ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

Dual Buffer

The NLX2G16 MiniGate[™] is an advanced high-speed CMOS dual non-inverting buffer in ultra-small footprint.

The NLX2G16 input and output structures provide protection when voltages up to 7.0 V are applied, regardless of the supply voltage.

Features

- High Speed: $t_{PD} = 1.8 \text{ ns (Typ)} @ V_{CC} = 5.0 \text{ V}$
- Designed for 1.65 V to 5.5 V V_{CC} Operation
- Low Power Dissipation: $I_{CC} = 1 \mu A \text{ (Max)}$ at $T_A = 25^{\circ}\text{C}$
- 24 mA Balanced Output Source and Sink Capability
- Balanced Propagation Delays
- Overvoltage Tolerant (OVT) Input and Output Pins
- Ultra-Small Packages
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

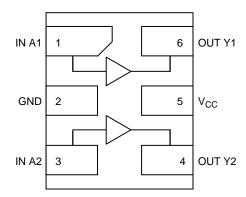


Figure 1. Pinout (Top View)

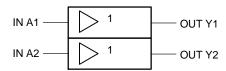


Figure 2. Logic Symbol

PIN ASSIGNMENT

FUNCTION TABLE A Y L L H H

1	IN A1
2	GND
3	IN A2
4	OUT Y2
5	V _{CC}
6	OUT Y1

ON Semiconductor®

www.onsemi.com

MARKING DIAGRAMS

UDFN6 1.0 x 1.0 CASE 517BX

UDFN6 1.2 x 1.0 CASE 517AA

UDFN6 1.45 x 1.0 CASE 517AQ

M = Date Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 4 of this data sheet.

MAXIMUM RATINGS

Symbol	Parame	Value	Unit	
V _{CC}	DC Supply Voltage		-0.5 to +7.0	V
V _{IN}	DC Input Voltage		-0.5 to +7.0	V
V _{OUT}	DC Output Voltage		-0.5 to +7.0	V
I _{IK}	DC Input Diode Current	V _{IN} < GND	-50	mA
I _{OK}	DC Output Diode Current	V _{OUT} < GND	-50	mA
Io	DC Output Source/Sink Current		±50	mA
I _{CC}	DC Supply Current Per Supply Pin	±100	mA	
I _{GND}	DC Ground Current per Ground Pin	±100	mA	
T _{STG}	Storage Temperature Range	-65 to +150	°C	
TL	Lead Temperature, 1 mm from Case for 10 S	260	°C	
TJ	Junction Temperature Under Bias	150	°C	
MSL	Moisture Sensitivity		Level 1	
F _R	Flammability Rating Oxygen	Index: 28 to 34	UL 94 V-0 @ 0.125 in	
I _{LATCHUP}	Latchup Performance Above V _{CC} and Below	±500	mA	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2 ounce copper trace no air flow.

- Tested to EIA/JESD22-A114-A.
 Tested to EIA/UESD22-A115-A.
- 4. Tested to JESD22-C101-A.
- 5. Tested to EIA / JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter			Max	Unit
V _{CC}	Positive DC Supply Voltage			5.5	V
V _{IN}	Digital Input Voltage	0	5.5	V	
V _{OUT}	Output Voltage		0	5.5	V
T _A	Operating Free-Air Temperature		-55	+125	°C
Δt/ΔV	Input Transition Rise or Fall Rate	$V_{CC} = 1.8 \text{ V} \pm 0.18$ $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$ $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ $V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$	0 0 0 0	20 20 10 5	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

				T _A = 25°C		T _A = +85°C		T _A = -55°C to +125°C			
Symbol	Parameter	Conditions	V _{CC} (V)	Min	Тур	Max	Min	Max	Min	Max	Unit
V _{IH}	Low-Level Input Voltage		1.65–1.95	0.75 x V _{CC}			0.75 x V _{CC}		0.75 x V _{CC}		V
	voltage		2.3 to 5.5	0.70 x V _{CC}			0.70 x V _{CC}		0.70 x V _{CC}		
V _{IL}	Low-Level Input Voltage		1.65–1.95			0.25 x V _{CC}		0.25 x V _{CC}		0.25 x V _{CC}	V
	voltage		2.3 – 5.5			0.30 x V _{CC}		0.30 x V _{CC}		0.30 x V _{CC}	
V _{OH}	High– Level Output	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -100 \mu\text{A}$	1.65 – 5.5	V _{CC} - 0.1	V _{CC}		V _{CC} - 0.1		V _{CC} - 0.1		V
	Voltage	$\begin{aligned} &V_{\text{IN}} = V_{\text{IH}} \text{ or } V_{\text{IL}} \\ &I_{\text{OH}} = -4 \text{ mA} \\ &I_{\text{OH}} = -8 \text{ mA} \\ &I_{\text{OH}} = -16 \text{ mA} \\ &I_{\text{OH}} = -24 \text{ mA} \\ &I_{\text{OH}} = -32 \text{ mA} \end{aligned}$	1.65 2.3 3.0 3.0 4.5	1.29 1.9 2.4 2.3 3.8	1.52 2.15 2.8 2.68 4.2		1.29 1.9 2.4 2.3 3.8		1.29 1.9 2.4 2.3 3.8		
V _{OL}	Low-Level Output	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 100 \mu A$	1.65 – 5.5			0.1		0.1		0.1	V
	Voltage	$\begin{aligned} &V_{IN} = V_{IH} \text{ or } V_{IL} \\ &I_{OL} = 4 \text{ mA} \\ &I_{OL} = 8 \text{ mA} \\ &I_{OL} = 16 \text{ mA} \\ &I_{OL} = 24 \text{ mA} \\ &I_{OL} = 32 \text{ mA} \end{aligned}$	1.65 2.3 3.0 3.0 4.5		0.08 0.1 0.15 0.22 0.22	0.24 0.3 0.4 0.55 0.55		0.24 0.3 0.4 0.55 0.55		0.24 0.3 0.4 0.55 0.55	
I _{IN}	Input Leakage Current	$0 \le V_{IN} \le 5.5 V$	0 to 5.5			±0.1		±1.0		±1.0	μΑ
I _{OFF}	Power-Off Output Leakage Current	V _{IN} or V _{OUT} = 5.5 V	0			1.0		10		10	μΑ
I _{CC}	Quiescent Supply Current	V _{IN} = 0 V or V _{CC}	5.5			1.0		10		10	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0 \text{ nS}$)

		V _{CC} Test		T _A = 25°C		T _A = -55°C to +125°C			
Symbol	Parameter	(V)	Condition		Тур	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Propagation Delay Input A to Output	1.65–1.95	$R_L = 1 M\Omega$, $C_L = 15 pF$	1.8	8.0	9.6	1.8	10.2	ns
		2.3–2.7	$R_L = 1 M\Omega$, $C_L = 15 pF$	1.0	3.0	5.2	1.0	5.8	
		3.0-3.6	$R_L = 1 M\Omega$, $C_L = 15 pF$	0.8	2.3	3.6	0.8	4.0	
			$R_L = 500 \Omega$, $C_L = 50 pF$	1.2	3.0	4.6	1.2	5.1	
		4.5–5.5	$R_L = 1 M\Omega$, $C_L = 15 pF$	0.5	1.8	2.9	0.5	3.2	
			$R_L = 500 \Omega,$ $C_L = 50 pF$	0.8	2.4	3.8	0.8	4.2	
C _{IN}	Input Capacitance	5.5	V _{IN} = 0 V or V _{CC}		7.0				pF
C _{PD}	Power Dissipation Capacitance (Note 6)	3.3 5.5	10 MHz V _{IN} = 0 V or V _{CC}		9 11				pF

^{6.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the dynamic operating current consumption without load. Average operating current can be obtained by the equation I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}. C_{PD} is used to determine the no–load dynamic power consumption: P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}.

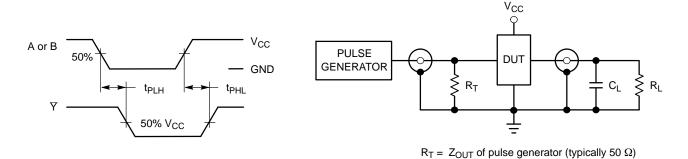
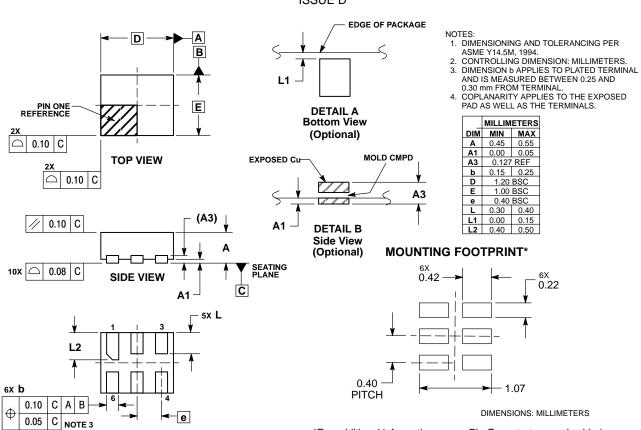


Figure 3. Switching Waveforms

Figure 4. Test Circuit

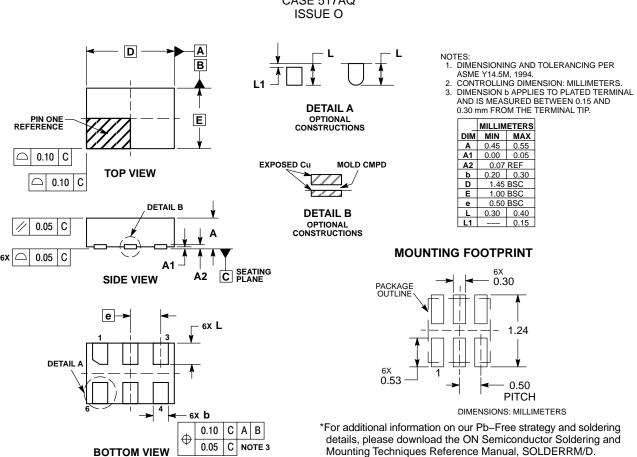
ORDERING INFORMATION


Device	Package	Shipping [†]
NLX2G16MUTCG	LX2G16MUTCG UDFN6, 1.2 x 1.0, 0.4P (Pb–Free)	
NLX2G16AMUTCG, NLVX2G16AMUTCG*	UDFN6, 1.45 x 1.0, 0.5P (Pb-Free)	3000 / Tape & Reel
NLX2G16CMUTCG	UDFN6, 1.0 x 1.0, 0.35P (Pb-Free)	3000 / Tape & Reel

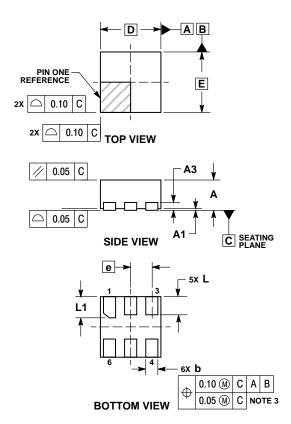
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

PACKAGE DIMENSIONS


UDFN6, 1.2x1.0, 0.4P CASE 517AA ISSUE D

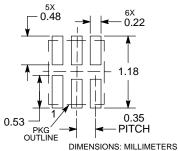
BOTTOM VIEW


PACKAGE DIMENSIONS

UDFN6 1.45x1.0, 0.5P CASE 517AQ

PACKAGE DIMENSIONS

UDFN6 1.0x1.0. 0.35P CASE 517BX **ISSUE O**



NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.20 MM FROM TERMINAL TIP. PACKAGE DIMENSIONS EXCLUSIVE OF
- BURRS AND MOLD FLASH.

	MILLIMETERS					
DIM	MIN	MAX				
Α	0.45	0.55				
A1	0.00	0.05				
А3	0.13 REF					
p	0.12	0.22				
D	1.00 BSC					
Е	1.00 BSC					
е	0.35 BSC					
L	0.25	0.35				
11	0.30	0.40				

RECOMMENDED **SOLDERING FOOTPRINT***

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MiniGate is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative