Avalanche TVS Diode SPICE Macro-Models

Introduction

SPICE macro-models provide an accurate simulation of a TVS avalanche diode’s current versus voltage characteristics. These models can be used to analyze and optimize the performance of surge protection circuits. TVS macro-models are created by combining standard SPICE devices into a sub-circuit.

Data Sheet Specifications

The first item required to analyze the TVS macro-models is to review the device specifications listed on the data sheet. Figure 1 provides the current and voltage definitions of a unidirectional avalanche TVS diode.

![Diagram showing current and voltage definitions for a unidirectional avalanche TVS diode]

![Figure 1. Definition of the Current and Voltage Data Sheet Specifications](image-url)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_F$</td>
<td>Forward current</td>
</tr>
<tr>
<td>$V_F$</td>
<td>Forward voltage @ $I_F$</td>
</tr>
<tr>
<td>$I_R$</td>
<td>Reverse leakage current</td>
</tr>
<tr>
<td>$V_{RWM}$</td>
<td>Reverse working voltage @ $I_R$ ($V_{RWM}$ (typ.) = 0.8 × $V_{BR}$)</td>
</tr>
<tr>
<td>$I_T$</td>
<td>Test current</td>
</tr>
<tr>
<td>$V_{BR}$</td>
<td>Breakdown voltage @ $I_T$</td>
</tr>
<tr>
<td>$I_{PP}$</td>
<td>Maximum reverse peak pulse current (typically specified with either the 8 × 20 μs or 10 × 1000 μs surge pulse)</td>
</tr>
<tr>
<td>$V_C$</td>
<td>Clamping voltage @ $I_{PP}$</td>
</tr>
</tbody>
</table>
Other important data sheet specifications include the capacitance and peak power rating. The capacitance of the diode is typically specified at a bias voltage of 0 Vdc, with an AC signal of 50 mV at 1.0 MHz. The power rating is typically defined for a small package with the $8 \times 20 \mu$s (rise time $\times$ pulse duration), while the $10 \times 1000 \mu$s surge pulse is often used for defining devices in large packages. The peak energy in Watts is measured by multiplying the surge current ($I_{PP}$) and clamping voltage ($V_C$) waveforms together.

**Macro-Model Sub-Circuit**

The TVS diode’s macro-models are created by combining standard SPICE devices into a sub-circuit. Figure 2 shows a schematic of the macro-model. Appendix I provides the PSPICE netlist's of the 1SMB28A and NUP2105 macro-models. The TVS macro-model is based on the Zener diode model documented in references [3] and [4]. References [1] and [2] provide alternative TVS diode SPICE models.

**Figure 2. TVS Avalanche Diode SPICE Macro-Model**

### Forward Region

Diode $D_1$ is the key component when voltage $V_D$ is greater than zero. The TVS diode’s forward bias characteristics are controlled by $D_1$’s saturation current ($I_S$), emission coefficient ($N$) and series resistance ($R_S$) variables. The current equations for the forward bias region are listed below.

$$I_D = I_F + I_L + I_R$$

$$= I_{F,D1} + \frac{V_D}{R_L} + I_{S,D2}$$

$I_L$ & $I_R << I_F$

$$\therefore I_D = I_{F,D1} = I_{S,D1} \left[ e^{\frac{V_{D1}}{kT}} - 1 \right] = I_{S,D1} \left[ e^{\frac{V_{D1}}{kT}} - 1 \right]$$

Where:

$$V_T = \frac{kT}{q} = 26 \text{ mV} @ 25^\circ \text{C}$$

$k =$ Boltzmann’s constant

$q =$ Electronic charge

$T =$ Absolute temperature (Kelvin)

### Leakage Region

The leakage or reverse bias region is defined when voltage $V_D$ is between 0 V and the breakdown voltage ($V_{BR}$). Currents $I_F$ and $IR$ are small in comparison to $I_L$ because diodes $D_1$ and $D_2$ are reverse biased; thus, the leakage current can be approximated by $V_D/R_L$.

$$I_D = I_F + I_L + I_R$$

$$= I_{S,D1} \frac{V_D}{R_L} + I_{S,D2}$$

$I_F$ & $I_R << I_L$

$$\therefore I_D = \frac{V_D}{R_I}$$

### Breakdown Region

The breakdown region is modeled by $EV_1$, $D_2$ and $R_Z$. Current flows through this path when the voltage exceeds $EV_1$ plus the forward voltage of $D_2$. Breakdown voltage $V_{BR}$ is specified at test current $I_T$ and is equal to the product of $I_{BV}$ and $R_{BV}$. $D_3$ is used to compensating for the voltage drop of $D_2$. The clamping voltage ($V_C$), specified at current $I_{PP}$, is equal to the sum of the voltages of $EV_1$, $R_Z$ and $D_2$ as shown below.

$$V_C = EV_1 + R_Z + D_2$$
In series, \( R_S \) is equal to the real portion of the complex impedance and is measured at the resonant frequency \( (f_R) \). At \( f_R \), the impedance is purely resistive because the impedance of \( L_S \) and \( C_S \) are equal in magnitude but opposite in polarity. \( C_S \) is typically obtained by measuring the capacitance at 1.0 MHz. \( L_S \) is obtained from the resonant frequency, which corresponds to the minimum impedance. Table 1 shows how the AC model impedance terms are integrated into the SPICE macro-model. The design equations for the AC model are listed below.

\[
Z_R = R_S; \quad Z_C = -\frac{j}{\omega C}; \quad Z_L = \omega L; \quad \omega = 2\pi f
\]

\[
Z = \sqrt{R_{eqv.}^2 + X_{eqv.}^2}
\]

\[
= \sqrt{R_S^2 + \left(2\pi f_{L_s} - \frac{1}{2\pi f_{C_s}}\right)^2}
\]

\[
@ f_R | Z_L \| = Z_{C}\|
\]

\[
R_S \Rightarrow @ f_R; \quad Z = Z_{Min.} = R_S
\]

\[
C_S \Rightarrow @ 1 \text{ MHz}; \quad Z_{C_S} \gg Z_{SubLS} \quad : \quad C_S = \frac{1}{2\pi L_S}
\]

\[
L_S \Rightarrow f_R = \frac{1}{2\pi \sqrt{L_SC_S}} \quad : \quad L_S = \frac{1}{4\pi^2 R_SC_S}
\]

### Table 1. CORRELATION OF THE AC AND MACRO-MODEL COMPONENTS

<table>
<thead>
<tr>
<th>AC Model Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>( R_S )</td>
</tr>
<tr>
<td>( L_S )</td>
</tr>
<tr>
<td>( C_S )</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equivalent Macro-Model Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>( R_S + D_{2,R_S} )</td>
</tr>
<tr>
<td>( L )</td>
</tr>
<tr>
<td>( D_{1,CJ0} )</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typically ( D_{2,R_S} = 0 ); thus, ( R_S = R_Z )</td>
</tr>
<tr>
<td>( R_Z \approx ) clamping voltage ( V_C )</td>
</tr>
<tr>
<td>( R_Z \approx 1/\text{power rating} )</td>
</tr>
<tr>
<td>( L ) produces a short overshoot pulse due to ( V = L (\Delta I/\Delta t) )</td>
</tr>
<tr>
<td>( D_{1,CJ0} ) is specified at 0 V and decreases as the reverse bias voltage increases</td>
</tr>
</tbody>
</table>

**Measured Test versus AC Model Impedance Data**

Figures 3 and 4 show the impedance of the 1SMB28A and NUP2105. A TVS diode’s impedance is a function of the bias voltage, as shown in Figure 3. Also, the capacitance decreases if the DC bias voltage increases, which produces a higher resonant frequency \( (f_R) \). A TVS diode can be modeled as a capacitor at relatively low frequencies; however, the inductance of the IC package must be included as the frequency approaches the resonant frequency. Table 2 provides a summary of the measured impedance and the AC model parameters for the 1SMB28A and NUP2105.
Resistance

The real or resistive portion of the impedance is modeled by $R_S$ in the AC model and $R_Z$ in the SPICE model. Resistance is a key factor in determining the power rating of the device and is a function of the method used to attach the IC package leads to the silicon die. The relatively large pad size of a SMB lead produces a large contact area at the lead-to-silicon connection that reduces the resistance. In addition, the large lead size of the SMB lowers the thermal resistance and increases the amount of thermal energy that can be dissipated through the leads onto the mounting pads of the PCB. In comparison, a SOT−23’s lead-to-silicon connection has a relatively high resistance compared to a SMB device.

The high energy of a surge pulse can increase the TVS diode’s junction temperature to a value that can be an order of magnitude larger than the ambient temperature. TVS diodes are designed to withstand high junction temperatures; however, the breakdown voltage ($V_{BR}$) and resistance are increased to a value higher than their nominal values. One option to simulate a high die temperature is to increase the macro-model’s $R_Z$ value so that the simulated clamping voltage matches the bench test value at a specific pulse, such as either the $8 \times 20 \mu s$ or $10 \times 1000 \mu s$ surge tests. Increasing $R_Z$ raises the simulated minimum impedance ($Z_{Min}$) as shown in Figure 5, but does not change the resonant frequency.
Figure 5. The Increase in the 1SMA28A’s Junction Temperature Produced by a High Energy Surge Pulse can be Modeled by Increasing the Magnitude of RZ from the Nominal Value of 0.1 to 0.65 Ω

Capacitance and Inductance

The capacitance (C_S) and inductance (L_S) form the imaginary or reactance portion of the TVS diode’s impedance. The capacitance is proportional to the size of the silicon junction area. The SMB device houses a larger die than a SOT-23; thus, a SMB device will typically have a lower resonant frequency than a SOT-23 device. In addition, a bidirectional diode has a capacitance that is equal to half of the capacitance of an equivalent unidirectional device. Bidirectional diodes are created from two series connected unidirectional diodes; thus, the capacitance is lower than a unidirectional device. The inductance term is produced by the bonding connection between the package lead and the silicon die. The magnitude of L_S is similar for the 1SMB28A and NUP2105 TVS diodes.

Table 2. THE SMALL RS AND LARGE CS TERMS OF THE 1SMB28A ACCOUNT FOR THE DEVICES HIGH POWER RATING. THE SMALL CAPACITANCE OF THE NUP2105 RESULTS IN A HIGH RESONANT FREQUENCY

| Part Number | Package and Schematic | Power Rating | f_R (MHz) | Bias Voltage | AC Model
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R_S (Ω)</td>
</tr>
<tr>
<td>1SMB28A</td>
<td>SMB</td>
<td>600 W</td>
<td>146</td>
<td>0 Vdc</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10 × 1000 µs)</td>
<td>276</td>
<td>28 Vdc</td>
<td>0.14</td>
</tr>
<tr>
<td>NUP2105</td>
<td>SOT-23</td>
<td>350 W</td>
<td>616</td>
<td>0 Vdc</td>
<td>1.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8 × 20 µs)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Simulation Test Results

The clamping performance of the 1SMB28A TVS diode for the 10 × 1000 µs surge test is shown in Figure 6. The SPICE simulation used a R_Z value of 0.65 Ω instead of the 0.1 Ω resistance measured with the network analyzer. The larger resistance results in an accurate clamping voltage (V_C) for high energy surges, but will simulate a V_C that is larger than a bench measurement for relatively low energy pulses. Future enhancements of the macro-model will include the integration of a thermal model to simulate the increase in the TVS device’s junction temperature due to self heating.
Figure 6. SPICE Predicts a Maximum Clamping Voltage of 42.5 V if \( R_Z \) is equal to 0.65 \( \Omega \). The Bench Test Value is 42.4 V

Figure 7 shows the clamping performance of the NUP2105 TVS diode for the 8 \( \times \) 20 \( \mu \)s surge test. The macro-model used a \( R_Z \) value of 1.28 \( \Omega \) that was determined from the AC model. The simulated \( V_C \) is relatively close to the measured value because of the shorter duration of the 8 \( \times \) 20 \( \mu \)s surge in comparison with the 10 \( \times \) 1000 \( \mu \)s pulse.

Figure 7. SPICE Predicts a Maximum Clamping Voltage of 39.2 V. The Bench Test Measured Value is 40.8 V

**SPICE Limitations**

Macro-models provide an accurate SPICE representation of the TVS avalanche diode’s current and voltage characteristics for most applications. SPICE serves as a powerful design tool to analyze surge suppression circuits; however, simulation should not be used as a replacement for hardware development tests. A summary of the limitations of the macro-models is shown in Table 3.

**Table 3. SIMULATION LIMITS OF TVS DIODE MACRO-MODELS**

<table>
<thead>
<tr>
<th>Region</th>
<th>Key Design Parameter</th>
<th>Limitation</th>
</tr>
</thead>
</table>
| Forward    | Forward Voltage \((V_F)\) | • \( V_F \) is typically specified as a maximum value at a single current point in the data sheet  
|            |                      | • The accuracy is enhanced if two typical test points are used               |
| Leakage    | Leakage Current \((I_L)\) | • \( I_L \) is modeled as a linear function of the bias voltage            
|            |                      | • Measured \( I_L \) data varies as an exponential function of the bias voltage |
| Breakdown  | Clamping Voltage \((V_C)\) | • \( \Delta V_C \) due to self heating is not modeled                     
|            |                      | • Overcurrent failures are not modeled                                     |
References


APPENDIX I: MACRO-MODEL SPICE NETLISTS

1SMB28A Macro-Model

* 1SMB28A PSPICE macro-model
* Uni-directional TVS avalanche diode, SMB package, V_{BR} = 32.75 V

SUBCKT SMB28A 7 1

FORWARD REGION

D1 2 1 MDD1
.MODEL MDD1 D IS = 1.83708e−14  N = 1  XTI = 1  RS = 0.2
+ CJO = 486e−12 TT = 5e−10

LEAKAGE REGION

RL 1 2 MDR 5.64e+06
modelo MDR RES TC1 = 0  TC2 = 0

REVERSE BREAKDOWN REGION

RZ 2 3 0.65
D2 4 3 MDD2
.modelo MDD2 D IS = 2.5e−15  N = 0.5
* Breakdown Voltage (V_{BR}) = I_{BV} \times R_{BV}
EV1 1 4 6 8 1
IBV 0 6 0.001
RBV 6 0 MDRBV 32750
* MDRBV temp. coef. model \Delta V_{BR}/\Delta T
.modelo MDRBV RES TC1 = 0.00098
D3 8 0 MDD2
IT 0 8 0.001

LEAD-TO-SILICON INDUCTANCE

L 7 2 2.44e−9

ENDS SMB28A

NUP2105 Macro-Model

* NUP2105 PSPICE macro-model
* Bi-directional TVS avalanche diode, SOT–23 package, V_{BR} = 26.4 V
* Model simulates 1 of the 2 I/O lines
**Breakdown Voltage (VBR) = IBV**

**.MODEL MDD2 D IS = 2.5e−15  N = 0.5**

**D2 4 3 MDD2**

**RZ 2 3 1.28**

**.MODEL MDR RES TC1=0 TC2=0**

**RL 1 2 MDR 4.32244e+08**

**.MODEL MDRBV RES TC1 = 0.00096**

**D3 8 0 MDD2**

**IT 0 8 0.001**

**L 7 2 1.24e−9**

**.SUBCKT HALFNUP2105**

**.ENDS HALFNUP2105**

---

* Model HALFNUP2105 represents one bi-directional pair of a dual device
* Anode  Cathode

**.SUBCKT HALFNUP2105**

**.ENDS NUP2105**

---

**L 7 2 1.24e−9**

L2 21 2.124e−9 L is distributed between two diodes for bi-directional diodes

**.SUBCKT NUP2105**

**.ENDS halfnup2105**

---

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.