Power MOSFET 40 V, 123 A, Single N–Channel DPAK

Features

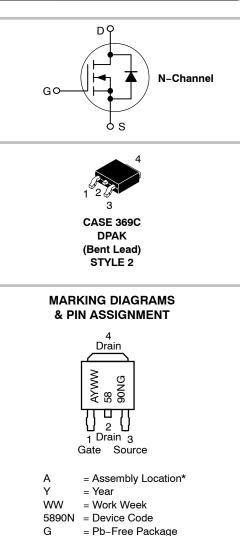
- Low R_{DS(on)} to Minimize Conduction Losses
- MSL 1/260°C
- AEC Q101 Qualified and PPAP Capable
- 100% Avalanche Tested
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Motor Drivers
- Pump Drivers for Automotive Braking, Steering and Other High Current Systems

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted)

Param	eter		Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	40	V		
Gate-to-Source Voltage	Gate-to-Source Voltage				V
Continuous Drain Cur-		$T_C = 25^{\circ}C$	I _D	123	А
rent (R _{θJC})		$T_C = 85^{\circ}C$		95	
Power Dissipation ($R_{\theta JC}$)	Steady	$T_C = 25^{\circ}C$	PD	107	W
Continuous Drain Cur-	State	$T_A = 25^{\circ}C$	I _D	24	А
rent (R _{θJA}) (Note 1)		$T_A = 85^{\circ}C$		18.5	
Power Dissipation $(R_{\theta JA})$ (Note 1)		$T_A = 25^{\circ}C$	PD	4.0	W
Pulsed Drain Current	t _p =10μs	$T_A = 25^{\circ}C$	I _{DM}	400	А
Current Limited by Packa	age	$T_A = 25^{\circ}C$	I _{DmaxPkg}	100	А
Operating Junction and S	Storage Te	mperature	T _J , T _{stg}	–55 to 175	°C
Source Current (Body Di	iode)		۱ _S	100	А
Drain to Source dV/dt	dV/dt	6.0	V/ns		
Single Pulse Drain-to-S ergy (V _{DD} = 32 V, V _{GS} = L = 0.3 mH, $I_{L(pk)}$ = 40 A	E _{AS}	240	mJ		
Lead Temperature for So (1/8" from case for 10 s)		irposes	ΤL	260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(on)}	ID
40 V	$3.7~\mathrm{m}\Omega$ @ 10 V	123 A

* The Assembly Location Code (A) is front side optional. In cases where the Assembly Location is stamped in the package bottom (molding ejecter pin), the front side assembly code may be blank.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{\theta JC}$	1.4	°C/W
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	37	
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	76	

Surface-mounted on FR4 board using 650 mm² pad size, 2 oz Cu.
Surface-mounted on FR4 board using 36 mm² pad size.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Paramete	er Symbol	Test Condition	Min	Тур	Max	Unit

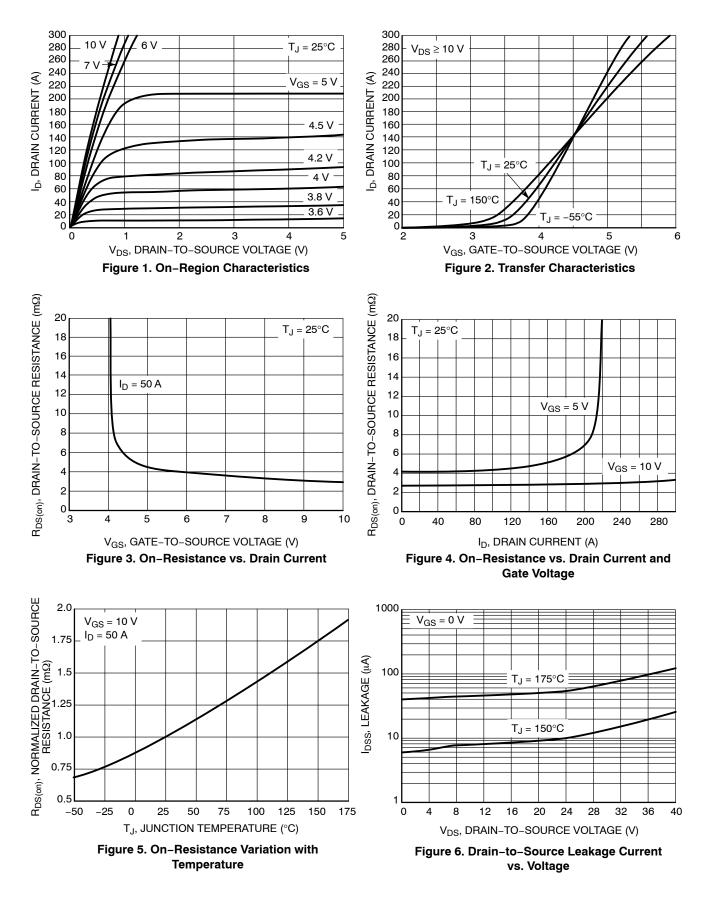
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I _D =	= 250 μA	40			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				40		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$			1.0	μΑ
		$V_{DS} = 40 V$	T _J = 150°C			100	
Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{GS}	= ±20 V			±100	nA

ON CHARACTERISTICS (Note 3)

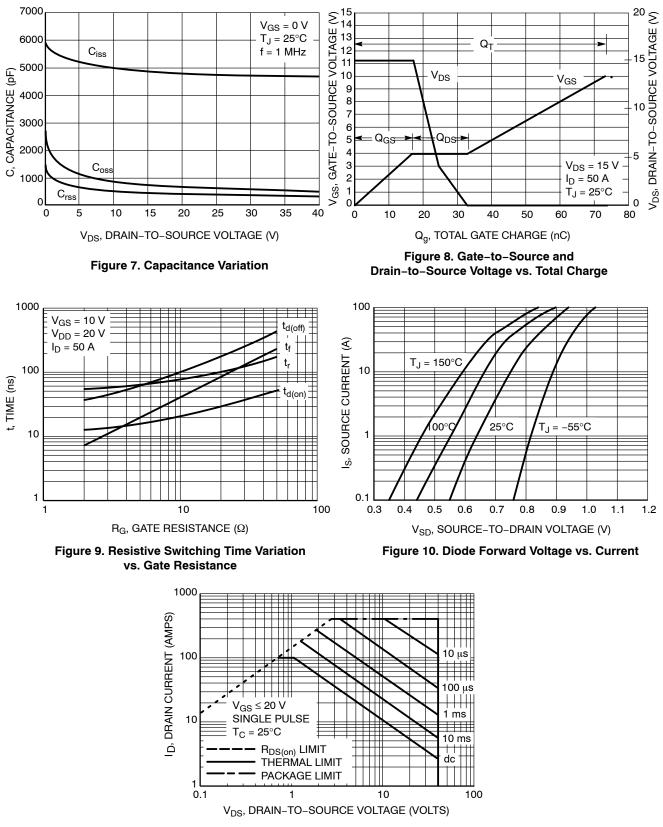
Gate Threshold Voltage	V _{GS(TH)}	V_{GS} = V_{DS} , I_D = 250 μ A	1.5		3.5	V
Negative Threshold Temperature Co- efficient	V _{GS(TH)} /T _J			7.4		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V_{GS} = 10 V, I _D = 50 A		2.9	3.7	mΩ
Forward Transconductance	gFS	V _{DS} = 15 V, I _D = 15 A		16.8		S

CHARGES AND CAPACITANCES

Input Capacitance	C _{iss}		4975		pF
Output Capacitance	C _{oss}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 12 V	785		
Reverse Transfer Capacitance	C _{rss}		490		
Input Capacitance	C _{iss}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 25 V	4760		pF
Output Capacitance	C _{oss}	V _{DS} = 25 V	580		
Reverse Transfer Capacitance	C _{rss}		385		
Total Gate Charge	Q _{G(TOT)}		74	100	nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 10 V, V _{DS} = 15 V,	5.0		
Gate-to-Source Charge	Q _{GS}	I _D = 50 Å	17		1
Gate-to-Drain Charge	Q _{GD}		16		1


SWITCHING CHARACTERISTICS (Note 4)

Turn-On Delay Time	t _{d(on)}		14	ns
Rise Time	t _r	V _{GS} = 10 V, V _{DS} = 20 V,	55	
Turn-Off Delay Time	t _{d(off)}	$I_{\rm D} = 50 {\rm A}, {\rm R}_{\rm G} = 2.0 {\Omega}$	35	
Fall Time	t _f		7.0	

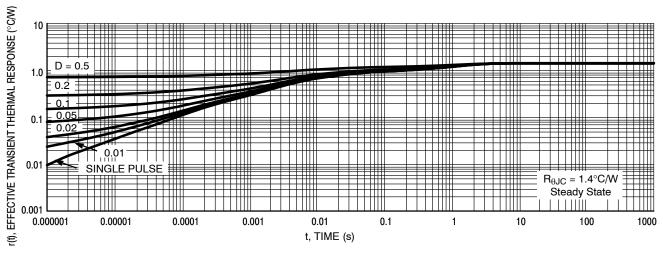

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

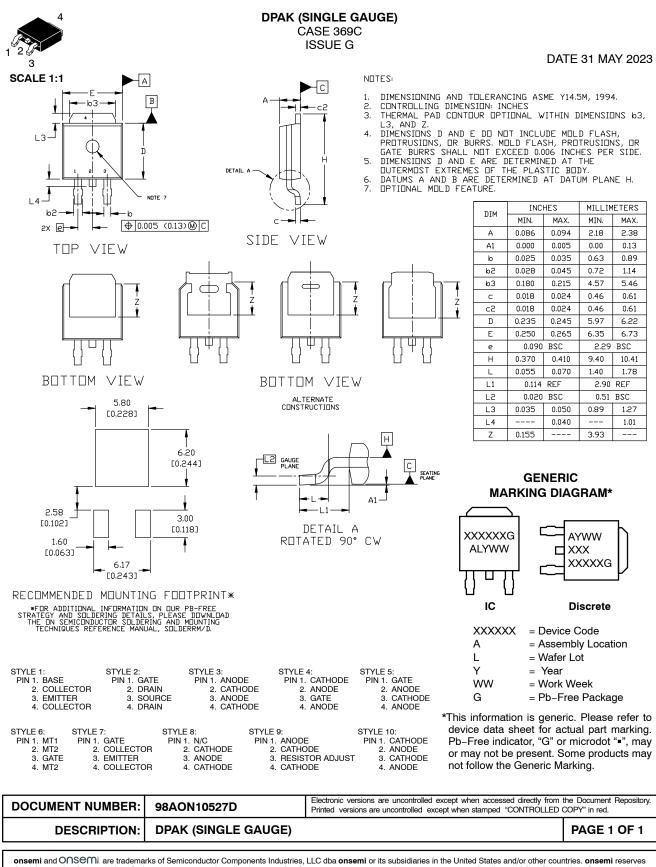
Parameter	Symbol	Test Co	ndition	Min	Тур	Max	Unit
DRAIN-SOURCE DIODE CHARACTERISTICS							
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = 50 A	$T_J = 25^{\circ}C$		0.9	1.2	V
		V _{GS} = 0 V, I _S = 20 A	T _J = 25°C		0.8	1.0	
Reverse Recovery Time	t _{RR}				35		ns
Charge Time	ta	V _{GS} = 0 V, dls/	dt = 100 A/μs,		20		
Discharge Time	tb	V _{GS} = 0 V, dls/ I _S = 5	50 A		15		
Reverse Recovery Charge	Q _{RR}				40		nC

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES




Figure 12. Thermal Response

ORDERING INFORMATION

Order Number	Package	Shipping [†]
NVD5890NT4G	DPAK (Pb-Free)	2500/Tape & Reel
NVD5890NT4G-VF01	DPAK (Pb-Free)	2500/Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ONSEM¹.

onsemi and OTISETTIL are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>