## 100V, 450mA Off-Line LED Driver with High PF

ON Semiconductor

| Device | Application | Input Voltage | Output Power | Topology | I/O Isolation |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NCL30001 <br> NCS1002 | High PF CVCC LED <br> Driver with Dimming | $85-\mathbf{2 6 6}$ Vac | 35 to 60 Watts | Single Stage <br> PFC/Flyback | Yes $-\mathbf{3 k V}$ |


|  | Output 1 |
| :---: | :---: |
| Output Voltage | 100 Vdc max |
| Ripple | 100 mA max |
| Nominal Current | 450 mA (adjustable) |
| Max Current | 600 mA |
| Min Current | 350 mA |
| PFC (Yes/No) | Yes |
| Typical Efficiency | $86 \%$ |
| Inrush Limiting / Fuse | Yes |
| Operating Temp. Range | 0 to $+40^{\circ} \mathrm{C}$ |
| Cooling Method I | Convection |
| Supply Orientation | NA |
| Signal Level Control | Yes - Dimming functions |

Others $\quad$ PWM dimming to 3\% with external digital input signal

## Circuit Description

This Design Note (DN) is an extension to ON Semiconductor's Application Note AND8470/D and features a 100 volt max, 0.45 amp version of the off-line, NCL30001 based constant voltage, constant current (CVCC) LED driver with inherent PFC described in that app note. The original app note features a 50 volt max, constant current, 1 to 2 amp (current settable) LED driver with multiple dimming capabilities and active power factor correction in a single continuous conduction mode (CCM) flyback converter stage. This DN presents a similar version that is suitable for driving series LED strings up to 100 volts at a max current of up to about 600 millamps. This design is suitable for LED strip lighting and fluorescent lamp replacements. The maximum voltage and output current can be adjusted via resistors R34 and R32 respectively. The detailed circuit operational description can be found in the original mentioned app note (AND8470/D) and
is essentially identical circuit-wise with the exception of the component changes that are indicated in the BOM. The flyback transformer design for this DN was merely ratioed from the secondary winding on the original design to meet the new maximum voltage and current requirements. The primary winding, required inductance, and overall construction are essentially the same.

## Key Features

- Single stage, isolated PFC converter for strip lighting and fluorescent tube replacements.
- Constant voltage, constant current output characteristic for LED drive
- Dimming features including pulse width dimming to 3\%
- Over current, over voltage and over temperature capabilities
- Typical efficiencies above 86\%


## DN05016/D <br> Primary Side Schematic



Notes:

1. Crossed schematic lines are not connected.
2. Heavy lines indicate power traces/planes.
3. Z2/D9 is for optional OVP (not used).
4. L1A/B are Coilcraft RFB1010-471AL or equivalent ( 470 uH ).
5. L2 is Coilcraft E3491AL or equivalent ( 3.9 mH ).
6. Q1 will require a small heatsink.
7. Q3 is omitted.

## NCL30001 CVCC, 100V, 50 Watt Power Supply Primary Control Side Schematic (Rev 3)

© 2011 ON Semiconductor.
Disclaimer: ON Semiconductor is providing this design note "AS IS" and does not assume any liability arising from its use; nor does ON Semiconductor convey any license to its or any third party's intellectual property rights. This document is provided only to assist customers in evaluation of the referenced circuit implementation and the recipient assumes all liability and risk associated with its use, including, but not limited to, compliance with all regulatory standards. ON Semiconductor may change any of its products at any time, without notice.

## DN05016/D

## Secondary Side Schematic



100V/0.45A LED Driver CVCC Secondary Sensing with PWM Dimming Input (Rev 3)

Maximum Output voltage adjust resistor: R34
Output current adjust resistor: R32
See ON Semiconductor AND8470/D for original NCL30001 CVCC driver app note details.

## DN05016/D

## MAGNETICS DESIGN DATA SHEET

Project: NCL30001, 40 W, 100 Vout, isolated, single stage CVCC PFC LED driver
Part Description: CCM Flyback transformer, 50-70 kHz, 100 Vout, 450 mA
Schematic ID: T1
Core Type: PQ3230, 3C94 (Ferroxcube) or P material (Mag Inc.)
Core Gap: Gap core for 900 to $1,100 \mathrm{uH}$ across pins 1 to 2 .
Inductance: 1000 uH nominal measured across primary (pins 1 to 2 )
Bobbin Type: 12 pin pc mount (Mag Inc PC-B3230-12 or equivalent)

Windings (in order):

> Winding \# / type

Primary A: (1-3)

100V Secondary (8-11)

Primary B: (3-2)
Vcc/Aux (5-6)

## Turns / Material / Gauge / Insulation Data

28 turns of \#24HN over one layer (no margins). Self-leads to pins. Insulate for 3 kV to next winding.

50 turns of $\# 30 \mathrm{HN}$ close wound over one layer and centered with 1.5 mm end margins. Insulate with tape for 3 kV to next winding.

Same as primary A. Insulate for 1.5 kV to $\mathrm{Vcc} / \mathrm{Aux}$.
13 turns of \#24HN spiral wound and centered with 8 mm end margins. Insulate with tape and terminate self-leads to pins.

Safety margins not necessary as long as specified Hipot below can be met.

Hipot: 3 kV from primary/Vcc to 100 V secondary winding.


