Wide Input Range (20 Vdc to 140 Vdc) DC to DC Converter

Device Specifications

<table>
<thead>
<tr>
<th>Device</th>
<th>Application</th>
<th>Input Voltage</th>
<th>Output Power</th>
<th>Topology</th>
<th>I/O Isolation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCP1031</td>
<td>Industrial</td>
<td>20 to 140 Vdc</td>
<td>2.5 W</td>
<td>Flyback</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Other Specifications

<table>
<thead>
<tr>
<th>Output Voltage</th>
<th>Output 1</th>
<th>Output 2</th>
<th>Output 3</th>
<th>Output 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Voltage</td>
<td>5.0 Vdc (1%)</td>
<td>12.0 Vdc (5%)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Ripple</td>
<td>100 mV</td>
<td>100 mV</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Nominal Current</td>
<td>180 mA</td>
<td>100 mA</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Max Current</td>
<td>180 mA</td>
<td>100 mA</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Min Current</td>
<td>50 mA</td>
<td>10 mA</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

- PFC (Yes/No): No
- Minimum Efficiency: 55%
- Operating Temp Range: -10 to +60 °C

Circuit Description

The 2.5 W dc to dc converter utilizes the NCP1031 monolithic controller (U1) in a discontinuous mode flyback converter. An optional EMI filter comprised of C1, C11, and L1 is also included. A simple, isolated voltage feedback scheme is implemented with zener Z1 and optocoupler U2 to control the feedback pin of U1 and regulate the 5 V output. The flyback transformer (T1) utilizes a “stacked” winding configuration for the 12 V output to improve its cross regulation. Input under- and over-voltage shutdown can be configured by selecting the correct values for R6, 7 and 8 (see NCP1031 data sheet on onsemi.com).

Key Features

- Very wide range input: 20 to 140 Vdc.
- Monolithic PWM controller with 200 V MOSFET
- Dual outputs with “stacked” windings
- Input EMI filter
- Extremely simple design with few components
- 200 kHz switching frequency
NOTES:

1. Crossed lines on schematic are not connected.
2. U2 is Vishay SFH6156A-4 optocoupler or similar.
3. R6, R7, and R8 set input OV and UV trip points. See NCP1031 data sheet to determine values.
4. Z1 sets 5V output voltage (Vout = Vz + 0.9V approximately.)
5. C1, C11, and L1 are for EMI compliance (optional).
6. C10 sets switching frequency to 200 kHz.
7. See magnetics design sheet for T1 details.
Part Description: 3 watt, 200 kHz dual output flyback transformer
Schematic ID: T1
Core Type: Ferroxcube EF16 (E16/8/5); 3C95 material or similar
Core Gap: Gap for 85 - 100 uH
Inductance: 90 uH nominal
Bobbin Type: 8 pin horizontal mount for EF16

Windings (in order):

<table>
<thead>
<tr>
<th>Winding # / type</th>
<th>Turns / Material / Gauge / Insulation Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vcc/Boost (2 - 3)</td>
<td>13 turns of #28HN spiral wound over 1 layer. Insulate with mylar tape for 250V min. insulation to next winding.</td>
</tr>
<tr>
<td>Primary (1 - 4)</td>
<td>24 turns of #28HN over 1 layer. Insulate for 1.5 kV to the next winding with mylar tape.</td>
</tr>
<tr>
<td>5V/12V Secondary (7 - 8, 5 - 6) (stacked winding)</td>
<td>6 turns of two different color strands of #28HN bifilar wound with two additional turns with one of the colors (8 total). This will be the 12V winding. The winding should be centered on the primary with 2 mm end margins approximately.) Terminate as shown in the schematic below with the 8 turn (12V) winding terminating to pins 5 & 6 and The 5V winding (6 turns) terminating to pins 7 & 8.</td>
</tr>
</tbody>
</table>

Hipot: 1.5 kV from Vcc boost & primary to secondary

Suggested prototype vendor: Mesa Power Systems
Escondido, CA
1-800-515-8514

© 2006 ON Semiconductor.

Disclaimer: ON Semiconductor is providing this design note “AS IS” and does not assume any liability arising from its use; nor does ON Semiconductor convey any license to its or any third party’s intellectual property rights. This document is provided only to assist customers in evaluation of the referenced circuit implementation and the recipient assumes all liability and risk associated with its use, including, but not limited to, compliance with all regulatory standards. ON Semiconductor may change any of its products at any time, without notice.

Design note created by Frank Cathell, e-mail: f.cathell@onsemi.com