NCV885300 Evaluation Board User's Manual

ON Semiconductor®

http://onsemi.com

EVAL BOARD USER'S MANUAL

Description

The NCV885300 evaluation board provides a convenient way to evaluate and integrate a complete high-efficiency non-synchronous buck converter design. No additional components are required, other than dc supplies for the input voltage and enable pin. The board can also be connected to an external clock source to synchronize the switching frequency. The power good signal can be pulled up externally with the PG+ pin. The board is configured for a 5.0 V output with a 340 kHz switching frequency and a 3 A current limit, intended for applications requiring 2 A of current.

Modifying the NCV885300 evaluation board for different output voltage, switching frequency, or current limit is straightforward, requiring minimal component changes.

Key Features

- 5.0 V Output Voltage
- 340 kHz Switching Frequency
- 2.0 A Current Limit
- Power Good Signal
- Wide Input Voltage of 6.0 V to 36 V
- Regulated through Load Dump Conditions
- External Clock Synchronization up to 500 kHz
- Automotive Grade

Figure 1. NCV885300EVB Board Picture

Table 1. EVALUATION BOARD TERMINALS

Pin Name	Function		
VIN	Positive dc input voltage		
VOUT	Regulated dc output voltage		
GND	Common dc return		
EN/SYNC	Enable input and external clock synchronization input		
PG	Digital power good output		
PG+	Power good pull-up. Use this pin only when pulling-up PG to an external voltage source.		

Table 2. ABSOLUTE MAXIMUM RATINGS

(Voltages are with respect to GND)

Rating	Value	Units
Dc supply voltage (VIN)	-0.3 to 36	V
Dc supply voltage (EN/SYNC, PG, PG+)	-0.3 to 6.0	V

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 3. ELECTRICAL CHARACTERISTICS

(T_A = 25°C, 6.0 V \leq V $_{IN}$ \leq 36 V, V $_{EN/SYNC}$ = 5.0 V, 0 \leq I $_{OUT}$ \leq 2.0 A, unless otherwise specified)

Characteristics	Conditions	Typical Value	Units				
Regulation							
Output Voltage		5.0	V				
Voltage Accuracy		2	%				
Line Regulation	I _{OUT} = 1.0 A	0.04	%				
Load Regulation	V _{IN} = 13.2 V	0.12	%				
Switching							
Switching Frequency		340	kHz				
Soft-start Time		2.0	ms				
SYNC Frequency Range		270 to 500	kHz				
Current Limit							
Cycle-by-Cycle Current Limit		3.33	A				
Over Current Protection Threshold		5.0	A				
Protections							
Input Undervoltage Lockout (UVLO)	V _{IN} decreasing	3.1	V				
Thermal Shutdown	T _J rising	170	°C				

Figure 2. NCV885300EVB Board Schematic

Operational Guidelines

- 1. Connect a dc input voltage, within the 6.0 V to 36 V range, between VIN and GND
- 2. Connect a load between VOUT and GND
- 3. Connect a dc enable voltage, within the 2.0 V to 5.5 V range, between EN/SYNC and GND
- 4. Optionally, for external clock synchronization, connect a pulse source between EN/SYNC and GND. The high state level should be within the 2.0 V to 5.5 V range, and the low state level within the 0.0 V to 0.8 V range, with a frequency within the 270 kHz to 500 kHz range.

Figure 3. NCV885300EVB Board Connections

Power Good Operation

- The Power Good pin (PG) allows you to digitally monitor the output voltage. When VOUT is above 90% of the expected value, the PG signal is in a high state. By default, PG is pulled high to VOUT through a 10 kΩ resistor.
- Optional: To pull the PG pin high using a signal other than VOUT, please make the following board modifications:
- 1. Remove R1 from the board.
- 2. Populate R6 with a 10 k Ω resistor.
- 3. Connect the a voltage source between PG+ and GND (please see the Absolute Maximum Ratings table for more information).
- 4. PG is now ready to digitally monitor VOUT using an external pull-up.

TYPICAL PERFORMANCE

Figure 4. Line Regulation for 340 kHz and a 5.0 V Output

Regulation

Figure 5. Load Regulation for 340 kHz and a 5.0 V Output

SCHEMATIC

Figure 6. Evaluation Board Schematic

PCB LAYOUT

Figure 7. Top View

Figure 8. Bottom View

Table 4. BILL OF MATERIALS

Reference	Value	Part #	Manufacturer	Description	Package
U1		NCV885300	ON Semiconductor	Integrated circuit	SOIC-8
Q1		NTTFS5116PL	ON Semiconductor	Power MOSFET, P-Channel	WDFN8
D1		MBRA340T3G	ON Semiconductor	Diode, Schottky, 40 V, 3 A	SMA
L1	15 μΗ	XAL5050-153MEB	Coilcraft	Shielded Power Inductor	5 mm x 5 mm
R1	10.0 kΩ	CRCW060310K0FKEA	Vishay/Dale	Resistor, 1%	0603
R2	0.03 Ω	WSL0805R0300FEA18	Vishay/Dale	Resistor, 1%	0805
R3, R5	8.06 kΩ	CRCW06038K06FKEA	Vishay/Dale	Resistor, 1%	0603
R4	42.2 kΩ	CRCW060342K2FKEA	Vishay/Dale	Resistor, 1%	0603
C1	0.1 μF	GCM188R71H104KA57D	Murata	Capacitor, 50 V, X7R	0603
C2, C3, C4	10 μF	GRM32DF51H106ZA01L	Murata	Capacitor, 50 V, Y5V	1210
C5	6800 pF	EMK107SD682JA-T	Taiyo Yuden	Capacitor, 16 V	0603
C6	470 pF	06033A471JAT2A	AVX	Capacitor, 25 V, NP0	0603
C7	100 μF	B45197A2107K409	Kemet	Capacitor, 10 V	2917
C8	0.1	C0603C104K8RACTU	Kemet	Capacitor, 10 V, X7R	0603

onsemi, ONSEMi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

The evaluation board/kit (research and development board/kit) (hereinafter the "board") is not a finished product and is not available for sale to consumers. The board is only intended for research, development, development, development, and evaluation purposes and will only be used in laboratory/development areas by persons with an engineering/technical training and familiar with the risks associated with handling electrical/mechanical components, systems and subsystems. This person assumes full responsibility/liability for proper and safe handling. Any other use, resale or redistribution for any other purpose is strictly prohibited.

THE BOARD IS PROVIDED BY ONSEMI TO YOU "AS IS" AND WITHOUT ANY REPRESENTATIONS OR WARRANTIES WHATSOEVER. WITHOUT LIMITING THE FOREGOING, ONSEMI (AND ITS LICENSORS/SUPPLIERS) HEREBY DISCLAIMS ANY AND ALL REPRESENTATIONS AND WARRANTIES IN RELATION TO THE BOARD, ANY MODIFICATIONS, OR THIS AGREEMENT, WHETHER EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING WITHOUT LIMITATION ANY AND ALL REPRESENTATIONS AND WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, AND THOSE ARISING FROM A COURSE OF DEALING, TRADE USAGE, TRADE CUSTOM OR TRADE PRACTICE.

onsemi reserves the right to make changes without further notice to any board.

You are responsible for determining whether the board will be suitable for your intended use or application or will achieve your intended results. Prior to using or distributing any systems that have been evaluated, designed or tested using the board, you agree to test and validate your design to confirm the functionality for your application. Any technical, applications or design information or advice, quality characterization, reliability data or other services provided by **onsemi** shall not constitute any representation or warranty by **onsemi**, and no additional obligations or liabilities shall arise from **onsemi** having provided such information or services.

onsemi products including the boards are not designed, intended, or authorized for use in life support systems, or any FDA Class 3 medical devices or medical devices with a similar or equivalent classification in a foreign jurisdiction, or any devices intended for implantation in the human body. You agree to indemnify, defend and hold harmless onsemi, its directors, officers, employees, representatives, agents, subsidiaries, affiliates, distributors, and assigns, against any and all liabilities, losses, costs, damages, judgments, and expenses, arising out of any claim, demand, investigation, lawsuit, regulatory action or cause of action arising out of or associated with any unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of any products and/or the board.

This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and may not meet the technical requirements of these or other related directives.

FCC WARNING – This evaluation board/kit is intended for use for engineering development, demonstration, or evaluation purposes only and is not considered by **onsemi** to be a finished end product fit for general consumer use. It may generate, use, or radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment may cause interference with radio communications, in which case the user shall be responsible, at its expense, to take whatever measures may be required to correct this interference.

onsemi does not convey any license under its patent rights nor the rights of others.

LIMITATIONS OF LIABILITY: **onsemi** shall not be liable for any special, consequential, incidental, indirect or punitive damages, including, but not limited to the costs of requalification, delay, loss of profits or goodwill, arising out of or in connection with the board, even if **onsemi** is advised of the possibility of such damages. In no event shall **onsemi**'s aggregate liability from any obligation arising out of or in connection with the board, under any theory of liability, exceed the purchase price paid for the board, if any.

The board is provided to you subject to the license and other terms per **onsemi**'s standard terms and conditions of sale. For more information and documentation, please visit www.onsemi.com.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS: Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales