onsemi

NPN Darlington Transistor

NZT7053

This device is designed for applications requiring extremely high gain at collector currents to 1.0 A and high breakdown voltage. Sourced from Process 06.

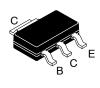
ABSOLUTE MAXIMUM RATINGS (Notes 1, 2)

$(T_A = 25^{\circ}C \text{ unless otherwise noted.})$	
$(T_A = 25^{\circ}C \text{ unless otherwise noted.})$	

Symbol	Parameter	Value	Unit
V _{CEO}	Collector-Emitter Voltage	100	V
V _{CBO}	Collector-Base Voltage	100	V
V _{EBO}	Emitter-Base Voltage	12	V
Ι _C	Collector Current – Continuous	1.5	А
T _J , T _{STG}	Operating and Storage Junction Temperature Range	–55 to +150	°C

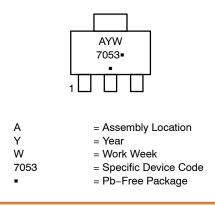
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. These ratings are based on a maximum junction temperature of 150°C.


2. These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

THERMAL CHARACTERISTICS (Note 3)

 $(T_A = 25^{\circ}C \text{ unless otherwise noted.})$


Symbol	Characteristics	Value	Unit
PD	Total Device Dissipation	1000	mW
	Derate Above 25°C	8.0	mW/°C
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	125	°C/W

3. Device mounted on FR–4 PCB 36 mm \times 18 mm \times 1.5 mm; mounting pad for the collector lead min. 6 cm².

SOT-223 CASE 318H

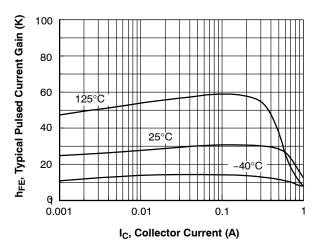
MARKING DIAGRAM

ORDERING INFORMATION

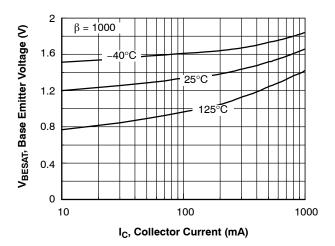
Device	Package	ackage Shipping [†]	
NZT7053	SOT-223	4000 /	
	(Pb-Free)	Tape & Reel	

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, <u>BRD8011/D</u>.

NZT7053


ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Symbol	Parameter	Conditions	Min.	Max.	Unit
OFF CHARAC	TERISTICS			•	-
V _{(BR}) _{CEO}	Collector-Emitter Breakdown Voltage (Note 4)	I _C = 1.0 mA, I _B = 0	100	-	V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	I _C = 100 μA, I _E = 0	100	-	V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	I _E = 1.0 mA, I _C = 0	12	-	V
I _{CBO}	Collector-Cutoff Current	$V_{CB} = 80 \text{ V}, I_E = 0$	-	0.1	μA
I _{CES}	Emitter-Cutoff Current	$V_{CE} = 80 \text{ V}, I_E = 0$	-	0.2	μA
I _{EBO}	Emitter-Cutoff Current	V _{EB} = 7.0 V, I _C = 0	-	0.1	μA
ON CHARACT	TERISTICS (Note 4)				
h _{FE}	DC Current Gain	I_{C} = 100 mA, V_{CE} = 5.0 V	10000	-	
		I _C = 1.0 A, V _{CE} = 5.0 V	1000	20000	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	I _C = 100 mA, I _B = 0.1 mA	-	1.5	V
V _{BE(on)}	Base-Emitter On Voltage	I_{C} = 100 mA, V_{BE} = 5.0 V	-	2.0	V
SMALL SIGN	AL CHARACTERISTICS				
F _T	Transition Frequency	I_{C} = 100 mA, V_{CE} = 5.0 V	200	-	MHz


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Pulse test: pulse width \leq 300 µs, duty cycle \leq 2%

NZT7053

TYPICAL CHARACTERISTICS

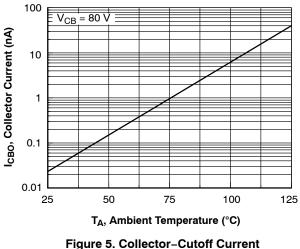


Figure 5. Collector–Cutoff Current vs. Ambient Temperature

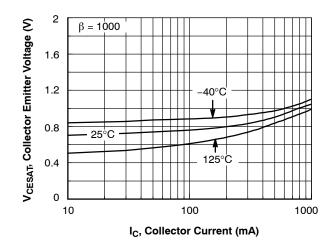
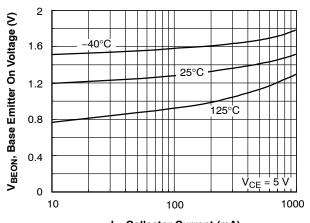
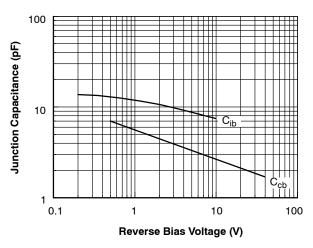




Figure 2. Collector–Emitter Saturation Voltage vs. Collector Current

I_C, Collector Current (mA)

Figure 4. Base Emitter ON Voltage vs. Collector Current

NZT7053

TYPICAL CHARACTERISTICS (continued)

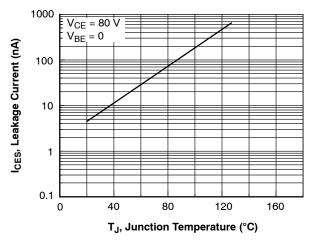


Figure 7. Typical Collector–Emitter Leakage Current vs. Temperature

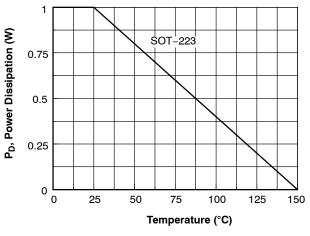


Figure 8. Power Dissipation vs. Ambient Temperature

SOT-223 CASE 318H ISSUE B DATE 13 MAY 2020 A NDTES SCALE 2:1 DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009. CONTROLLING DIMENSION: MILLIMETERS DIMENSIONS D & E1 ARE DETERMINED AT DATUM H. DIMENSIONS DO NOT INCLUDE MOLD FLASH, PROTRUSIONS DG GATE BURRS. SHALL NOT EXCEED 0.23mm PER SIDE. LEAD DIMENSIONS & AND &1 DO NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBBAR PROTRUSION IS 0.08mm PER SIDE. DATUMS A AND B ARE DETERMINED AT DATUM H. A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY. POSITIONAL TOLERANCE APPLIES TO DIMENSIONS & AND &1. DIMENSIONING AND TOLERANCING PER ASME 1. b1 2 з. В 4. 5. 6. 7. b AND b1. MILLIMETERS DIM MIN. NITM. MAX. e ___ ___ 1.80 k Α \oplus 0.10 \otimes C A B 0.02 0.06 0.11 A1 TOP VIEW NDTE 7 0.60 0.74 0.88 b 2.90 3.10 b1 3.00 DETAIL A 0.24 ____ 0.35 С H 6.70 D 6.30 6.50 Ε 6.70 7.00 7.30 E1 3.30 3.50 3.70 0.10 C 2.30 BSC e SIDE VIEW FND VIEW L 0.25 ___ i 10° 0° ____ -3.80 2.00 Α1 DETAIL A 8.30 3x= Assembly Location GENERIC A 2.00 **MARKING DIAGRAM*** Y = Year = Work Week w XXXXX = Specific Device Code = Pb-Free Package 5'30 AYW 3x 1.50 (Note: Microdot may be in either location) XXXXX= PITCH *This information is generic. Please refer to RECOMMENDED MOUNTING FOOTPRINT device data sheet for actual part marking. For additional information on our Pb-Free strategy Pb-Free indicator, "G" or microdot "•", may ж and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D. or may not be present. Some products may not follow the Generic Marking. Electronic versions are uncontrolled except when accessed directly from the Document Repository. **DOCUMENT NUMBER:** 98ASH70634A Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** SOT-223 PAGE 1 OF 1

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights nor the

ON Semiconductor[®]

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>