability
from any obligation arising out of or in connection with the board, under any theory of liability, exceed the purchase price paid for the board, if any.

The board is provided to you subject to the license and other terms per onsemi’s standard terms and conditions of sale. For more information and documentation, please visit
www.onsemi.com.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS: ONLINE SUPPORT: www.onsemi.com/support
Technical Library: www.onsemi.com/design/resources/technical-documentation For additional information, please contact your local Sales Representative at
onsemi Website: www.onsemi.com www.onsemi.com/support/sales

%20http://www.onsemi.com/
https://www.onsemi.com/design/resources/technical-documentation
https://www.onsemi.com/
https://www.onsemi.com/support?utm_source=techdocs&utm_medium=pdf
https://www.onsemi.com/support/sales
https://www.onsemi.com/site/pdf/Patent-Marking.pdf

