ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

DN05095/D

Design Note – DN05095/D

Fixed Frequency Current Mode Controller for Flyback Converters

Device	Application	Input Voltage	Output Voltage	Output Current	Topology
NCP12400	Adapter	90 - 264 Vac	19 V	3.42 A	Flyback

Table 1. 65W Demo Board Specifications

Output current	3.42	А
Output voltage	19	V
Minimum input voltage	90	V
Maximum input voltage	264	V

Overview

This PWM driver uses a Flyback topology and design operates in both CCM and DCM for generating 19 V and 3.42 A output rating. In CCM operation, it provides good efficiency and lower ripple under higher loading condition. To reduce operation frequency for better light load efficiency from decreasing switching losses under DCM.

Key Features

- No-Load Power Consumption < 75 mW
- Average Efficiency > 88 %
- Frequency Modulation for Softened EMI Signature
- Frequency Foldback then Skip Mode for Maximum Performance in Light Load and Standby Condition
- 10 ms Soft-Start
- Fixed-Frequency Current-Mode Operation

Circuit Description

X2 Capacitor Discharge

This feature saves approximately 16 mW – 25 mW input power depending on the EMI filter X2 capacitors volume and it saves the external components count as well. The discharge feature is ensured via the start-up current source with a dedicated control circuitry for this function.

Current-Mode Control

Cycle by cycle, primary current sensing helps to prevent any significant over current conditions that would cause transformer core saturation and result in power supply failure

Frequency Foldback

This advantage lies in decreasing the switching frequency under light-load conditions. This feature is called frequency foldback and significantly helps to reduce switching losses

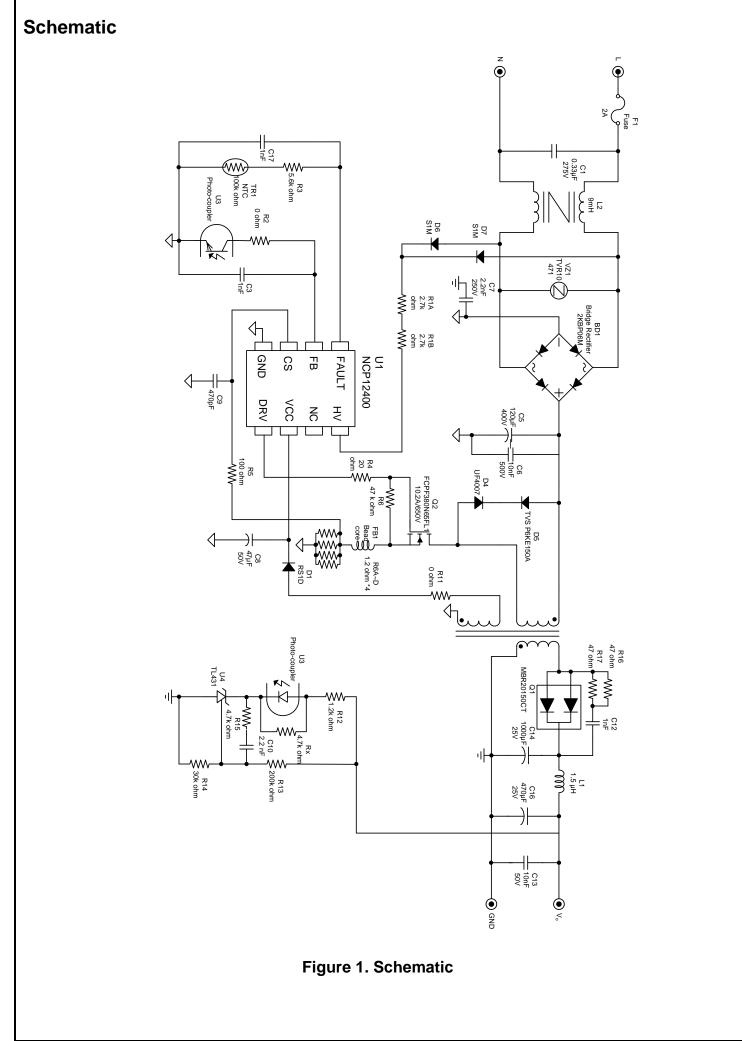
High Voltage Sensing

The device features on its HV pin a true ac line monitoring circuitry. It includes a minimum start-up threshold and an autorecovery brown-out protection; both of them independent of the ripple on the input voltage. It is allowed only to work with an unfiltered, rectified as input to ensure X2 capacitor discharge function as well.

Brown-Out Protection

This function protects the application when the main voltage is too low. When V_{HV} crosses the $V_{HV(start)}$ threshold, the controller can start immediately. When it crosses $V_{HV(stop)}$, it triggers a timer of duration t_{HV} , this ensures that the controller doesn't stop in case of line drop-out

Slope Compensation

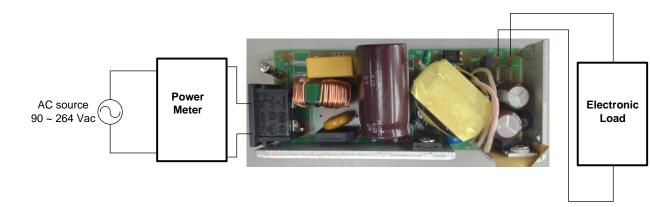

In order to avoid the sub-harmonic oscillations during the CCM operation with the duty ratio D higher than 50%, internal slope compensation is applied.

Overpower Compensation

The primary peak current value varies with the value of the input voltage. The reason is the propagation delay between the internal current slope on the input voltage. In order to eliminate this phenomenon, the peak voltage at HV pin is sensed and converted in to a current flowing out of the CS pin.

Fault Protection

The FAULT pin feature allows the additional external OVP and OTP protections. If the pin is between 0.8 V and 2.5 V, the output drive pulses are active. An external NTC can be used to pull in below 0.8 V for OTP and a Zener diode to the bias voltage can be used to detect output OVP condition and shut down the pulses. A decoupled capacitor can be used to filter an induced noise to node where the FAULT pin is connected

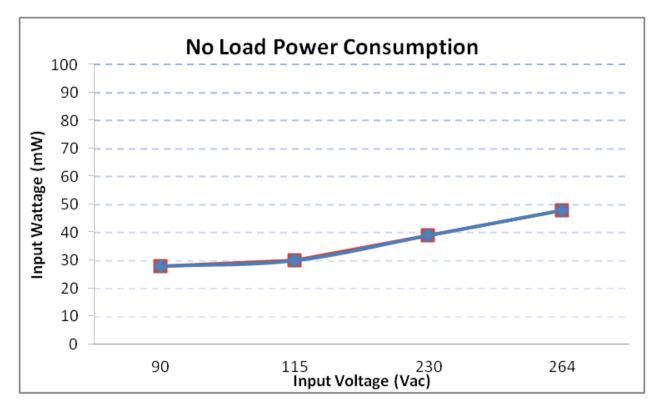


www.onsemi.com

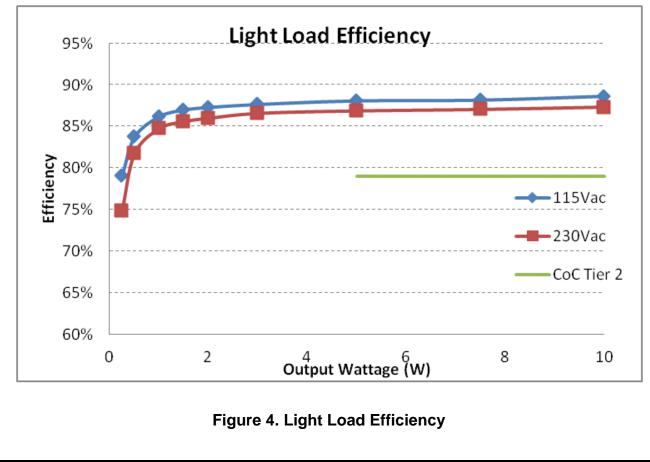
Test procedure

Required Equipment:

AC Power Source able to provide universal input voltage (e.g. EXTECH 6800 AC	
Source) Electronic Load able to measure up to maximum loading current (e.g. Chroma	1pc
63030)	1pc
Power Meter able to measure up input wattage (e.g. YOKOGAWA WT210)	1pc
Oscilloscope able to measure up waveform (e.g. LeCroy 24Xs-A)	1pc



Test Procedure:


- 1. Connect the test setup as shown at Figure 2.
- 2. Apply an input voltage, $V_{IN} = 90 \sim 264$ Vac
- 3. Apply Iout(load) = 0 ~ 3.42 A
- 4. Check the value or waveform on equipment
- 5. Turn off V_{IN}
- 6. End of the test

Performance Results

Following figures demonstrate the operation of the evaluation board under different operating conditions.

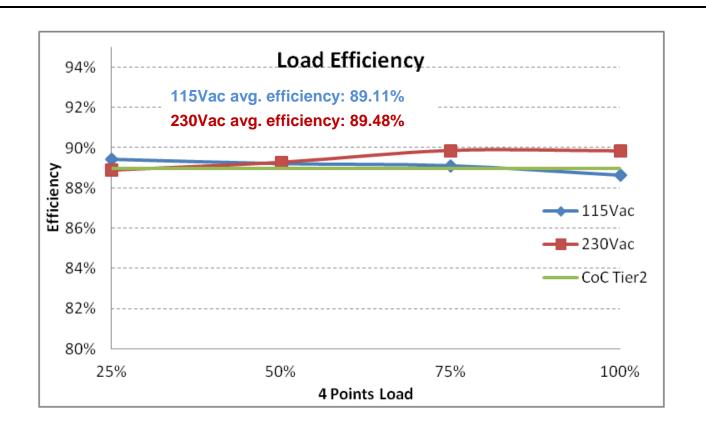


Figure 5. Load Efficiency vs. CoC Tier2

ES	D	Surge		
Air	±16.5 kV	L-PE	±4.4 kV	
Contact	±8.8 kV	N-PE	±4.4 kV	
		L-N	±2 kV	

Note1: ESD testing by 230 Vac and max. loading.

Note2: Surge testing by 230 Vac and max. loading.

Figure 6. ESD and Surge Testing

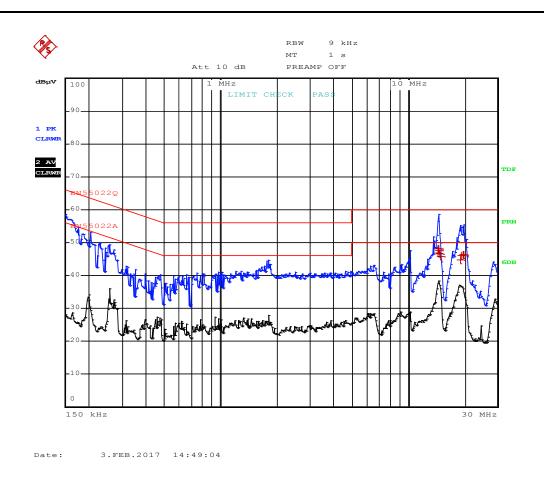


Figure 7. Conducted Emissions Pre-compliance at full load (115 V / 3.42 A)

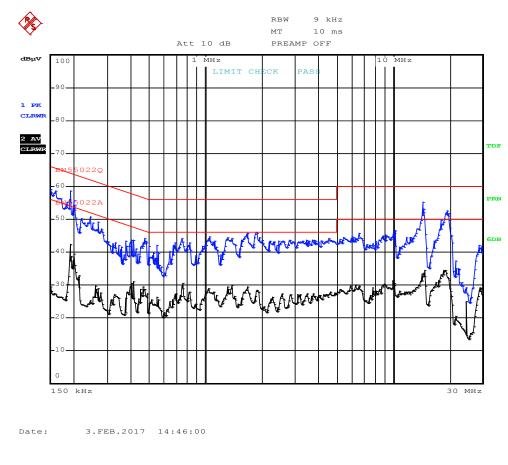


Figure 8. Conducted Emissions Pre-compliance at full load (230 V / 3.42 A)

Results Summary

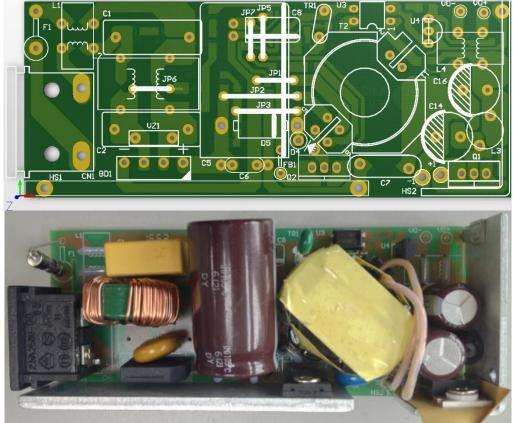


Figure 8. Designed Prototype from the Top side

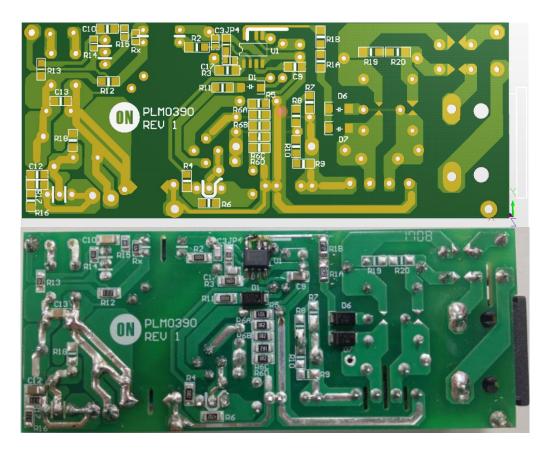


Figure 9. Designed Prototype from the Bottom side

www.onsemi.com



Figure 10. Component Placement on the Top Side (top view)

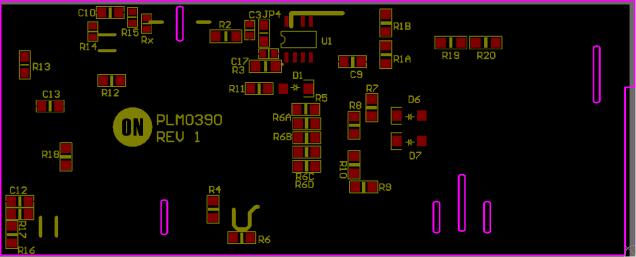


Figure 11. Component Placement on the Bottom Side (bottom view)

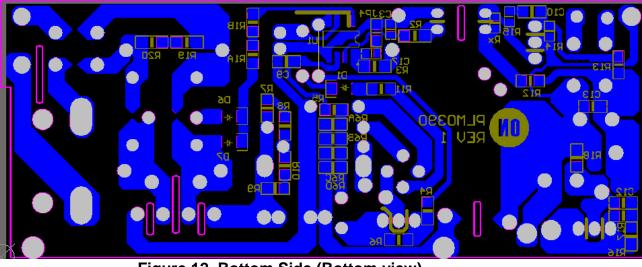


Figure 12. Bottom Side (Bottom view)

Designator	Qty	Description	Value	Toler- ance	Footprint	Manufacturer	Manufacturer Part Number
L1, L4,							
JP1, JP2,							
JP5, JP6,		Jumper			Through		
JP7	9	wire	0.8 ψ	-	Hole	Taiwan-Resister	
		Resistor					
JP4	1	SMD	0 Ω	5%	R0805	Taiwan-Resister	
		Resistor					
R15	1	SMD	6.8 kΩ	1%	R0805	Taiwan-Resister	
_		Resistor			D 0007		
Rx	1	SMD	4.7 kΩ	5%	R0805	Taiwan-Resister	
D44		Resistor	2010	50/	Dooor	Taiwan Daaistaa	
R14	1	SMD	30 kΩ	5%	R0805	Taiwan-Resister	
R13	1	Resistor SMD	200 kΩ	5%	R0805	Taiwan-Resister	
IN IO		Resistor	200 K12	570	60007	i aiwaii-rteSiSter	
R2, R11	2	SMD	0 Ω	5%	R1206	Taiwan-Resister	
112,111	<u> </u>	Resistor	0.32	570	11200	1 010001-176313161	
	л	SMD	1.2 Ω	5%	R1206	Taiwan-Resister	
R6A~D	4		1.2 Ω	5%	R1206	Talwan-Resister	
R4	1	Resistor SMD	20 Ω	5%	R1206	Taiwan-Resister	
114		Resistor	20.12	570	11200	1 aiwa11-1/2515181	
R16, R17	2	SMD	47 Ω	5%	R1206	Taiwan-Resister	
1110, 111	2	Resistor	-77 32	070	11200		
R5	1	SMD	100 Ω	5%	R1206	Taiwan-Resister	
110		Resistor	100 32	070	111200		
R12	1	SMD	1.2 kΩ	5%	R1206	Taiwan-Resister	
		Resistor		0,0			
R3	1	SMD	5.6 kΩ	1%	R1206	Taiwan-Resister	
110		Resistor	0.0 K12	170	11200		
R6	1	SMD	47 kΩ	5%	R1206	Taiwan-Resister	
		Resistor	11 1(22	0 / 0	111200		
R1A, R1B	2	SMD	2.7 kΩ	5%	R1206	Taiwan-Resister	
,					Through		
TR1	1	Thermistor	5 ψ 100 kΩ	-	Hole	SHING CHIN	TTC104
		Ceramic	·				
C6	1	Capacitor	103 pF 500 V	20%	Radial	Taiwan-Resister	
		Capacitor					
C3, C17	2	ŚMD	1 nF / 50 V	10%	C0805	Taiwan-Resister	
		Capacitor					
C12	1	ŚMD	1 nF / 100 V	10%	C1206	Taiwan-Resister	
		Capacitor					
C13	1	SMD	10 nF / 50 V	10%	C1206	Taiwan-Resister	
		Capacitor					
C9	1	SMD	470 pF / 50 V	10%	C1206	Taiwan-Resister	
040		Capacitor	0.0	4.007	04000	Taiwa Da i i	
C10	1	SMD Flastralitie	2.2 nF / 50 V	10%	C1206	Taiwan-Resister	
\sim	4	Electrolytic		100/	Dadial	lookoon	
C8	1	Capacitor	47 μF / 50 V	10%	Radial	Jackcon	LHK
C5	1	Electrolytic Capacitor	120 µF / 400 V	10%	Radial	Chemi-com	KMG
00		Electrolytic	120 µF / 400 V	10 /0	itaulai		NIVIO
C16	1	Capacitor	470 µF / 25 V	10%	Radial	NCC	KMG
010		Electrolytic		1070			TWO
C14	1	Capacitor	1000 µF / 25 V	10%	Radial	NCC	KMG
<u> </u>		X2	1000 μι / 20 V	1070			TWO -
C1	1	Capacitor	0.33 µF / 275 V	10%	Radial	KENJET	
		Y2	· · · · · · · · · · · · · · · · · · ·				
C7	1	Capacitor	2.2 nF / 250 V	20%	Radial	KENJET	

					Through		
L3	1	Inductor	1.6 µH	20%	Hole	SUMIDA	00777-T053-1R6
					Through		
L2	1	Choke	9 mH		Hole	SUMIDA	I-114
			C8B		Through		
FB1	1	Bead Core	3.5*3.2*1.0+T	-	Hole	BAI HUEI	
D 4 07		5 10	C8B				
D4, C7	2	Bead Core	3.5*3.2*1.0	-	-	BAI HUEI	
		Transform					
T2	1	er	RM10 510 µH	10%	RM-10	SUMIDA	
D1	1	Diode	RS1D	-	DO-41	Fairchild	
D4	1	Fast Diode	UF4007	-	DO-41	Fairchild	
		General					
D6, D7	2	Diode	S1M	-	SMA	Fairchild	
D5	1	TVS	P6KE150A	-	DO-15	Fairchild	
		Bridge					
BD1	1	Rectifier	2KBP06M	-		Fairchild	
		Schottky					
Q1	1	Diode	MBR20150CT	-	TO-220	Fairchild	
U4	1	Regulator	KA-431	1%	TO-92	Fairchild	
			FCPF380N65F				
Q2	1	MOSFET	L1	-	TO-220	Fairchild	
		Opto-					
U3	1	coupler	FOD817A	-	DIP-4	Fairchild	
		•			Through		
F1	1	Fuse	4 A / 250 V	-	Hole	SLEETECH	
					Through		
CN1	1	Inlet	2P 90°	-	Hole	RICH BAY	R-201SN90(B06)
						ON	
U1	1	IC	NCP12400	-	SOIC-8	Semiconductor	
					Through		
VZ1	1	MOV	TVR10 471	-	Hole	SHING CHIN	
						Long Teng Feng	
HS1	1	Heat Sink				Industrial	HS MCH0534
						Long Teng Feng	
HS2	1	Heat Sink				Industrial	HS MCH0555

© 2017 ON Semiconductor.

Disclaimer: ON Semiconductor is providing this design note "AS IS" and does not assume any liability arising from its use; nor does ON Semiconductor convey any license to its or any third party's intellectual property rights. This document is provided only to assist customers in evaluation of the referenced circuit implementation and the recipient assumes all liability and risk associated with its use, including, but not limited to, compliance with all regulatory standards. ON Semiconductor may change any of its products at any time, without notice.

Design note created by Eddie Chueh, e-mail: eddie.chueh@onsemi.com