ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

AND9018/D

TDR Application Note

Prepared by: Dave Lee ON Semiconductor

ON Semiconductor®

http://onsemi.com

APPLICATION NOTE

Assume a transmission line has a uniform impedance of $Z_0 = 50 \ \Omega$. A source signal is transmitted from Port A through the transmission line to Port B. When the signal reaches Port B, the signal may or may not get reflected back through the transmission line to Port A governed by the reflection coefficient, ρ :

$$\rho = \frac{Z_B - Z_0}{Z_B + Z_0}$$

where Z_B is the impedance at Port B.

If Z_B is the same as Z_0 , i.e. matched impedance, the reflection coefficient is 0 and there is no reflection. In general, matched impedance is the best case for signal transfer. For any mismatch in the signal path, part of the signal will be reflected back to Port A and will cause lost of signal power and quality. For example, a connector interfacing between a coaxial cable and a PCB may not be perfectly matched. The mismatch will cause some reflection back to the source and degrade the signal quality.

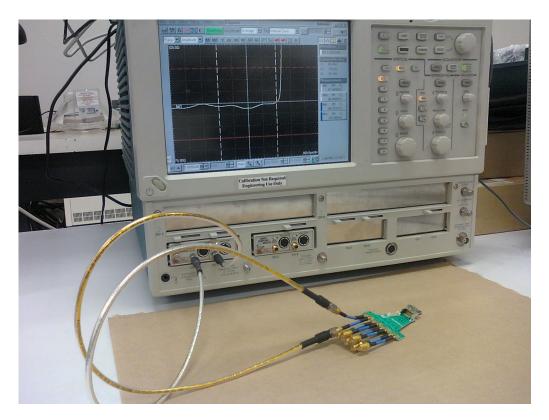
What is TDR?

A Time–Domain Reflectometer (TDR) is an electronic instrument for measuring the impedance of a signal carrying medium. TDR can show the impedance of the whole signal path. Any mismatch in the signal path can be observed on the TDR. Designers can use the information to improve the impedance matching and therefore signal quality of their products. Figure 2 is an example of a TDR measurement system.

Introduction

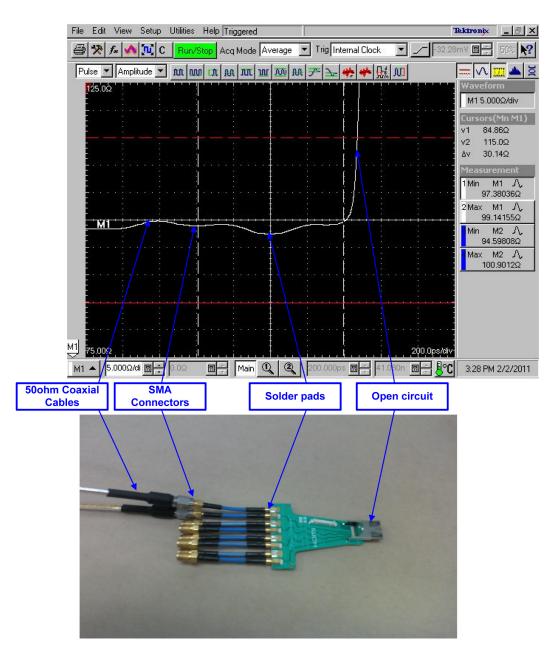
High speed signals require high quality signal paths to maintain signal quality and prevent loss of signal power. Time Domain Reflection (TDR) is a technique for measuring the quality of a signal path. This application note will explain the basics of transmission lines and how TDR can be used to assess the quality of the transmission line and locate where the transmission line deviates from ideal behavior.

Transmission Lines in High Speed Interfaces


In today's high speed data world, much of the information exchange, from one location to another or from one device to another, relies on high speed interface standards and cables. Their speeds vary from a few Kb/s to more than 5 Gb/s. Examples of high speed interfaces include USB2.0, USB3.0, HDMI, Ethernet, eSATA, MIPI and so on. In order to maintain the quality of the signals transmitted and minimize power loss, cables with transmission line characteristics must be employed. One of the characteristics of transmission line is uniform impedance throughout the signal carrying medium. This uniform impedance minimizes or even eliminates the reflections as the signals travel down the medium and maintains the quality of the signals. For most high speed interface standards, the target impedance, Z_0 , is 50 Ω to ground and 100 Ω differential between a signal pair. USB is the exception with 45 Ω to ground and 90 Ω differential.

A transmission line can be modeled as a two-port network.

AND9018/D



TDR works by sending a short rise time pulse down the medium and record the reflected signal from the medium. As the signal travels down the medium, reflections from different locations on the medium are displayed along the X-axis of the screen. The Y-axis displays the impedance of the medium at that location.

Most of the standards, like USB and HDMI, specify the TDR measurements of the impedance across a differential pair of the signal instead of just a single signal trace to ground.

Below is an example of how position of the medium corresponds to time axis on the screen display.

AND9018/D

What Factors Impact TDR Measurement?

TDR measures the impedance of the signal path. Any components that affect the impedance would have an impact on the TDR measurement. Discontinuities or added components hanging on the signal path can change the capacitance or inductance and hence the impedance of the path. Discontinuities, like connectors, on signal paths are common examples that could change the impedance of the signal paths. Other examples are ESD protection, surge protection components and noise filters sitting on the signal paths. Most of these components have some inherent capacitance. Few are inductive. Any increase in capacitance along the signal path would cause the line impedance to go down. Looking at the example above, at the location where the solder pads connecting to the PCB, there is some inherent capacitance due to the solder and the pad. It might not be much but it does cause the impedance at that point to go down to about 98 Ω . Any increase in inductance would make the line impedance to go up. A short in the signal path would cause the impedance to go to zero. An open would make the impedance line to go up and off the chart. This is shown in the example above. At the right side where the HDMI connector is open, the corresponding impedance goes off the chart.

Best Impedance Matching Products for High Speed Interfaces

It is vital for high speed interfaces to maintain impedance matching throughout the signal paths. Any traditional ESD, surge or filter components added to the signal paths must have minimum capacitance so the signal quality can be maintained at the highest level. ON Semiconductor manufactures a wide line of low capacitance ESD protection devices for high speed interfaces. Below is a partial list of the products.

ESDR0524, NUP4114, MG2040, ESD7004

Below is an example of the TDR measurement of the ESD7004. The waveform shows that ESD7004 has minimum impact on the TDR and the impedance stays around the target 50 Ω line.

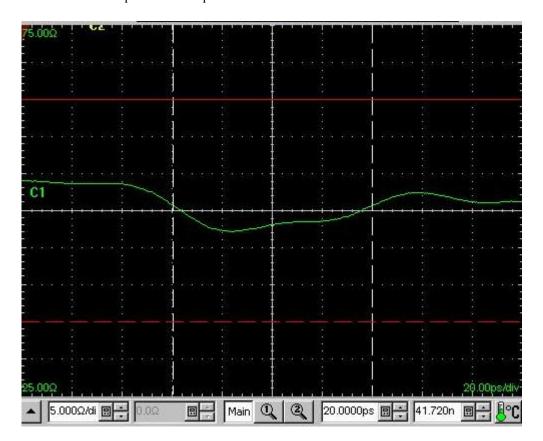


Figure 4.

ON Semiconductor and IIII) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death associated with such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized to all applications the and in such content engine or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

Sales Representative

For additional information, please contact your local

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

AND9018/D