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This document describes the average modeling of the
NCP1351 a fixed on time / variable off time controller. The
advantage of using an average model is that you can perform
ac simulations of your power supply to study the stability of
your system. Another advantage is that transient simulations
with the averaged model are faster compared to transient
simulations with a cycle-by—cycle model. The model is very
simple to use and can be downloaded from ON website.

Presentation of the PWM Switch Technique

The Pulse Width Modulation switch model was
developed by Vatché Vorpérian (Jet Propulsory Laboratory,
Passadena, CA) in 1986. His approach consisted in
modeling the switch network alone (power switch + diode)
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APPLICATION NOTE

by averaging the voltage and current waveform in the
circuitry.
He obtained a 3 terminal model (node A, C and P) where:
® Node A represents the active node, the switch terminal
not connected to the diode
¢ Node C is the common node, the junction between the
power switch and the diode
® Node P is the passive node, the diode terminal not
connected to the switch
The input variables are the current in node A, the voltage
Vap; the output variables are the current in node C and the
voltage Vyp (Figure 1).
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The PWM switch is invariant i.e. the PWM switch
electrical structure is the same whatever converter we
consider. For this reason, we will use a buck—boost converter
for the study, because of simplicity but also because the
flyback topology where the NCP1351 is used is derived
from buck-boost.

Modeling the Switching Network

Figures 2 and 3 show the switching network in the
buck-boost circuit and its equivalent implementation in
PWM switch.
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Figure 2. Buck-Boost Converter
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Figure 3. PWM Switch in the Buck-boost Converter
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Figure 4. The Current Waveforms in DCM: I, I

The average current flowing in the C terminal is given by
the following equation [1]:
Vcs _d1+ do
Rsense 2 (ea- 1)
According to Figure 4, the following expressions for the
terminal voltages and currents can be easily verified [2]:

v
Ic = ~ doTsw EP(1

Vac = % (eq. 2)
Vep =1L dgll'l?ﬁ (eg. 3)

la = IPTK d1 (eq. 4)
I = 2K (91 + dp) a.5)

The average current in terminal A is deduced from
equations (4) and (5):

s
Cd1-+—d2

la (eq. 6)

Once the switch network has been identified in the
original circuit, a simple rotation of the PWM switch model
leads to the final implementation. This step is necessary to
unveil the various variables in play.

Averaging the PWM Switch Waveforms

NCP1351 is a fixed peak—current variable—t,¢ current—
mode converter without internal ramp compensation. We
will first consider the DCM mode to derive the equations
since further developments will show that the model
automatically toggles from DCM to CCM. The method
consists of identifying current, voltage waveforms in the
switch terminals (Figure 4 and Figure 5) and averaging them
over one switching period.
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Figure 5. The Current Waveforms in CCM: |, I

The average on-time duty cycle d; is solved from
Equations (2) and (3)
It is necessary to clamp the duty cycle d; value between 0.01
and 0.9 (1 to 90% duty—cycle) to avoid convergence issues.
_ d2Vep
~ Vac

(eq.7)
dy expression is derived from Equations (2) and (5)
2LI¢
%2 = ETSWVac a9

We clamp d» value between 0.01 and (1- d1). When d5 is
equal to (1- dq), we are in CCM [1].

In the NCP1351, the loop controls the switching
frequency by adjusting the end—of-charge voltage threshold
of the C; capacitor (see Figure 6). The capacitor is charged
by a constant current source I and the threshold voltage
Vibint is proportional to the feedback current injected into
the FB pin by the optocoupler.

The switching period equation is:

(eq. 9)
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Figure 6. The Switching Frequency is Controlled by the Charge of Ct Capacitor

NCP1351 is a current mode converter without ramp
compensation. The controller is thus subject to subharmonic
oscillations when operating in CCM. The subharmonic
oscillations are modelled by a capacitor connected between
C and P terminal during CCM. The capacitor value is
frequency—dependent and is calculated by the following
expression [3]:

Cs (eq. 10)

_ 4
L(zFsw)?
A separate in-line equation disconnects the capacitor

during DCM. The electrical implementation of all the

equations derived above is shown on Figure 7.

Modeling the FB Section
To avoid acoustic noise problems, the NCP1351

compresses the peak current as the load becomes lighter.

From the datasheet, we can extract the values of CS current

as a function of FB current.

250 pA if lfp < 60 uA

790 uA — 9 lfp if 60 uA < lfp < 80 uA

70 uA if lfp > 80 uA

Ics = (eq. 11)

VEBint
T
/
Vof'fset 1
0.5
D2 V¥
1N4148 R1 4
2 T
80 p
+
Vel Vib
6 (P

of

B1

Current

A behavioral current source is used to model Ics. The
model for the peak current compression is shown on
Figure 8.

The feedback current controls the switching frequency by
changing the timing capacitor end-of—charge—voltage
Vibint- To do so, the optocoupler injects current into the FB
pin which is actually a bipolar current—mirror input. This
current is then adjusted by the feedback loop depending on
the operating region (full power, compression or standby).
The resulting current flows into a 45 k€2 resistor which
develops a voltage proportional to the FB current. This
signal becomes the C; capacitor ending voltage.

Thus, the relation between feedback current I, and Vgpint
is:

Vibint = Voffset + 45 kIFB (eq. 12)

It is also important to model the pin FB current mirror
because the dynamic resistance of the input mirror transistor
directly influences the loop gain. Figure 7 shows the way we
implemented the model of the FB modulator.

I(VIfb) < 42 u
0.4 w:
I(VIfb) — 41.1 n

Figure 7. Feedback Modulator Model
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Complete Average Model and Application
The complete averaged model of NCP1351 is shown below.

Power Section
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Figure 8. Complete Averaged Model of NCP1351
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All the elements in Figure 8 are encapsulated into a
subcircuit as shown below:

| 7 | 6

Ts CCM
1A 5
C|2
4| FB | X1
NCP1351_av
5| CS Lpri=33u
B P Rsense = 0.27
Rcs = 3.9k
PWM Switch CCM-DCM | 3 Cr2 100 p
Figure 9. The PWM Switch Encapsulated into a Sub

Circuit
® A, Cand P are the power terminals.

® FB is the feedback input. Connect it to optocoupler
emitter.

® The CCM pin indicates the operating mode (CCM or
DCM):

FB

1. if equal to “1”, the converter is in CCM
2. if equal to “0”, the converter is in DCM
® Ts and CS respectively indicate the switching period
(1 wV =1 ps) and the CS level. Place voltage probes on
the schematic to see their values or display the
operation bias points
The model expect the values of your primary inductance,
sense and CS resistors and the value of the timing capacitor
C:. Defaults values for these parameters are indicated on
Figure 9.

The Model in a Flyback Converter

The following schematic describes the NCP1351
averaged model implementation in a flyback converter. This
schematic can be downloaded from the website. Then, you
will just need to enter your own power supply design values
in the different components.

~~ Vcs
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Al FBlCS|7 | ,_2508
Ts I pri = u
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/> -~ cs =39k Vout  Vac Vi
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oM 5| | 1P 05p T %
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L 2N
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C=0 = Cow ==C4 - P 12
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Ic=12 Rp Cp X2 Riower
25k 100 n TL431_G 10 k
T !

Figure 10. The NCP1351 Model in a Flyback Converter

As an example we implemented a 12 V, 2 A flyback
converter with secondary output filter. For the feedback, we
have chosen a TLA431, but you can also use a zener diode. R,
is the optocoupler pulldown resistor and C, places a pole in
the compensation transfer function. Typical values for these
components are shown on the schematic. We have also
represented the ESR of output capacitors to be closer to real
application and also because it influences the ac response of
the power stage.

Validating the Model: Model versus Reality

In order to test the model, we built a 20 W buck-boost
converter with NCP1351 as the MOSFET controller. The
design specifications are:

Input voltage: 16 V—-20 V dc

Output voltage: 12V @ 1.7 A

As we used a P-channel MOSFET for the power switch, the
DRV signal from NCP1351 needs to be inverted. We selected
a MC33151 for that purpose. The output power is regulated
with a zener diode and an optocoupler. The optocoupler
simplifies the FB path as we need to pull the FB up from a
negative output voltage.
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Figure 11. The Buck-boost Board Application
Schematic Shows an Optocoupler in the FB Chain
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Figure 12. The Buck-boost Model Implemented in SPICE
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As we said in the previous section, it is important to
include the dc resistance of the self and the ESR of the

capacitors in the model to better fit reality.

AND8280/D

Operating Point

We ran operating point simulations for different loads. We
obtain the following results for the switching period:

Load Current — l|gaq Simulated Period — Tg,, Measured Period — Tg,,
1.4A 11.7 us 13.7 us
0.6A 17 us 17.4 us
0.09 A 22.3 us 21 us

In high current conditions, the forward drop voltage in the
diode and the ohmic losses in the MOSFET can degrade the
bias point as these effects are not taken into account in our
model. However, at a low output current, these losses
become negligible and the simulation better fits the
measurement.

1207 F

AE L

L/ |
Y L~ Vou

125 |

wout in volks

-12.14

Arzaf

G00m &.00m 10.0m 1z20m

time in seconds

4.00m

Scale : Y =20 mV /div, X =1 ms/ div
Figure 13. Simulated Load Step Response

The simulated results are very close to measurements. The
first voltage peak corresponding to a transition from 0.5 A
to 1.4 A is well predicted with a simulated value of 80 mV
versus 70 mV for the measurement. For a transition from
1.4 A to 0.5 A, the model is less precise and the simulation
response is 40 mV higher than the measurement. This may
come from the internal Cg capacitor that is brutally
disconnected between C and P terminal since we are

Load Step Response

We compared the simulated and the measured response
for a load step from 0.5 A to 1.4 A swept with a slew-rate
of 10 mA/us (Figure 13 and Figure 14).

chz Z0.0rm b

Scale : Y =20 mV /div, X =1 ms/ div
Figure 14. Measured Load Step Response

toggling from CCM to DCM. A solution would be to
disconnect this capacitor for transient simulations only.

Measuring the Loop Response

The loop measurement represents an important task to
confirm the wvalidity of the assumptions during the
theoretical design stage. The measurement principle is
shown below:

Vout Loop')_o|utput
TP1— =
Power Stage Rioad ™ Network Analyzer
10 Isolator —© Q Q
= — —
A = TP2 — =
C L
R15 Loop Input
Controller 330
NCP1351 SFH610A | -
D2
1AZ11
Vee =

Figure 15. Loop Response Measurement Principle
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The voltage injection source is implemented with a wide
band isolation device together with a 10 ohm resistor. See
reference [4] for more information about this technique.
Voltage probes are used to measure the loop input and output
signals with respect to ground on either side of the injection
point.

Results in CCM

To obtain correct measurements, it is necessary to choose
an operating point outside the peak current compression
zone. We have selected Vi, = 18 V and a output current of
1.4 A. The switching frequency is 73 kHz. The below
figures represent the measured and simulated loop gain and
phase for a 1.4 A output current.

Mag [B/A] (cB) | Phase [B-A] (deq)
67.000 200.000
7 000 Low Frequ enj:y Gain : 150,000
[ S e 5 ardBs
47 000 “"_“é;,“ =L 120.000
in
27.000 -~ Phase £0.000
.\"t'\_x_ T
27.000 T — — = \ 40.000
17 000 F rase';l:\,’lloar in : 0.000
T.000 0dB ) Nl -40.000
3000 RS REARE ST TEARRE T A TETE - — 22 B ELEL 80000
1
-13.000 i » -120 000
. ~— L NN
-23 000 -160 000
1
-33.000 { -200.000
10 100 1k 3.4 kHz 0K Resonance.due tp .
Crossover subharmonic oscillations
Frequency
Figure 16. Measured Loop Response in CCM
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3 Frequency , \g
10

o

100 1k

frequency in hertz

10k

Figure 17. Simulated Loop Response in CCM

The simulated loop response is very close to reality. We
have a variation of 10% between measurement and reality,
which is acceptable because what we need is an indication
about phase margin (greater than 455) and crossover
frequency to be sure we will remain stable in all operating
cases. In our example, we have a phase margin smaller than
455. This is clearly not acceptable as a design goal but as our

primary aim was to validate the model, we did not pay a
particular attention to improve this figure.

Results in DCM

We also compared the simulated and measured loop
response in DCM for a 0.06 A output current. The input
voltage is 18 V and the switching frequency is 33 kHz
(Figure 18 and Figure 19).
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Figure 18. Measured Loop Response in CCM
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Figure 19. Measured Loop Response in DCM

Again, we have a good correlation between measured and
simulated loop response in DCM. The error ratio between
simulation and measurement is less than 2%, the model is
thus accurate to predict the DCM behavior. Here, we have
a greater phase margin because the right half plane zero in
the control to output transfer function of the buck—boost

disappears, thus improving the system stability.

Conclusion

An averaged model of NCP1351 has been derived using

the PWM Switch modeling technique.

and compared to measurements: operating point, load step,
and loop gain and phase response. There is a good
correlation between the model and the measurements. We
can conclude that the model is a good tool to predict the
small-signal response of a NCP1351-based power supply.

This model has been derived using INTUSOFT’s IsSpice

and CADENCE’s OrCAD. Both versions are uploaded on

ON Semiconductor

website (www.onsemi.com). A

cycle-by—cyclemodel also exists and is available from the

The model has been wvalidated by experimental
measurements on a buck-boost converter using NCP1351 as
the controller. Several aspects of the model have been tested

http://onsemi.com
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