ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

NCP2811ADTBR Evaluation Board User's Manual

Description

NCP2811 is a dual audio power amplifier designed for portable communication device applications such as mobile phones. This board showcases the A version of this part in the TSSOP-14 package. This part is capable of delivering 27 mW of continuous average power into a 16 Ω load from a 2.7 V power supply with a THD+N of 1%.

Based on the power supply delivered to the device, an internal power management block generates a symmetrical positive and negative voltage. Thus, the internal amplifiers provide outputs referenced to Ground. In this True Ground configuration, the two external heavy coupling capacitors can be removed. It offers significant space and cost savings compared to a typical stereo application.

ON Semiconductor®

http://onsemi.com

EVAL BOARD USER'S MANUAL

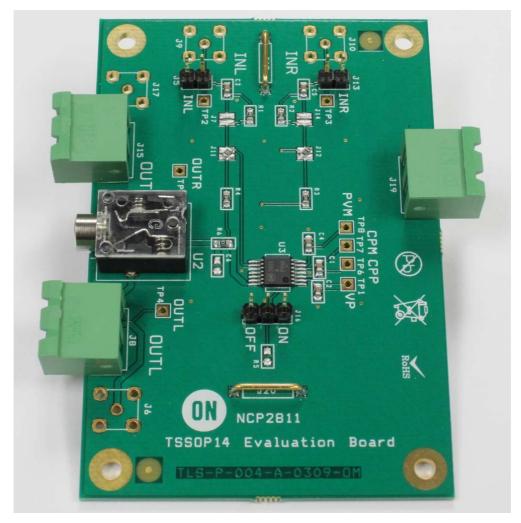


Figure 1. NCP2811ADTBRGEVB Board Picture

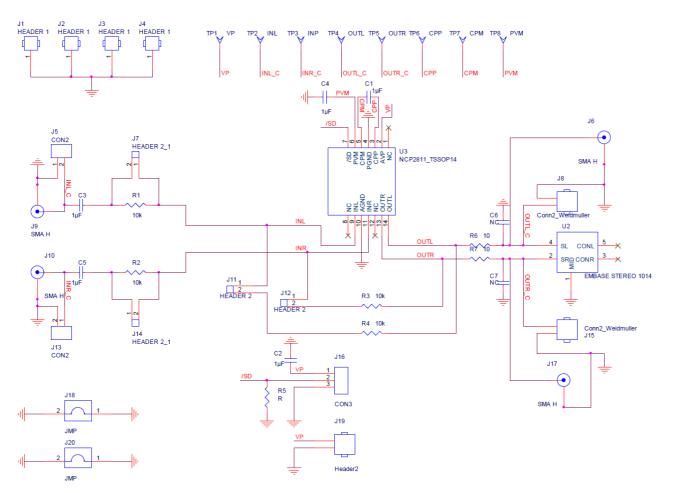


Figure 2. NCP2811ADTBRGEVB Board Schematic

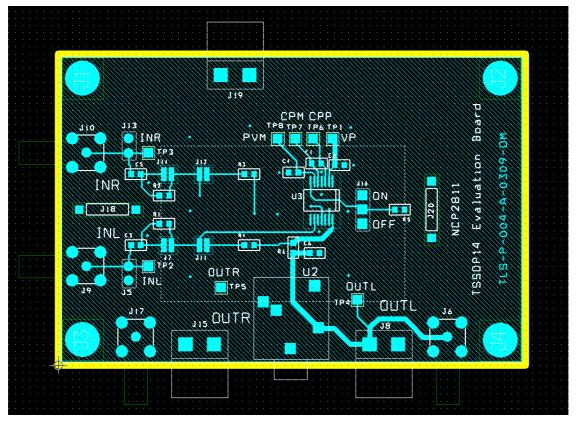


Figure 3. NCP2811ADTBRGEVB Board Layout (Top View)

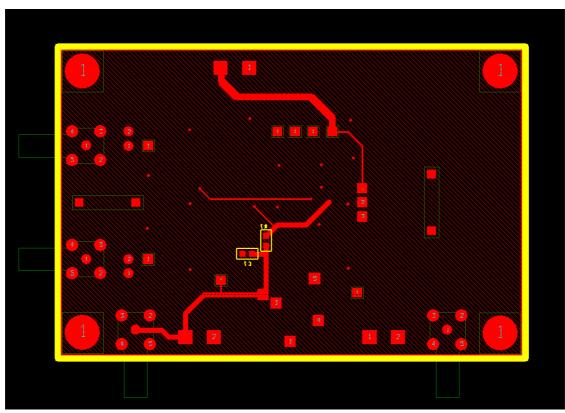


Figure 4. NCP2811ADTBRGEVB Board Layout (Bottom View)

Table 1. BILL OF MATERIALS

ltem	Part Description	Ref.	PCB Footprint	Manufacturer	Manufacturer Reference
1	NCP2811 Audio Amplifier			ON Semiconductor	NCP2811
2	SMD Resistor $10K\Omega$	R1, R2, R3, R4	0603	Panasonic	ERJ-3GEY103V
3	Ceramic Capacitor 1µF 6.3V X5R	C1, C2, C3, C4, C5	0603	Murata	GRM185R60J105KA01
4	Stereo Connector	U2		CUI Inc.	SJ1-3515N
5	Jumper Header Vertical Mount, 2 positions, 100mils	J16	100 mils	Tyco Electronics / AMP	5-826629-0
6	I/O Connector, 2 positions	J8, J19, J15	200 mils	Phoenix Contact	1757242
7	Jumper Connector	J18, J20	400 mils	Harwin	D3082-B01
8	Not Mounted	R5, J9, J10, J6, J17,C6, C7			
9	Shorted	R6, R7	0603		

NCP2811A OR NCP2811B CONFIGURATION

V.1 NCP2811A

Connect J11, J12. Put 10kohms on R1, R2, R3, R4. Disconnect J7, J14.

V.1 NCP2811B

Connect J7, J14. Disconnect J11, J12, R1, R2, R3, R4.

NCP2811 TEST PROCEDURE

Output Power:

- 1. Set Vp = 3.6 V to power supply connector (J19).
- 2. Set a 16 Ω load (resistance) on each of the output connectors (J8 and J15).
- 3. Close the J16 connector (ON position).
- 4. With the function generator, set a single ended signal at 1 kHz and 0.5 Vrms. Apply each end of this signal to the positive sides of the J5 and J13 connectors.
 - a. On the NCP2811A, as R1 = R2 = R3 = R4 = 10k, OUTL_C and OUTR_C will see 0.5 Vrms. Place an oscilloscope probe on each output. You should get 0.5 Vrms output signal with a sine wave with no clipping.
 - b. On the NCP2811B, the gain is internally set to -1.5 V/V, OUTL_C and OUTR_C will see 0.75 Vrms. Place an oscilloscope probe on each output. You should get 0.75 Vrms output signal with a sine wave with no clipping.

Quiescent Current:

Check the quiescent current. Place a 16 Ω load on each output (J8, J15); no input signal. Vp set to 3.6 V and J16 closed (ON position). You should measure around 6 mA for the input current.

ON Semiconductor and with a registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters such others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications in the follow create a situation where personal injury or death may occur. Should Buyer purchase or uses SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use personal and soluce programs the design or manufacture of the part. SCILLC is an Equal Opportunit//Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative