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Loop stability analysis usually starts from an open-loop
Bode plot of the plant under study, e.g. the power stage of a
buck or a flyback converter. From this diagram, the designer
can extract phase and gain data within the frequency range
of interest. His job then consists in identifying a
compensator structure which will lead to the selected
crossover frequency affected by the right phase margin. The
final step requires the study of the total loop gain, the power
plant followed by the compensator, showing that the
poles/zeros placed on the compensator ensure stability once
the loop is closed. If this operation is rather straightforward

with single loops, the operation becomes more complicated
with converters implementing weighted feedback. This
paper capitalizes on the Ref. [1] work and explores different
ways to apply the technique to power converters featuring
multiple feedback paths.

The TL431, a Multiple Loop System
The TL431 alone, can be modeled as a multiple loop

feedback system. Figure 1 shows a TL431 classically wired
in a type-2 configuration, as described in Ref. [2]. From this
schematic, one can identify so-called slow and fast lanes.

Figure 1. A TL431 Wired in a Classical Configuration, Observing the dc Voltage of a Converter
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The TL431 can be seen as a programmable zener also
called a shunt regulator. When the output voltage changes,
e.g. because of a load variation, the information is conveyed
to the inverting input of the TL431 via R2/R3 and asks the
programmable zener to pump more or less current into the
optocoupler LED. It does so by adjusting its cathode
voltage. By this way, the feedback signal observed on the
primary side also changes and instructs the controller to alter
its operating point. If the output voltage variations are too
fast, the frequency sensed by R2 exceeds the pole position
introduced by C1 and the ac contribution of this path to the
feedback signal becomes null: the TL431 no longer changes
its operating point and the LED cathode is now fixed.
However, as the LED cathode is fixed, the anode still senses
an output voltage variation via Rled. This current variation
propagates via the optocoupler and affects the feedback

voltage. Therefore, even if you increase C1, it has no effect
in rolling off the loop gain since Rled always senses the
output voltage. The transfer function of such a system can be
written in the following form [2]:

VFB(s)
Vout(s)

� G1(s)�1 � 1
sR2C1

� (eq. 1)

where G1(s) represents the mid-band gain brought by the
optocoupler CTR, the LED and the pull-up resistors
associated to the capacitor C2. From this expression, we can
actually see the presence of two loops by developing
Equation�1:

VFB(s)
Vout(s)

� G1(s) �
G1(s)
sR2C1

(eq. 2)

http://onsemi.com
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The loop gain of such a system could be measured by
breaking the loop at the feedback point. Unfortunately,
depending on the converter configuration, this solution can
sometimes be difficult to implement. The best is then to
measure the loop gain from the secondary side. In this
particular example, both the fast and slow lanes share a
similar entry point. The total loop gain could therefore be
measured as suggested by Figure 2:

Figure 2. When Both Slow and Fast Lanes are
Connected Together, the Measurement is Easy to Run
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A stimulus source is inserted in series with the output
voltage and both slow and fast lanes are ac swept. The
voltage observed on the feedback pin is therefore
proportional to both inputs and is representative of what
Equations�1 and 2 predict.

In Figure 3, we can see the presence of a LC filter, added
to remove unwanted high frequency spikes, typical of a
flyback converter.

Figure 3. The Presence of the LC Filter
Splits Both Lanes
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In this schematic, it is not possible to sweep both inputs
together as they are separated by the LC filter. Fortunately,
we can apply the superposition theorem as we are dealing
with a linear system. At first, we will sweep the slow lane
while keeping the fast lane to a bias level, totally
disconnected from the output voltage. A dc voltage supplied
by an external source will do. This is what Figure 4 shows.
The precision of the 5 V source is not relevant here as it only
serves bias purposes. The ac source actually represents an
injection transformer, classically used in loop stability
studies. The A and B probes go to a network analyzer which
will compute

20 log10�BA��,
displaying a loop gain equal to

G1(s)
sR2C1

Figure 4. The Fast Lane is ac Disconnected from the
Circuit and Only the Slow Lane Receives a Stimulus
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Then, once the plot is saved, the configuration needs to be
changed to the other input, as suggested by Figure 5. In this
circuit, the upper R2 terminal is connected to a dc voltage
whose value must equal the regulated voltage whereas the
fast lane input is now ac swept:
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Figure 5. The Fast Lane is Now ac Swept as the
Slow Lane is Simply dc Biased
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The dc adjustment might be a little difficult given the
open-loop gain brought by the TL431 and the sensitivity on
the external bias. The network analyzer still computes
20log10(B/A) for the fast lane but this time, it plots a loop
gain equal to G1(s).

Combining Signals Together
Once we have both slow and fast lanes loop plots on the

screen, how can we combine them? Can we just sum up the
gain and phase diagrams, respectively expressed in dB and
degrees? Certainly not, it would correspond to cascaded gain
blocks and not paralleled paths. We need to vector sum both
output signals and reconstruct the final signal which
expresses the combination of both loops. Using Euler
notation, we can express the slow lane signal by a rotating
vector affected by a module A1 and a phase ϕ1:

Vout,slow � A1(cos�1 � j sin�1) (eq. 3)

Using a similar notation, we can write the fast lane
expression:

Vout,fast � A2(cos�2 � j sin�2) (eq. 4)

To reconstruct and plot the final gain curve combining
both signals − the signal observed on the feedback pin  once
all loops are closed − we need to separate the real and
imaginary portions of the two lanes and sum them together:

Re(VFB) � A1 cos�1 � A2 cos�2 � X (eq. 5)

Im(VFB) � A1 sin�1 � A2 sin�2 � Y (eq. 6)

The rotating vector obtained at the end will be of the
following form:

VFB � X � j�Y (eq. 7)

Where we can now extract a module and an argument:

� VFB �� Y2 � X2� (eq. 8)

arg VFB � tan�1�Y
X
� (eq. 9)

Plotting 20log10 of Equation 8 and the phase returned by
Equation�9 should give the Bode plot we are looking for.

SPICE Application
Before rushing to the laboratory to apply this technique,

let's give it a try with a SPICE simulation and check that our
equations give the correct answers. Figure 6 depicts the
TL431 circuit ready to be ac swept, both inputs being
connected together. The sweep technique uses an old trick
with L1 and C3 which open the loop in ac but keep it closed
in dc. The closed path in dc helps to automatically adjust the
voltage on the upper terminal of R2 to obtain a 2.5 V on the
feedback output, right in the middle of the available
dynamic. This ensures a circuit properly biased without the
need to tweak anything else. The bias points appearing in
Figure�6 confirms the right values. Once the ac sweep is run
the Bode diagram appears in Figure 7 and confirms the
presence of an origin pole, a low frequency zero, a high
frequency pole and a mid-band gain in between. The phase
boost peaks to 134° at a frequency of 380 Hz where the gain
reaches 23�dB. Now, let us separate the two lanes by
applying the technique we described earlier. The exploration
of the fast lane requires a simple dc bias on the divider
network, again provided by the operational amplifier.
Figure�8 portrays the circuit we have implemented. The
modulation signal enters the fast lane through the ac source
Vsweep whereas L1 and C4 prevent any injection in the slow
lane: both loops are fully decoupled from each others. For
the slow lane sweep, Figure 9 shows the adopted sketch: the
upper LED resistor is simply hooked to a dc source and the
ac stimulus now sweeps the slow lane through the LC
network. Again, there is no ac link between both inputs.
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Figure 6. The Type 2 Compensator Based on a TL431 and
Adapted for a SPICE Simulation
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Figure 8. The Fast Lane Sweep Requires a Clear Separation between Both Lanes
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Figure 9. In the Slow Lane Sweep, the Fast Lane Input Goes to a Fixed dc Bias
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SPICE offers the possibility to extract the imaginary and
real parts from an ac simulation. This is what Figure�10
shows where the real curves of both the fast and slow sweeps
have been gathered in the upper portion. The lower section

of the figure contains the imaginary portions of both lanes.
The graphical viewer can easily manipulate waveforms and
the sum of both imaginary and real curves already appears
on the picture.
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Figure 10. This Plot Gathers the Real and Imaginary Portions of the Feedback
Signal Collected when the Fast and Slow Lanes are Separately ac Swept

Once we reached that point, we can apply Equations�8
and�9 via the graphical viewer internal script. The resulting
waveforms are displayed on Figures 11 and 12 then

compared to Figure 7. They are identical gain wise
(Figure�11), despite different signs on the phase in Figure�12
(the tan-1 function is modulo 180°).
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Combining Data with a Network Analyzer, a Real Case Example
To check the validity of our assumptions, we have built a

65�W power supply based on a classical UC3843 controller.
The internal op-amp is disabled via a pull-up resistor

connected to the reference voltage. Figure 13 shows the
adopted schematic:
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Figure 13.  The Schematic of the 19 V/3 A Adapter Features a UC3843 with a TL431 on the Secondary Side
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The output voltage is regulated by a TL431 wired in a
type�2 configuration. The fast lane (optocoupler lane) and
the slow lane (TL431 resistor divider) are separated by an
LC filter which is placed to further attenuate the various
high-frequency output spikes inherent to the flyback stages.
In order to measure the loop response of our adapter with a
network analyzer, we are going to use the method described

in the first part of this document. The main advantage of this
method lies in the measurement operations confined on the
isolated secondary side only.

We will first start by sweeping the slow lane, while the fast
lane is biased to 19 V (output voltage value) with a dc
voltage source (Figure 14):

Figure 14. The Slow Lane is Individually Biased while the Second Loop is ac Swept
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The injection voltage source is implemented with a
wideband isolation device and a 33 � resistor. Voltage
probes are used to measure the loop input and output signals
with respect to ground. The network analyzer directly
computes

20log10�Ch�B
Ch�A

�
We obtained the Bode plots shown in Figure 15.
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Figure 15. Slow Lane Loop Response Obtained with the Network Analyzer
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The slow lane loop gain starts with a -1 slope because of
the origin pole formed by (Rupper = R12+R10, Czero = C6).
The power stage pole fp is around 20 Hz and corresponds to:

fp � 1
�RloadCout

where Rload is the output load resistor and Cout is the sum of
C5a and C5b (Figure 13). After fp, the power stage gain
decreases with a -2 slope until it reaches the 8 kHz pole
formed by (Rpullup, Cpole) of our type 2 compensator:

fpc �
1

2�RpullupCpole

Now that we have the slow lane loop plot, we can paste the
network analyzer data into excel. We have a 3-column data
table with the frequency (Hz), magnitude (dB) and phase
(degrees). Using Euler notation, we will calculate the real
and the imaginary part of the slow lane vector:

Vout,slow � A1(cos�1 � j sin�1) � x1 � j�y1
(eq. 10)

Excel will compute the following formulas:

x1 � 10A1	20 cos��1
�

180
� (eq. 11)

and

y1 � 10A1	20 sin��1
�

180
� (eq. 12)

The Excel syntax corresponding to these equations are:

x1 � POWER(10; A1	20) 
 COS(�1 
 PI()	180) (eq. 13)

x2 � POWER(10; A1	20) 
 SIN(�1 
 PI()	180) (eq. 14)

Further to slow lane measurement, we have to run the
same operation for the fast lane loop. We inject the ac signal
in the fast lane while the slow lane is disconnected from the
output voltage and biased with a dc voltage source. This dc
voltage must be manually adjusted to fix the operating point
corresponding to the output load used. As the TL431 is very
sensitive to small voltage variations, we can use a resistor
between the dc source and the resistor divider to adjust the
output voltage (See Figure 16).
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Figure 16. For the fast lane sweep, the slow lane is ac-decoupled from the converter output.
Care must be taken to avoid output runaway during this measurement!
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Figure 17 details the fast lane loop response. The power
stage pole fp  is around 20 Hz and corresponds to:

fp � 1
�RloadCout

After fp, the power stage gain decreases with a -1 slope
until it reaches the 8 kHz pole formed by (Rpullup, Cpole) of
our type 2 compensator:

fpc �
1

2�RpullupCpole

On Figure 13 schematic, Cpole corresponds to C11 and the
Rpullup resistor is R7.

Figure 17. Fast Lane Loop Response Obtained with the Network Analyzer.
The Slow Lane is Externally Biased with a dc Power Supply
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Once the network analyzer data has been exported to
Excel, we compute the real and the imaginary parts of the
fast lane loop vector:

x2 � 10A2	20 cos��2
�

180
� (eq. 15)

y2 � 10A2	20 sin��2
�

180
� (eq. 16)

Then we can sum the real and the imaginary contributions
to obtain the total loop vector:

VFB � (x1 � x2) � j�(y1 � y2) � X � j�Y (eq. 17)

Finally, we extract the final loop gain and phase by
entering Equations 8 and 9 in Excel:

Loopgain � 20 * LOG(SQRT(X � 2 � Y � 2); 10) (eq. 18)

Loopphase � DEGREES(ATAN(Y	X)) (eq. 19)

Figure 18 shows the reconstructed loop gain and phase plots.
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Figure 18. The Final Bode Plot Combines the Information
Obtained from Individual Loop Measurements

Because the arctangent function is defined on a ]-90°;
+90°[ interval, some parts of the resulting curve could
exhibit a negative phase rotation caused by the calculation.
We have corrected these particular points by adding 180° to
their phase calculation result. The reconstructed Bode plot
shows a clean response and does not differ from classical
loop analysis carried on a current-mode converter.

Weighted Feedback on a Forward Converter
Let's now apply a similar methodology to a multi-output

power supply: in such an application, two different voltage
outputs are regulated using a common TL431, using a
weighted sum configuration (see Figure 19). The resistors
connecting each output to the TL431 reference pin are
calculated taking into account a relative weight of each
output in the feedback.
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Figure 19. The TL431 Wired in a Two-output Weighted Feedback Configuration
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This technique offers a way to improve cross-regulation
in a multi-output converter by affecting a weight to certain
outputs whose precision or load constraints are more
important than the others. Of course, the sum of all weight
must equal 100% at the end. In the ATX world, weighted
feedback is often encountered in the so-called Silver boxes

and Figure 20 represents a simplified two-output version of
such a converter. In this 2-switch forward converter, the two
outputs (5 V and 12 V) are also coupled via their respective
output inductors. Each output contributes to 50% in the
control loop, which uses a TL431 featuring a type 2
compensation.

Figure 20. Schematic of the Two-switch Forward Power
Supply featuring a Weighted Feedback with TL431
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There are 2 loops we need to measure: one is a
combination of the fast and slow lanes observing the +12 V
output. The other one is the +5 V loop entering the TL431
via the slow lane.

We have mentioned before that measuring the loop at the
feedback input of the controller is not practical. As
demonstrated in Ref. [3], in order to correctly measure the
gain and phase of the feedback loop, the ac stimulus must be
injected between a low impedance node (on the power
supply output side) and a high impedance node (on the
control side). When the injection is done as described
previously, i.e. between the output of the power supply and
the feedback circuitry, the condition is optimal: the output
impedance of the observed point is low, and the input
impedance of the feedback path is high. But if we want to
open the loop between the optocoupler and the feedback pin
of the controller, the conditions are not favorable: the output
impedance of the optocoupler is high (this is the pull up
resistor in a common-emitter configuration), whereas the
input impedance of the FB pin can sometimes be affected by
internal dividers or pull-up resistors (it was 5 k� in our
example). We can anyway find a way to perform this
measurement by inserting a buffer between the optocoupler
and the controller as Figure 21 illustrates. Using an NPN
transistor in a common-collector configuration, the output
impedance is made low compared to the input impedance of
the feedback pin.

Figure 21. An NPN Buffer Allows Performing the
Loop Gain Measurement on the Primary Side

The result is plotted on Figure 22. This loop measurement
done at the feedback pin is clearly not correct: the gain
plateaus at low frequencies; and the phase increases again at
higher frequencies, so much that the gain margin cannot be
measured. This is clearly not a valid measurement.
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Figure 22. Bode Plot Obtained using the NPN Buffer on the Primary Side
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We will now measure one of the two loops independently,
while biasing the other one with an external dc supply, as we
did before. Individual measurement results are shown on

Figures�23 and 24. Combining the two using the Excel®

spreadsheet delivers the result of Figure 25.
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Figure 23. Fast Lane and 12 V Slow Lane Loop Response Obtained with the Network Analyzer
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Figure 24. 5 V Slow Lane Loop Response Obtained with the Network Analyzer
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Figure 25. The Final Bode Plot Combines the Information Obtained
from Individual Loop Measurements

As expected, the 2-loop measurement is now valid over
the whole frequency range, with a constant slope of −20�dB
per decade for the gain at low frequency, and a phase that
keeps on decreasing after the crossover frequency. To verify

the validity of the approach, we have gathered Figure�25 and
Figure�22 on a common graph which appears on Figure�26.
The gain and the phase curves in the vicinity of the cross over
frequency are similar.
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Figure 26. Comparing the Combined Bode Plot Obtained from Individual Loop
Measurements to the Primary Measurement (with NPN Buffer)
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Conclusion
Measuring the frequency response of a multi-loop

switch-mode power supply can be a real challenge,
especially when all the regulation circuitry is kept on the
secondary side. This is often the case with modern current
mode controllers where the feedback input directly controls
the peak current. Hopefully a simple method exists which
combines individually measured loops with a simple
mathematical manipulation. As demonstrated in this paper,
this method is applicable to a wide range of applications.
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