Power MOSFET

Complementary, 20 V, +3.5/-2.7 A, TSOP-6 Dual

Features

- Complementary N-Channel and P-Channel MOSFET
- Small Size (3 x 3 mm) Dual TSOP-6 Package
- Leading Edge Trench Technology for Low On Resistance
- Reduced Gate Charge to Improve Switching Response
- Independently Connected Devices to Provide Design Flexibility
- This is a Pb-Free Device

Applications

- DC-DC Conversion Circuits
- Load/Power Switching with Level Shift

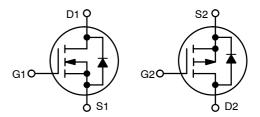
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Pa	Symbol	Value	Unit		
Drain-to-Source V	V _{DSS}	20	V		
Gate-to-Source Vo	oltage (N-C	Ch & P-Ch)	V_{GS}	±8	V
N-Channel Continuous Drain	Steady State	T _A = 25°C T _A = 85°C	I _D	3.2 2.3	Α
Current (Note 1)	t ≤ 5 s	T _A = 25°C		3.5	
P-Channel Continuous Drain	Steady State	T _A = 25°C T _A = 85°C	I _D	2.4 1.7	Α
Current (Note 1)	t ≤ 5 s	T _A = 25°C		2.7	
Power Dissipation	Steady State	T _A = 25°C	P_{D}	0.9	W
(Note 1)	t ≤ 5 s			1.1	
Pulsed Drain	N-Ch	t _p = 10 μs	I _{DM}	11	Α
Current	P-Ch			8.0	
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to 150	°C
Source Current (Bo	I _S	8.0	Α		
Lead Temperature (1/8" from case for		urposes	TL	260	°C

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	140	°C/W
Junction-to-Ambient – t ≤ 5 s (Note 1)	$R_{\theta JA}$	110	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


1. Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).

ON Semiconductor®

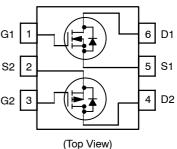
http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX (Note 1)
N-Ch	60 mΩ @ 4.5 V	3.5 A
20 V	90 mΩ @ 2.5 V	3.5 A
P-Ch	110 mΩ @ 4.5 V	-2.7 A
-20 V	145 mΩ @ 2.5 V	-2.7 A

N-CHANNEL MOSFET P-CHANNEL MOSFET

TSOP-6 **CASE 318G** STYLE 13

MARKING


CC = Specific Device Code

= Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

PIN CONNECTION

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

ELECTRICAL CHARACTERISTICS (T₁ = 25°C unless otherwise noted)

Parameter	Symbol	N/P	Test Condition	Min	Тур	Max	Unit	
OFF CHARACTERISTICS	•							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	N	.,	I _D = 250 μA	20			V
		Р	V _{GS} = 0 V	I _D = -250 μA	-20			
Drain-to-Source Breakdown Voltage	V _{(BR)DSS} /T _J	N				1.1		mV/°C
Temperature Coefficient		Р				1.1		
Zero Gate Voltage Drain Current	I _{DSS}	N	V _{GS} = 0 V, V _{DS} = 16 V	T 05.00	T 05.00	1.0	μА	
		Р	V _{GS} = 0 V, V _{DS} = -16 V	T _J = 25 °C			-1.0	
		N	V _{GS} = 0 V, V _{DS} = 16 V	T _J = 85 °C			10	
		Р	$V_{GS} = 0 \text{ V}, V_{DS} = -16 \text{ V}$	1) = 85 °C			-10	
Gate-to-Source Leakage Current	I _{GSS}	N	$V_{DS} = 0 \text{ V}, V_{GS}$	= ±8 V			±100	nA
		Р	$V_{DS} = 0 V, V_{GS}$	= ±8 V			±100	
ON CHARACTERISTICS (Note 2)								
Gate Threshold Voltage	V _{GS(TH)}	N		I _D = 250 μA	0.4		1.0	V
		Р	$V_{GS} = V_{DS}$	$I_D = -250 \mu\text{A}$	-0.4		-1.0	
Drain-to-Source On Resistance	R _{DS(on)}	N	$V_{GS} = 4.5 \text{ V}$, $I_D = 3.5 \text{ A}$			41	60	mΩ
		Р	$V_{GS} = -4.5 \text{ V}$, $I_D = -2.7 \text{ A}$			83	110	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		= 2.9 A		51	90	
				= -2.4 A		104	145	
				= 2.2 A		67	150	
		Р	$V_{GS} = -1.8 \text{ V}$, $I_D = -1.9 \text{ A}$			143	220	
Forward Transconductance	g _{FS}	N	V _{DS} = 10 V , I _D =	: 3.5 A		4.7		S
		Р	$V_{DS} = -10 \text{ V}$, $I_D = -2.7 \text{ A}$			5.1		
CHARGES AND CAPACITANCES								
Input Capacitance	C _{ISS}					387		
Output Capacitance	C _{OSS}	N		V _{DS} = 10 V		73		1
Reverse Transfer Capacitance	C _{RSS}		f = 1 MHz, V _{GS} = 0 V			43		nE
Input Capacitance	C _{ISS}		1 = 1 MH2, VGS = 0 V			509		- pF
Output Capacitance	C _{OSS}	Р		V _{DS} = -10 V		76		
Reverse Transfer Capacitance	C _{RSS}					40		
Total Gate Charge	Q _{G(TOT)}		V_{GS} = 4.5 V, V_{DS} = 10 V, I_{D} = 2.0 A R_{G} = 6 Ω			4.6	5.5	
Threshold Gate Charge	Q _{G(TH)}	N				0.3		
Gate-to-Source Gate Charge	Q_{GS}	IN				0.7		
Gate-to-Drain "Miller" Charge	Q_{GD}					1.2		r.C
Total Gate Charge	Q _{G(TOT)}					5.2	5.5	nC
Threshold Gate Charge	Q _{G(TH)}	P	V _{GS} = -4.5 V, V _{DS} = -10	V, I _D = -1.0 A		0.4		
Gate-to-Source Gate Charge	Q_{GS}] [$R_G = 6 \Omega$			1.0		
Gate-to-Drain "Miller" Charge	Q_{GD}					1.2		

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	N/P	Test Conditions			Тур	Max	Unit
SWITCHING CHARACTERISTIC	S (Note 3)							
Turn-On Delay Time	t _{d(ON)}				6.5		ns	
Rise Time	t _r	N	V_{GS} = 4.5 V, V_{DD} = 10 V, I_D = 1.0 A, R_G = 6.0 Ω			3.8		
Turn-Off Delay Time	t _{d(OFF)}					16.4		
Fall Time	t _f					2.4		
Turn-On Delay Time	t _{d(ON)}				7.0			
Rise Time	t _r	P	$V_{GS} = -4.5 \text{ V}, V_{DD} = -10 \text{ V},$ $I_{D} = -1.0 \text{ A}, R_{G} = 6.0 \Omega$			5.3		
Turn-Off Delay Time	t _{d(OFF)}	7 1				33.3		
Fall Time	t _f					29.5		
DRAIN-SOURCE DIODE CHARA	ACTERISTICS							
Forward Diode Voltage	V _{SD}	N	I _S = 0.8 A			0.7	1.2	V
		Р	V_{GS} = 0 V, T_J = 25 °C	I _S = -0.8 A		-0.7	-1.2	
Reverse Recovery Time	t _{RR}					7.7		ns
Charge Time	t _a	٦., ١	V 0 V 41 / 41	100 1/ -		4.5		
Discharge Time	t _b	N	$V_{GS} = 0 \text{ V, dI}_S / \text{dt} =$	100 A/μS		3.2		
Reverse Recovery Charge	Q_{RR}					1.9		nC
Reverse Recovery Time	t _{RR}					11.4		ns
Charge Time	t _a	ا ۾ [V 6V 4L (4L	100 4/ -		7.5		1
Discharge Time	t _b	P	$V_{GS} = 0 \text{ V, } dI_S / dt =$		3.9		1	
Reverse Recovery Charge	Q _{RR}				4.7		nC	

^{2.} Pulse Test: pulse width \leq 300 $\mu s,$ duty cycle \leq 2%.

ORDERING INFORMATION

Device	Package	Shipping [†]
NTGD3149CT1G	TSOP6 (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{3.} Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS (N-CHANNEL)

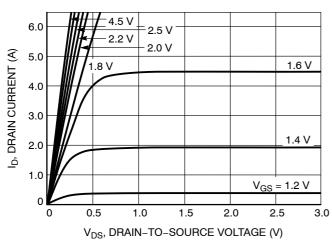


Figure 1. Nch On-Region Characteristics

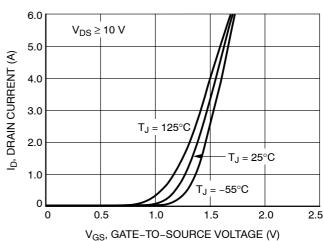


Figure 2. Nch Transfer Characteristics

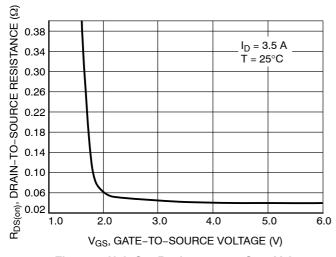


Figure 3. Nch On-Resistance vs. Gate Voltage

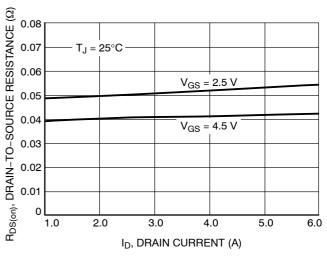


Figure 4. Nch On-Resistance vs. Drain Current and Gate Voltage

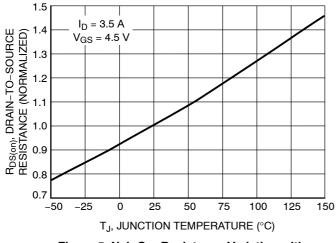


Figure 5. Nch On-Resistance Variation with Temperature

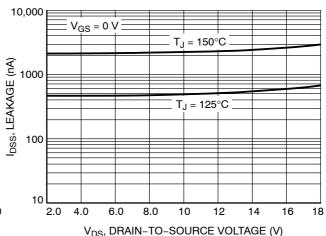


Figure 6. Nch Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS (N-CHANNEL)

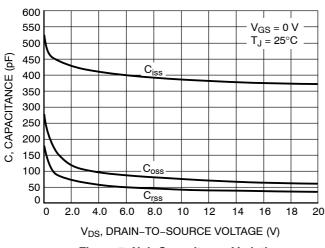


Figure 7. Nch Capacitance Variation

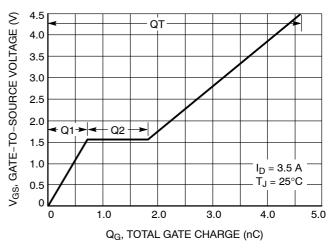


Figure 8. Nch Gate-to-Source Voltage vs. Total Charge

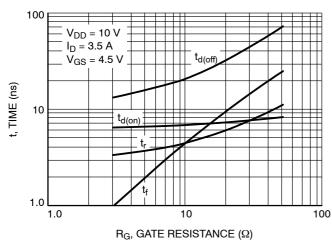


Figure 9. Nch Resistive Switching Time Variation vs. Gate Resistance

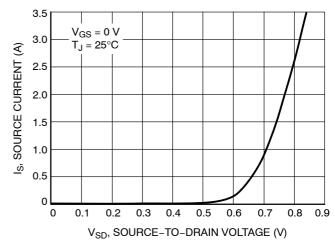


Figure 10. Nch Diode Forward Voltage vs. Current

TYPICAL CHARACTERISTICS (P-CHANNEL)

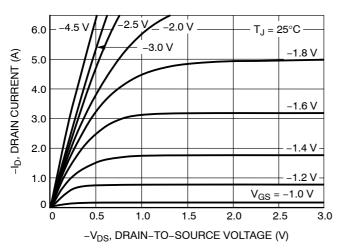


Figure 11. Pch On-Region Characteristics

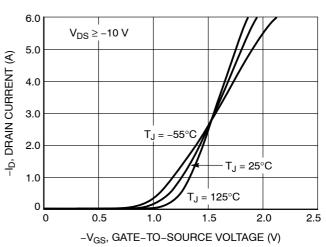


Figure 12. Pch Transfer Characteristics

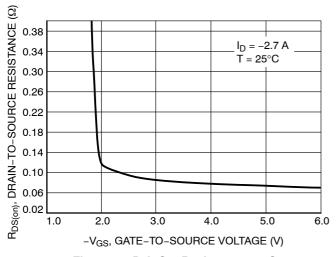


Figure 13. Pch On-Resistance vs. Gate Voltage

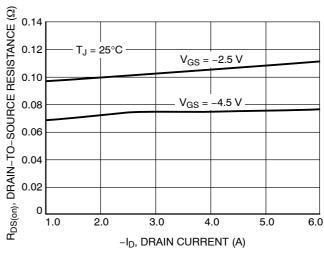


Figure 14. Pch On–Resistance vs. Drain Current and Gate Voltage

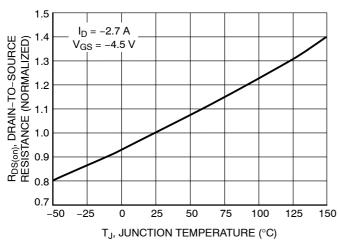


Figure 15. Pch On–Resistance Variation with Temperature

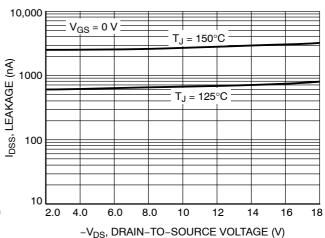


Figure 16. Pch Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS (P-CHANNEL)

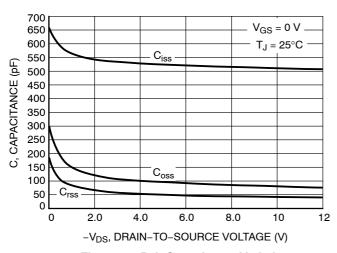


Figure 17. Pch Capacitance Variation

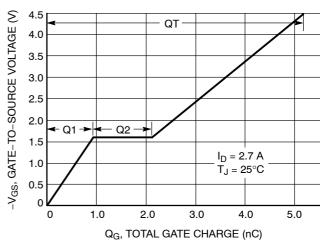


Figure 18. Pch Gate-to-Source Voltage vs.
Total Charge

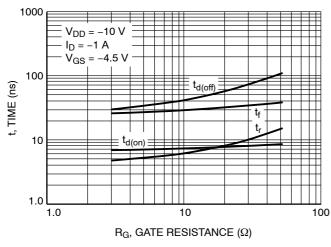


Figure 19. Pch Resistive Switching Time Variation vs. Gate Resistance

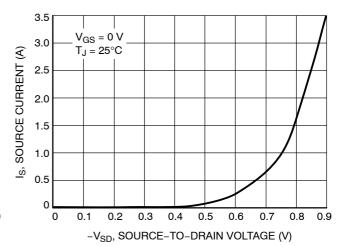
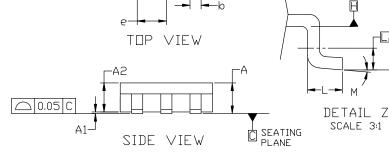


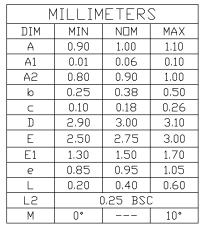
Figure 20. Pch Diode Forward Voltage vs. Current

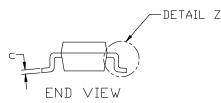
NOTE 5

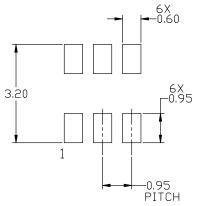
TSOP-6 3.00x1.50x0.90, 0.95P **CASE 318G ISSUE W**

DATE 26 FEB 2024




- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.


L2 GAUGE PLANE


SEATING PLANE

- CONTROLLING DIMENSION: MILLIMETERS.
 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- 4. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH,
 PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR
 GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSIONS D
 AND E1 ARE DETERMINED AT DATUM H.
 5. PIN 1 INDICATOR MUST BE LOCATED IN THE INDICATED ZONE

RECOMMENDED MOUNTING FOOTPRINT

*For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference manual, SDLDERRM/D.

DOCUMENT NUMBER:	98ASB14888C	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSOP-6 3.00x1.50x0.90, 0.	95P	PAGE 1 OF 2	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

TSOP-6 3.00x1.50x0.90, 0.95P CASE 318G ISSUE W

DATE 26 FEB 2024

GENERIC MARKING DIAGRAM*

XXX M=

0 =

1 | | |

XXX = Specific Device Code XXX = Specific Device Code

W = Work Week
■ Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1: PIN 1. DRAIN 2. DRAIN 3. GATE 4. SOURCE 5. DRAIN 6. DRAIN	STYLE 2: PIN 1. EMITTER 2 2. BASE 1 3. COLLECTOR 1 4. EMITTER 1 5. BASE 2 6. COLLECTOR 2	STYLE 3: PIN 1. ENABLE 2. N/C 3. R BOOST 4. Vz 5. V in 6. V out	STYLE 4: PIN 1. N/C 2. V in 3. NOT USED 4. GROUND 5. ENABLE 6. LOAD	STYLE 5: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2	STYLE 6: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. EMITTER 5. COLLECTOR 6. COLLECTOR
STYLE 7: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. N/C 5. COLLECTOR 6. EMITTER	STYLE 8: PIN 1. Vbus 2. D(in) 3. D(in)+ 4. D(out)+ 5. D(out) 6. GND	STYLE 9: PIN 1. LOW VOLTAGE GATE 2. DRAIN 3. SOURCE 4. DRAIN 5. DRAIN 6. HIGH VOLTAGE GATE	STYLE 10: PIN 1. D(OUT)+ 2. GND 3. D(OUT)- 4. D(IN)- 5. VBUS 6. D(IN)+	STYLE 11: PIN 1. SOURCE 1 2. DRAIN 2 3. DRAIN 2 4. SOURCE 2 5. GATE 1 6. DRAIN 1/GATE 2	STYLE 12: PIN 1. I/O 2. GROUND 3. I/O 4. I/O 5. VCC 6. I/O
STYLE 13: PIN 1. GATE 1 2. SOURCE 2 3. GATE 2 4. DRAIN 2 5. SOURCE 1 6. DRAIN 1	STYLE 14: PIN 1. ANODE 2. SOURCE 3. GATE 4. CATHODE/DRAIN 5. CATHODE/DRAIN 6. CATHODE/DRAIN	PIN 1. ANODE PIN 2. SOURCE 3. GATE 4. DRAIN 5. N/C	E 16: 1. ANODE/CATHODE 2. BASE 3. EMITTER 4. COLLECTOR 5. ANODE 6. CATHODE	STYLE 17: PIN 1. EMITTER 2. BASE 3. ANODE/CATHODE 4. ANODE 5. CATHODE 6. COLLECTOR	

DOCUMENT NUMBER:	98ASB14888C	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSOP-6 3.00x1.50x0.90, 0.	95P	PAGE 2 OF 2	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales