PNP Transistor with Dual Series Switching Diode

Features

• These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- LCD Control Board
- High Speed Switching
- High Voltage Switching

MAXIMUM RATINGS - PNP TRANSISTOR

Rating	Symbol	Value	Unit
Collector – Emitter Voltage	V _{CEO}	-80	Vdc
Collector – Base Voltage	V _{CBO}	-80	Vdc
Emitter – Base Voltage	V _{EBO}	-4.0	Vdc
Collector Current – Continuous	Ι _C	-500	mAdc

MAXIMUM RATINGS - SWITCHING DIODE

Rating	Symbol	Value	Unit
Reverse Voltage	V _R	100	V
Forward Current	١ _F	200	mA
$\begin{array}{l} \mbox{Non-Repetitive Peak Forward Current} \\ \mbox{(Square Wave, } T_J = 25^\circ C \mbox{ prior to} \\ \mbox{surge)} & t < 1 \mbox{ sec} \\ t = 1 \mu \mbox{sec} \end{array}$	I _{FSM}	1.0 20	A
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

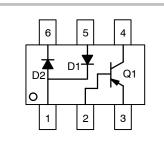
ESD RATINGS

Rating		Class	Value
Electrostatic Discharge	HBM	3A	4000 V \leq Failure < 8000 V
	MM	M4	Failure > 400 V

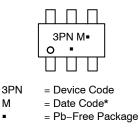
THERMAL CHARACTERISTICS

Rating	Symbol	Max	Unit
Total Device Dissipation FR-5 Board, (Note 1) @ T _A = 25°C Derate above 25°C	P _D	400	mW mW/°C
Thermal Resistance from Junction-to-Ambient (Note 1)	$R_{\theta JA}$	313	°C/W
Total Device Dissipation FR-5 Board (Note 2) T _A = 25°C Derate above 25°C	P _D	270	mW mW/°C
Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{\theta JA}$	463	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	–55 to +150	°C

1. FR-5 = 650 mm² pad, 2.0 oz Cu.


2. FR-5 = 10 mm² pad, 2.0 oz Cu.

ON Semiconductor®


http://onsemi.com

PNP Transistor with Dual Series Switching Diode

MARKING DIAGRAM

(Note: Microdot may be in either location) *Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

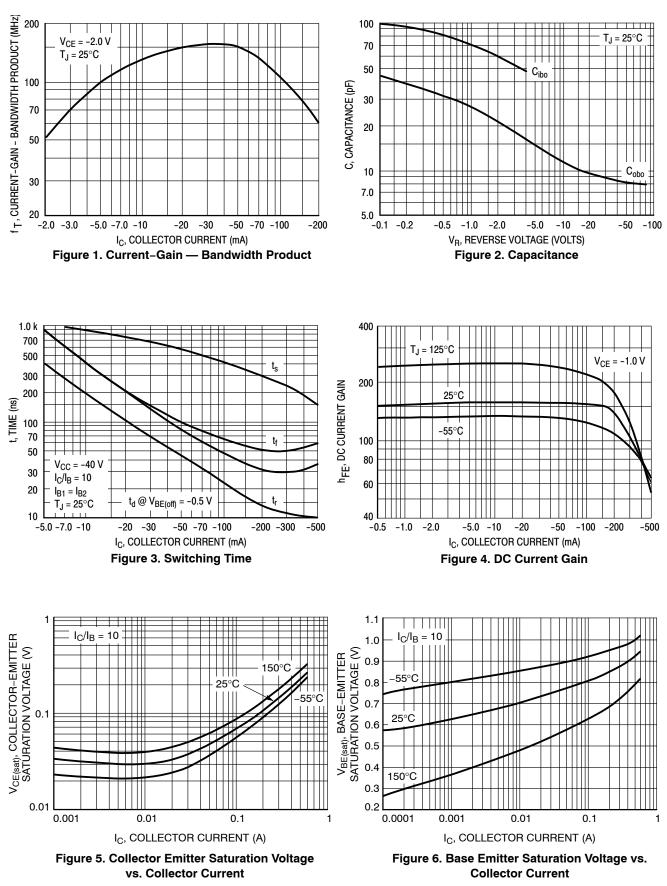
	Device	Package	Shipping [†]
Ν	NSM80100MT1G	SC–74 (Pb–Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Q1: PNP TRANSISTOR

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS			•		
Collector – Emitter Breakdown Voltage (Note 3)	(I _C = -1.0 mA, I _B = 0)	V _{(BR)CEO}	-80	-	V
Emitter – Base Breakdown Voltage	$(I_{E} = -100 \ \mu A, \ I_{C} = 0)$	V _{(BR)EBO}	-4.0	-	V
Collector Cutoff Current	$(V_{CE} = -60 \text{ V}, \text{ I}_{B} = 0)$	I _{CES}	-	-0.1	μA
Collector Cutoff Current	$(V_{CB} = -80 \text{ V}, I_E = 0)$	I _{CBO}	-	-0.1	μΑ
ON CHARACTERISTICS (Note 3)					
DC Current Gain	(I _C = -10 mA, V _{CE} = -1.0 V)	h _{FE}	120	-	-
Collector – Emitter Saturation Voltage	(I _C = -100 mA, I _B = -10 mA)	V _{CE(sat)}	_	-0.25	V
Base – Emitter Saturation Voltage	(I _C = -100 mA, V _{CE} = -1.0 V)	V _{BE(sat)}	_	-1.2	V
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain – Bandwidth Product (Note 4) $(I_C = -100)$	0 mA, V _{CE} = -2.0 V, f = 100 MHz)	f _T	150	_	MHz


3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%. 4. fT is defined as the frequency at which $|h_{fe}|$ extrapolates to unity.

D1, D2: SWITCHING DIODE (T_A = 25° C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Reverse Breakdown Voltage	V _(BR)	75	-	V
Reverse Voltage Leakage Current $ \begin{array}{c} (V_R=75~V) \\ (V_R=20~V,~T_J=150^\circ C) \\ (V_R=75~V,~T_J=150^\circ C) \end{array} $	I _R		1.0 30 100	μΑ
Diode Capacitance $(V_{R}=0\;V,f=1.0\;MHz)$	C _D	-	1.5	pF
Forward Voltage $\begin{array}{l} (I_F=1.0 \text{ mA})\\ (I_F=10 \text{ mA})\\ (I_F=50 \text{ mA})\\ (I_F=150 \text{ mA}) \end{array}$	V _F	- - -	715 855 1000 1250	mV
Reverse Recovery Time $(I_F = I_R = 10 \text{ mA}, i_{R(REC)} = 1.0 \text{ mA}, R_L = 100 \ \Omega)$	t _{rr}	-	4.0	ns
Forward Recovery Voltage (I _F = 10 mA, t_r = 20 ns)	V _{FR}	-	1.75	V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

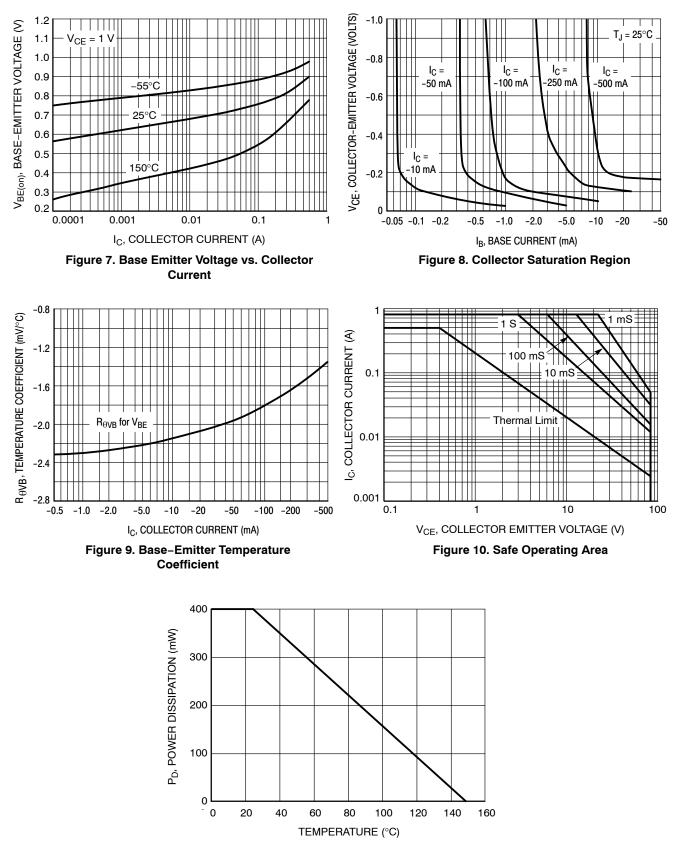
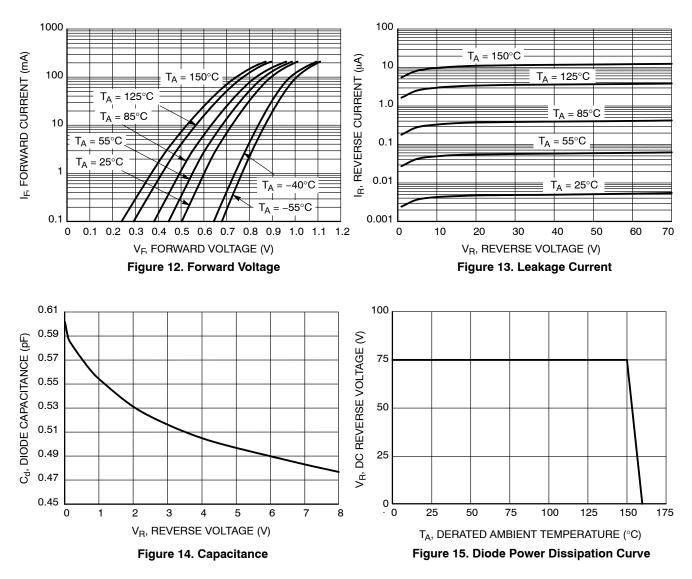
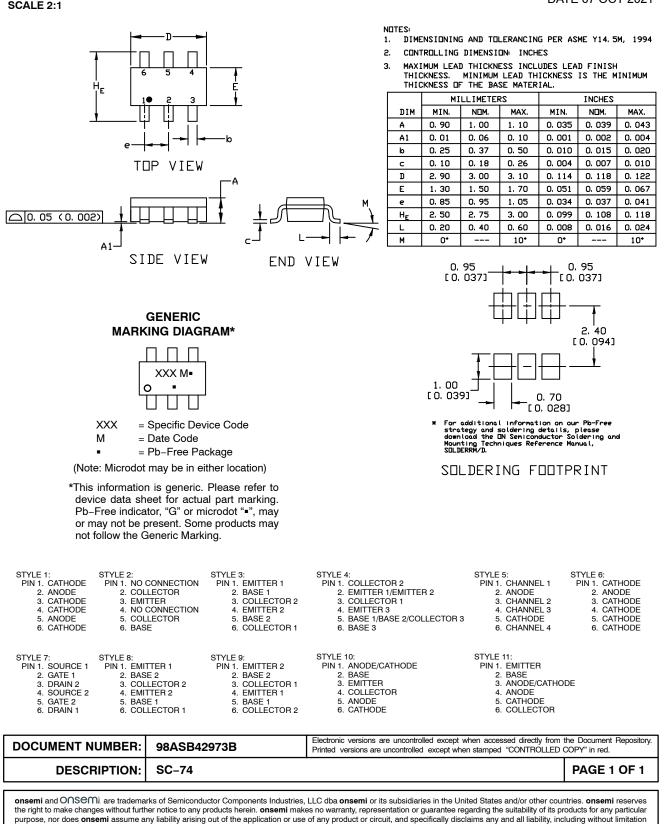



Figure 11. Operating Temperature Derating


TYPICAL CHARACTERISTICS

onsemi

SC-74 CASE 318F ISSUE P

DATE 07 OCT 2021

special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>