MOSFET - P-Channel, TSOP-6

-3.3 A, -12 V

Features

- Ultra Low R_{DS(on)}
- Higher Efficiency Extending Battery Life
- Miniature TSOP-6 Surface Mount Package
- Pb-Free Package is Available

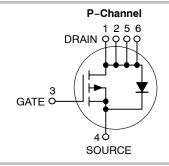
Applications

• Power Management in Portable and Battery-Powered Products, i.e.: Cellular and Cordless Telephones, and PCMCIA Cards

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted.)

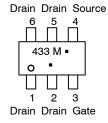
· -			
Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V_{DSS}	-12	Volts
Gate-to-Source Voltage - Continuous	V_{GS}	±8.0	Volts
Thermal Resistance Junction-to-Ambient (Note 1) Total Power Dissipation @ T _A = 25°C Drain Current - Continuous @ T _A = 25°C - Pulsed Drain Current (T _p < 10 μS) Maximum Operating Power Dissipation Maximum Operating Drain Current	R _{θJA} P _d I _D I _{DM} P _d I _D	62.5 2.0 -3.3 -20 1.0 -2.35	°C/W Watts Amps Amps Watts Amps
Thermal Resistance Junction-to-Ambient (Note 2) Total Power Dissipation @ T _A = 25°C Drain Current - Continuous @ T _A = 25°C - Pulsed Drain Current (T _p < 10 μS) Maximum Operating Power Dissipation	R _{0JA} P _d I _D I _{DM} P _d I _D	128 1.0 -2.35 -14 0.5 -1.65	°C/W Watts Amps Amps Watts Amps
Maximum Operating Drain Current Operating and Storage Temperature Range	T _J , T _{stg}	-55 to 150	°C
Maximum Lead Temperature for Soldering Purposes for 10 Seconds	TL	260	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.


- 1. Mounted onto a 2" square FR-4 board (1 in sq, 2 oz. Cu 0.06" thick single sided), t < 5.0 seconds.
- Mounted onto a 2" square FR-4 board (1 in sq, 2 oz. Cu 0.06" thick single sided), operating to steady state.

ON Semiconductor®

http://onsemi.com


V _{(BR)DSS}	R _{DS(on)} TYP	I _D Max	
-12 V	75 mΩ @ –4.5 V	-3.3 A	

MARKING DIAGRAM & PIN ASSIGNMENT

TSOP-6 CASE 318G STYLE 1

433 = Specific Device Code

M = Date Code*

= Pb-Free Package

(Note: Microdot may be in either location)
*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
NTGS3433T1	TSOP-6	3000 Tape & Reel
NTGS3433T1G	TSOP-6 (Pb-Free)	3000 Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

1

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted) (Notes 3 & 4)

Char	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						
Drain–Source Breakdown Voltage (V _{GS} = 0 Vdc, I _D = –10 μA)			-12	-	-	Vdc
Zero Gate Voltage Drain Current $(V_{GS} = 0 \text{ Vdc}, V_{DS} = -8 \text{ Vdc}, T_{GS} = 0 \text{ Vdc}, V_{DS} = -8 \text{ Vdc}, T_{DS} = -8 Vdc$	-J = 25°C) -J = 70°C)	I _{DSS}	- -	- -	-1.0 -5.0	μAdc
Gate-Body Leakage Current (V _{GS} = -8.0 Vdc, V _{DS} = 0 Vdc)		I _{GSS}	-	-	-100	nAdc
Gate-Body Leakage Current (V _{GS} = +8.0 Vdc, V _{DS} = 0 Vdc)		I _{GSS}	-	_	100	nAdc
ON CHARACTERISTICS						
Gate Threshold Voltage ($V_{DS} = V_{GS}$, $I_D = -250 \mu Adc$)		V _{GS(th)}	-0.50	-0.70	-1.50	Vdc
Static Drain–Source On–State Resistance $(V_{GS} = -4.5 \text{ Vdc}, I_D = -3.3 \text{ Adc})$ $(V_{GS} = -2.5 \text{ Vdc}, I_D = -2.9 \text{ Adc})$		R _{DS(on)}	- -	0.055 0.075	0.075 0.095	Ω
Forward Transconductance (V _{DS} = -10 Vdc, I _D = -3.3 Add	9FS	-	7.0	_	mhos	
DYNAMIC CHARACTERISTICS						
Total Gate Charge		Q _{tot}	-	7.0	15	nC
Gate-Source Charge	$(V_{DS} = -10 \text{ Vdc}, V_{GS} = -4.5 \text{ Vdc}, $ $I_{D} = -3.3 \text{ Adc})$	Q_{gs}	-	2.0	-	
Gate-Drain Charge		Q_{gd}	-	3.5	-	
Input Capacitance		C _{iss}	-	550	-	pF
Output Capacitance	$(V_{DS} = -5.0 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, f = 1.0 \text{ MHz})$	C _{oss}	-	450	-	
Reverse Transfer Capacitance	Ź	C _{rss}	-	200	-	
SWITCHING CHARACTERISTICS						
Turn-On Delay Time		t _{d(on)}	-	20	30	ns
Rise Time	(V _{DD} = -10 Vdc, I _D = -1.0 Adc,	t _r	-	20	30	
Turn-Off Delay Time	$V_{GS} = -4.5 \text{ Vdc}, R_g = 6.0 \Omega$	t _{d(off)}	-	110	120	
Fall Time		t _f	-	100	115	
Reverse Recovery Time	$(I_S = -1.7 \text{ Adc}, dI_S/dt = 100 \text{ A/}\mu\text{s})$	t _{rr}	-	30	-	ns
BODY-DRAIN DIODE RATINGS						
Diode Forward On-Voltage	$(I_S = -1.7 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$	V _{SD}	-	-0.80	-1.5	Vdc
Diode Forward On-Voltage	$(I_S = -3.3 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$	V _{SD}	-	-0.90	-	Vdc
· · · · · · · · · · · · · · · · · · ·	•					

Indicates Pulse Test: P.W. = 300 μsec max, Duty Cycle = 2%.
 Class 1 ESD rated – Handling precautions to protect against electrostatic discharge are mandatory.

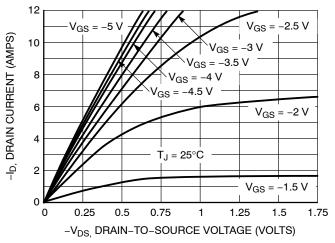


Figure 1. On-Region Characteristics

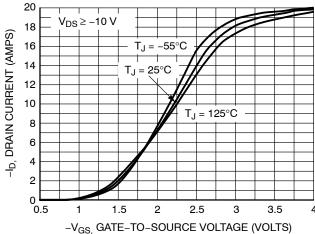


Figure 2. Transfer Characteristics

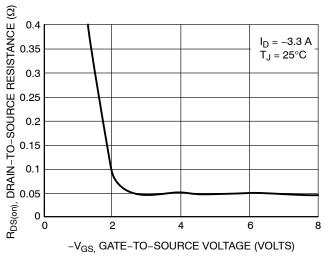


Figure 3. On-Resistance vs. Gate-to-Source Voltage

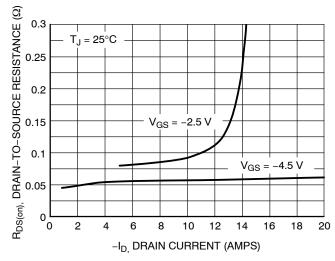


Figure 4. On-Resistance vs. Drain Current and **Gate Voltage**

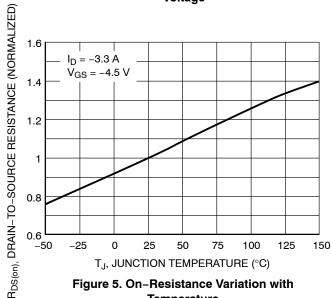


Figure 5. On-Resistance Variation with **Temperature**

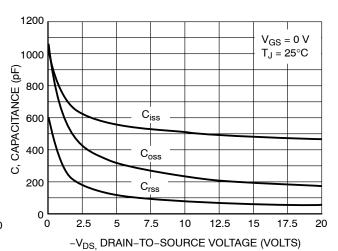
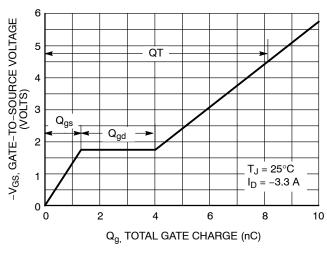



Figure 6. Capacitance Variation

10 $V_{GS} = 0 V$ -I_S, SOURCE CURRENT (AMPS) 8 $T_J = 150^{\circ}C$ 5 $T_J = 25^{\circ}C$ 3 2 0 0 0.2 0.4 0.6 8.0 1.2 -V_{SD,} SOURCE-TO-DRAIN VOLTAGE (VOLTS)

Figure 7. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

Figure 8. Diode Forward Voltage vs. Current

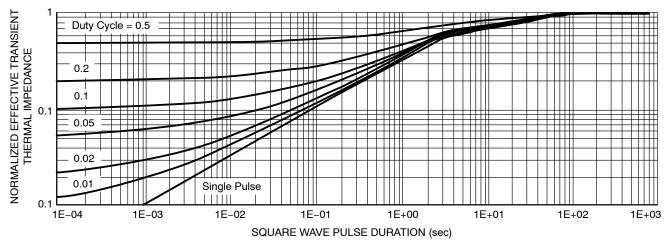


Figure 9. Normalized Thermal Transient Impedance, Junction-to-Ambient

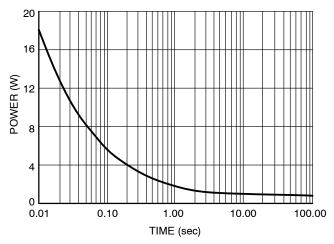
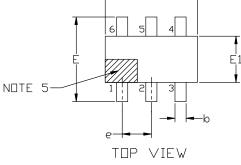
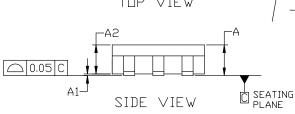
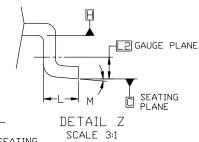


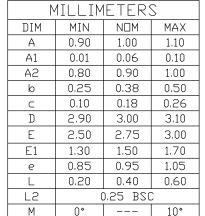
Figure 10. Single Pulse Power

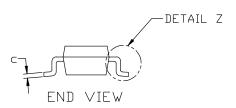

TSOP-6 3.00x1.50x0.90, 0.95P **CASE 318G ISSUE W**


NOTES


1.

DATE 26 FEB 2024




MATERIAL.

DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.

CONTROLLING DIMENSION: MILLIMETERS.
MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE

4. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH,
PROTRUSIONS, OR GATE BURRS, MOLD FLASH, PROTRUSIONS, OR
GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSIONS D
AND E1 ARE DETERMINED AT DATUM H.
5. PIN 1 INDICATOR MUST BE LOCATED IN THE INDICATED ZONE

		-	6X 0.60
3.20			6X -0.95
<u>, </u>			
	1		-0.95 PITCH

RECOMMENDED MOUNTING FOOTPRINT

*For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference manual, SDLDERRM/D.

DOCUMENT NUMBER:	98ASB14888C	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSOP-6 3.00x1.50x0.90, 0.	TSOP-6 3.00x1.50x0.90, 0.95P		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

TSOP-6 3.00x1.50x0.90, 0.95P CASE 318G ISSUE W

DATE 26 FEB 2024

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code XXX = Specific Device Code

A =Assembly Location M = Date Code
Y = Year ■ = Pb–Free Package

W = Work Week
■ Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1: PIN 1. DRAIN 2. DRAIN 3. GATE 4. SOURCE 5. DRAIN 6. DRAIN	STYLE 2: PIN 1. EMITTER 2 2. BASE 1 3. COLLECTOR 1 4. EMITTER 1 5. BASE 2 6. COLLECTOR 2	STYLE 3: PIN 1. ENABLE 2. N/C 3. R BOOST 4. Vz 5. V in 6. V out	STYLE 4: PIN 1. N/C 2. V in 3. NOT USED 4. GROUND 5. ENABLE 6. LOAD	STYLE 5: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2	STYLE 6: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. EMITTER 5. COLLECTOR 6. COLLECTOR
STYLE 7: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. N/C 5. COLLECTOR 6. EMITTER	STYLE 8: PIN 1. Vbus 2. D(in) 3. D(in)+ 4. D(out)+ 5. D(out) 6. GND	STYLE 9: PIN 1. LOW VOLTAGE GATE 2. DRAIN 3. SOURCE 4. DRAIN 5. DRAIN 6. HIGH VOLTAGE GATE	STYLE 10: PIN 1. D(OUT)+ 2. GND 3. D(OUT)- 4. D(IN)- 5. VBUS 6. D(IN)+	STYLE 11: PIN 1. SOURCE 1 2. DRAIN 2 3. DRAIN 2 4. SOURCE 2 5. GATE 1 6. DRAIN 1/GATE 2	STYLE 12: PIN 1. I/O 2. GROUND 3. I/O 4. I/O 5. VCC 6. I/O
STYLE 13: PIN 1. GATE 1 2. SOURCE 2 3. GATE 2 4. DRAIN 2 5. SOURCE 1 6. DRAIN 1	STYLE 14: PIN 1. ANODE 2. SOURCE 3. GATE 4. CATHODE/DRAIN 5. CATHODE/DRAIN 6. CATHODE/DRAIN	PIN 1. ANODE PIN 2. SOURCE 3. GATE 4. DRAIN	E 16: 1. ANODE/CATHODE 2. BASE 3. EMITTER 4. COLLECTOR 5. ANODE 6. CATHODE	STYLE 17: PIN 1. EMITTER 2. BASE 3. ANODE/CATHODE 4. ANODE 5. CATHODE 6. COLLECTOR	

DOCUMENT NUMBER	98ASB14888C	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION	: TSOP-6 3.00x1.50x0.90, 0	TSOP-6 3.00x1.50x0.90, 0.95P	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales