Power MOSFET

20 V/–20 V, 4.7 A/–4.0 A, Complementary, 2x2 mm, WDFN Package

Features

- WDFN 2x2 mm Package with Exposed Drain Pads for Excellent Thermal Conduction
- Lowest R_{DS(on)} in 2x2 mm Package
- Footprint Same as SC-88 Package
- Low Profile (< 0.8 mm) for Easy Fit in Thin Environments
- ESD Protected
- This is a Pb–Free Device

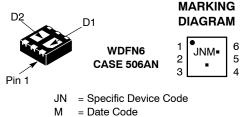
Applications

- Optimized for Battery and Load Management Applications in Portable Equipment
- Load Switch
- Level Shift Circuits
- DC-DC Converters

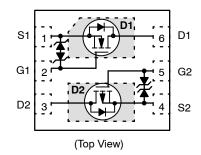
MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Paran	Symbol	Value	Unit		
Drain-to-Source Volta	V _{DSS}	20	V		
Gate-to-Source Voltag	je		V _{GS}	±8.0	V
N-Channel	Steady	T _A = 25°C	I _D	3.8	А
Continuous Drain Current (Note 1)	State	T _A = 85°C		2.7	
	t≤5 s	$T_A = 25^{\circ}C$		4.7	
P-Channel	Steady	$T_A = 25^{\circ}C$	I _D	-3.2	А
Continuous Drain Current (Note 1)	State	T _A = 85°C		-2.3	
	t≤5 s	$T_A = 25^{\circ}C$		-4.0	
Power Dissipation	Steady		PD	1.5	W
(Note 1)	State	T _A = 25°C			
	t≤5 s			2.3	
N-Channel Continuous Drain	Steady	$T_A = 25^{\circ}C$	ID	2.6	А
Current (Note 2)	State	T _A = 85°C		1.9	
P-Channel Continuous Drain	Steady	T _A = 25°C	I _D	-2.2	А
Current (Note 2)	State	$T_A = 85^{\circ}C$	1	-1.6	
Power Dissipation (Note 2)	Steady State	$T_A = 25^{\circ}C$	PD	0.71	W
Pulsed Drain Current	N-Ch	t _p = 10 μs	I _{DM}	18	А
	P-Ch			-16	
Operating Junction and	T _J , T _{STG}	–55 to 150	°C		
Lead Temperature for S (1/8" from case for 10 s	ΤL	260	°C		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
- Surface Mounted on FR4 Board using the minimum recommended pad size of 30 mm², 2 oz Cu.

ON Semiconductor®


www.onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
	68 mΩ @ 4.5 V	4.7 A
N-Channel 20 V	86 mΩ @ 2.5 V	4.2 A
201	120 mΩ @ 1.8 V	3.5 A
D. Okasad	100 mΩ @ –4.5 V	-4.0 A
P-Channel -20 V	144 mΩ @ –2.5 V	–3.3 A
	200 mΩ @ −1.8 V	-2.8 A

- = Pb–Free Package
- (Note: Microdot may be in either location)

PIN CONNECTIONS

ORDERING INFORMATION

Device	Package	Shipping [†]
NTLJD3183CZTAG	WDFN6 (Pb-Free)	3000/Tape & Reel
NTLJD3183CZTBG	WDFN6 (Pb-Free)	3000/Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Мах	Unit
SINGLE OPERATION (SELF-HEATED)			
Junction-to-Ambient - Steady State (Note 3)	$R_{ heta JA}$	83	
Junction-to-Ambient - Steady State Min Pad (Note 4)	$R_{ hetaJA}$	177	°C/W
Junction-to-Ambient $-t \le 5$ s (Note 3)	$R_{ hetaJA}$	54	
DUAL OPERATION (EQUALLY HEATED)			
Junction-to-Ambient - Steady State (Note 3)	$R_{ hetaJA}$	58	
Junction-to-Ambient - Steady State Min Pad (Note 4)	$R_{ hetaJA}$	133	°C/W
Junction-to-Ambient – t \leq 5 s (Note 3)	R _{θJA}	40	

Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
 Surface Mounted on FR4 Board using the minimum recommended pad size (30 mm², 2 oz Cu).

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise noted)

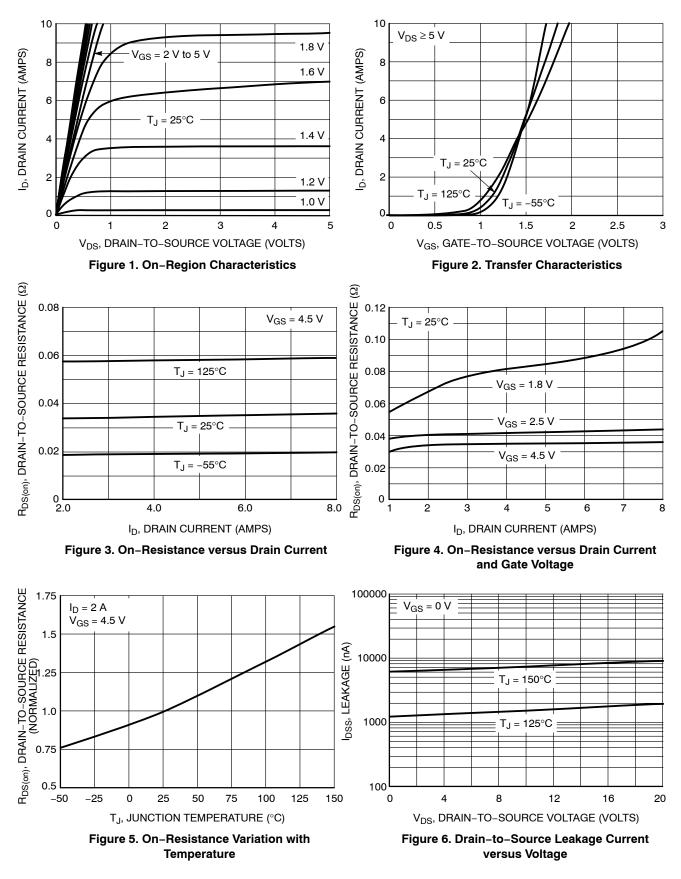
Parameter	Symbol	N/P	Test Conditions		Min	Тур	Max	Unit
OFF CHARACTERISTICS	OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	Ν	$V_{GS} = 0 V$	I _D = 250 μA	20			V
		Р		I _D = -250 μA	-20			
Drain-to-Source Breakdown Voltage	V _{(BR)DSS} /T _J	Ν	D () 4700	I _D = 250 μA		15		mV/°C
Temperature Coefficient	ture Coefficient Ref to 25°C	I _D = -250 μA		13				
Zero Gate Voltage Drain Current	I _{DSS}	Ν	$V_{GS} = 0 V, V_{DS} = 16 V$	T _J = 25°C			1.0	μΑ
		Р	V_{GS} = 0 V, V_{DS} = -16 V				-1.0	
		Ν	V_{GS} = 0 V, V_{DS} = 16 V	т огоо			10	
		Р	V_{GS} = 0 V, V_{DS} = -16 V	T _J = 85°C			-10	
Gate-to-Source Leakage Current	I _{GSS}	Ν	V_{DS} = 0 V, V_{GS} = ±8.0 V				±10	μA
		Р					±10]

ON CHARACTERISTICS (Note 5)

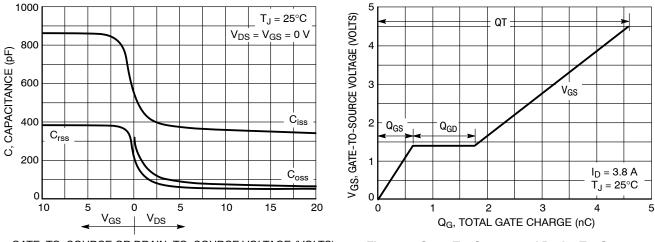
Gate Threshold Voltage	V _{GS(TH)}	N	I _D = 250 μA	0.4		1.0	V	
		Р	$V_{GS} = V_{DS}$	I _D = -250 μA	-0.4		-1.0	
Gate Threshold Temperature Coefficient	V _{GS(TH)} /T _J	(TH)/TJ N Define 2500	I _D = 250 μA		-3.0		mV/°C	
Coefficient		Р	Ref to 25°C	I _D = -250 μA		2.0		
Drain-to-Source On Resistance	R _{DS(on)}	Ν	V_{GS} = 4.5 V , I_D = 2.0 A			34	68	mΩ
		Р	V_{GS} = $-4.5~V$, I_D = $-2.0~A$			68	100	
		Ν	V_{GS} = 2.5 V , I _D =	V_{GS} = 2.5 V , I_{D} = 2.0 A		42	86	
		Р	$V_{ m GS}$ = –2.5 V, I _D =	–2.0 A		90	144	
		Ν	V_{GS} = 1.8 V , I _D =	= 1.7 A		53	120	
		Р	V _{GS} = -1.8 V, I _D =	–1.7 A		125	200	
Forward Transconductance	9 FS	Ν	V_{DS} = 5.0 V, I _D =	2.0 A		7.0		S
		Р	V_{DS} = -5.0 V , I _D =	= –2.0 A		6.5		

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

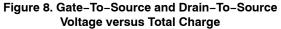
Parameter	Symbol	N/P	Test Conditions		Min	Тур	Max	Unit
CHARGES, CAPACITANCES AND	GATE RESISTAI	NCE						
Input Capacitance	C _{ISS}	Ν		V _{DS} = 10 V		355		pF
		Р		V _{DS} = -10 V		450		
Output Capacitance	C _{OSS}	Ν		V _{DS} = 10 V		70		
		Р	f = 1.0 MHz, V _{GS} = 0 V V _I	V _{DS} = -10 V		90		
Reverse Transfer Capacitance	C _{RSS}	Ν		V _{DS} = 10 V		50		
		Р		V _{DS} = -10 V		62		
Total Gate Charge	Q _{G(TOT)}	Ν	V_{GS} = 4.5 V, V_{DS} = 10 V, I_{D} = 3.8 A			4.6	7.0	nC
		Р	V_{GS} = –4.5 V, V_{DS} = –10 V, I_{D} = –3.8 A			5.2	7.8	
Threshold Gate Charge	Q _{G(TH)}	Ν	V_{GS} = 4.5 V, V_{DS} = 10	V, I _D = 3.8 A		0.3		
		Р	V_{GS} = –4.5 V, V_{DS} = –10 V, I_{D} = –3.8 A			0.3		
Gate-to-Source Charge	Q _{GS}	Ν	V _{GS} = 4.5 V, V _{DS} = 10	V, I _D = 3.8 A		0.6		
		Р	V_{GS} = -4.5 V, V_{DS} = -10	V, I _D = -3.8 A		0.84		
Gate-to-Drain Charge	Q _{GD}	Ν	V _{GS} = 4.5 V, V _{DS} = 10	V, I _D = 3.8 A		1.15		
		Р	V _{GS} = -4.5 V, V _{DS} = -10	V, I _D = -3.8 A		1.5		

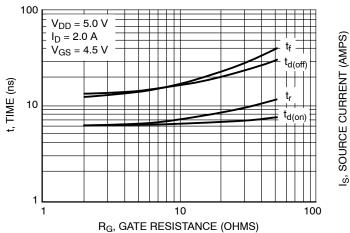

Turn-On Delay Time	t _{d(ON)}				6.2	ns
Rise Time	t _r	N	V _{GS} = 4.5 V, V _{DD} = 5 V,		5.5	
Turn-Off Delay Time	t _{d(OFF)}		$I_{\rm D} = 2.0 \text{ A}, R_{\rm G} = 2.0 \Omega$		15	
Fall Time	t _f				14	
Turn-On Delay Time	t _{d(ON)}				6.6	
Rise Time	t _r	Р	$V_{GS} = -4.5 \text{ V}, V_{DD} = -5 \text{ V}, \\ I_D = -2.0 \text{ A}, \text{ R}_G = 2.0 \Omega$		9.0	
Turn-Off Delay Time	t _{d(OFF)}				14	
Fall Time	t _f]			12.5	

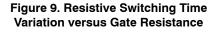
DRAIN-SOURCE DIODE CHARACTERISTICS


Forward Diode Voltage	V _{SD}	Ν		I _S = 1.0 A	0.65	1.0	V
		Р	V _{GS} = 0 V, T _J = 25 °C	I _S = –1.0 A	-0.73	-1.0	
		Ν		I _S = 1.0 A	0.55		
		Р	V _{GS} = 0 V, T _J = 125 °C	I _S = –1.0 A	-0.62		
Reverse Recovery Time	t _{RR}	Ν		I _S = 1.0 A	21		ns
		Р		I _S = –1.0 A	23		
Charge Time	t _a	Ν		I _S = 1.0 A	10.5		
		Р	V _{GS} = 0 V,	I _S = –1.0 A	13		
Discharge Time	t _b	Ν	dI _S / dt = 100 A/µs	I _S = 1.0 A	10.5		
		Р		I _S = -1.0 A	10		
Reverse Recovery Charge	Q _{RR}	Ν	1	I _S = 1.0 A	7.0		nC
		Р	1	I _S = -1.0 A	10		1

5. Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
 6. Switching characteristics are independent of operating junction temperatures.


N-CHANNEL TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)




N-CHANNEL TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

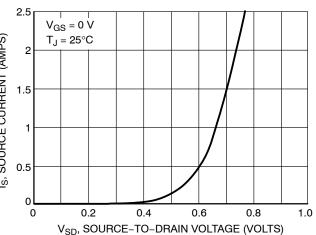
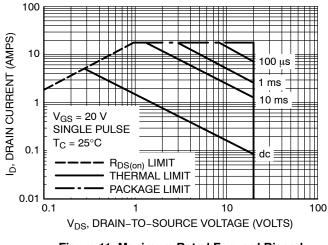
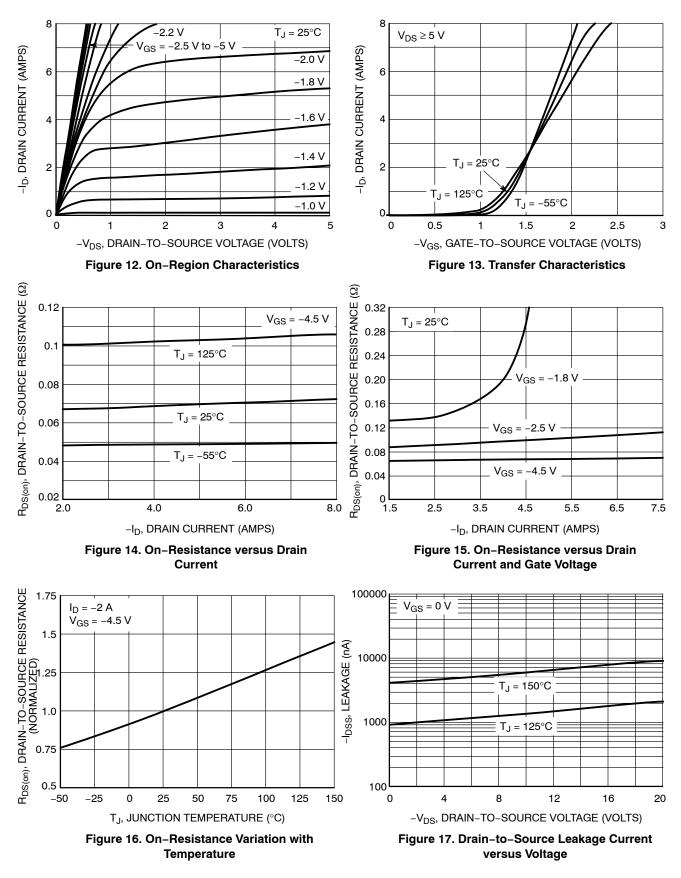
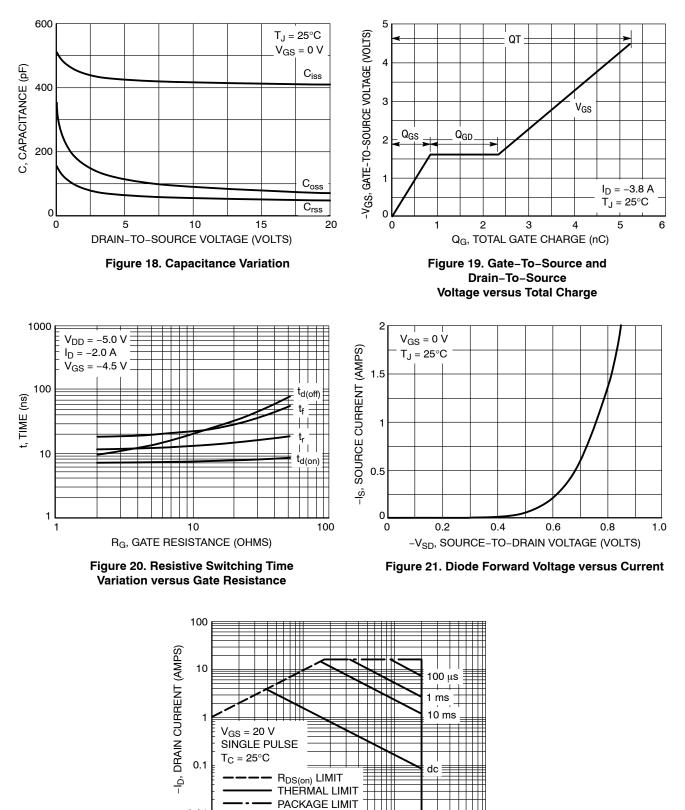
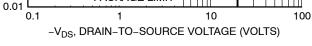
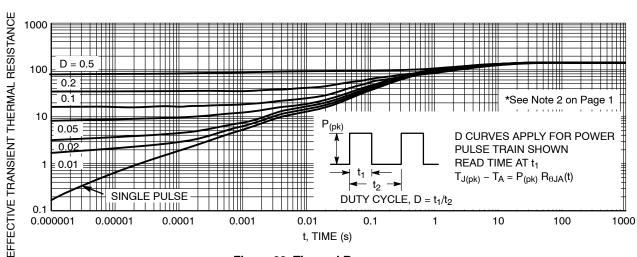




Figure 10. Diode Forward Voltage versus Current

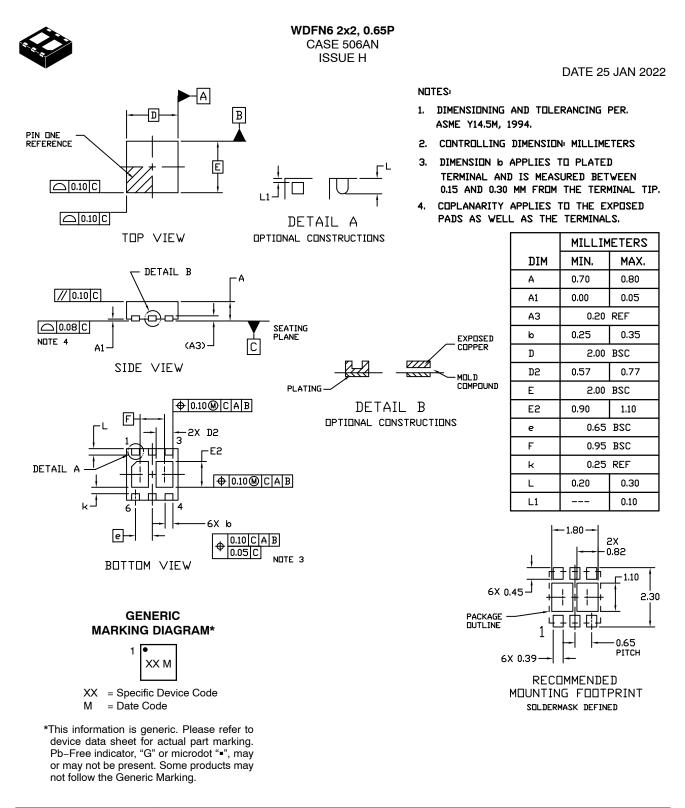




P-CHANNEL TYPICAL PERFORMANCE CURVES ($T_J = 25^{\circ}C$ unless otherwise noted)



P-CHANNEL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)



TYPICAL PERFORMANCE CURVES (T_J = 25° C unless otherwise noted)

Figure 23. Thermal Response

onsemi

DOCUMENT NUMBER:	98AON20861D	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	WDFN6 2x2, 0.65P		PAGE 1 OF 1			

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>