NL17SZ08E

Single 2-Input AND Gate

The NL17SZ08E is a single 2-input AND Gate in three tiny footprint packages. The device performs much as LCX multi-gate products in speed and drive. They should be used wherever the need for higher speed and drive are needed.

Features

- Tiny SOT-353 Package
- 2.7 ns T_{PD} at 5.0 V (typ)
- Source/Sink 24 mA at 3.0 V
- Overvoltage Tolerant Inputs
- Chip Complexity: FETs = 20
- Designed for 1.65 V to 5.5 V V_{CC} Operation
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

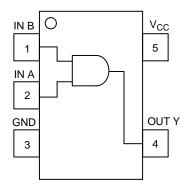


Figure 1. Pinout (Top View)

Figure 2. Logic Symbol

ON Semiconductor®

www.onsemi.com

L2 = Specific Device Marking

= Date Code*

= Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation and/or position may vary depending upon manufacturing location.

PIN ASSIGNMENT

Pin	Function	
1	IN B	
2	IN A	
3	GND	
4	OUT Y	
5	V _{CC}	

FUNCTION TABLE

Inp	out	Output Y = AB
Α	В	Υ
L	L	L
L	Н	L
Н	L	L
Н	Н	Н

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

NL17SZ08E

MAXIMUM RATINGS

Symbol	Parameter		Value	Units
V _{CC}	DC Supply Voltage		-0.5 to +6.5	V
V _{IN}	DC Input Voltage		-0.5 to +6.5	V
V _{OUT}	DC Output Voltage	Active Mode, High or LOW State Power Down Mode (V _{CC} = 0 V)	-0.5 to V _{CC} + 0.5 -0.5 to +6.5	V
I _{IK}	DC Input Diode Current		-50	mA
I _{OK}	DC Output Diode Current	V _{OUT} < GND	-50	mA
I _{OUT}	DC Output Sink Current		±50	mA
I _{CC}	DC Supply Current per Supply Pin		±100	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds		260	°C
TJ	Junction Temperature Under Bias		+150	°C
θ_{JA}	Thermal Resistance	(Note 1)	350	°C/W
P _D	Power Dissipation in Still Air at 85°C		186	mW
MSL	Moisture Sensitivity		Level 1	
F _R	Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
ESD	ESD Classification	Human Body Model (Note 2) Charged Device Model (Note 3)	4000 1000	V
I _{LATCHUP}	Latchup Performance Above V _{CC} and Below GND at 125°C (Note 4)		±100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2-ounce copper trace with no air flow.
 Tested to EIA/JESD22-A114-A, rated to EIA/JESD22-A114-B.
- Tested to JESD22-C101-A.
 Tested to EIA/JESD78.

NL17SZ08E

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter			Max	Units
V _{CC}	DC Supply Voltage		1.65	5.5	V
V _{IN}	DC Input Voltage		0	5.5	V
V _{OUT}	DC Output Voltage	Active Mode, LOW State Power–Down Mode ($V_{CC} = 0 \text{ V}$)	0 0	V _{CC} 5.5	V
T _A	Operating Temperature Range		-55	+125	°C
t _r , t _f	Input Rise and Fall Time	$V_{CC} = 2.5 \text{ V} \pm 0.3 \text{ V}$ $V_{CC} = 3.0 \text{ V} \pm 0.3 \text{ V}$ $V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$	0 0 0	20 10 5	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

	ool Parameter Condition (V)	T _A = 25°C			-55°C ≤ T _A ≤ 125°C				
Symbol		Condition		Min	Тур	Max	Min	Max	Units
V _{IH}	High-Level Input Voltage		1.65 to 1.95 2.3 to 5.5	0.75 V _{CC} 0.7 V _{CC}			0.75 V _{CC} 0.7 V _{CC}		V
V_{IL}	Low-Level Input Voltage		1.65 to 1.95 2.3 to 5.5			0.25 V _{CC} 0.3 V _{CC}		0.25 V _{CC} 0.3 V _{CC}	V
V _{OH}	High-Level Output Voltage	$I_{OH} = -100 \mu A$	1.65 to 5.5	V _{CC} - 0.1	V_{CC}		V _{CC} - 0.1		V
	$V_{IN} = V_{II}$ or V_{IH}	$I_{OH} = -4 \text{ mA}$	1.65	1.29	1.52		1.29		
	110 112 1111	$I_{OH} = -8 \text{ mA}$	2.3	1.9	2.1		1.9		
		$I_{OH} = -12 \text{ mA}$	2.7	2.2	2.4		2.2		
		$I_{OH} = -16 \text{ mA}$	3.0	2.4	2.7		2.4		
		$I_{OH} = -24 \text{ mA}$	3.0	2.3	2.5		2.3		
		$I_{OH} = -32 \text{ mA}$	4.5	3.8	4.0		3.8		
V _{OL}	Low-Level Output Voltage	I _{OL} = 100 μA	1.65 to 5.5			0.1		0.1	V
	$V_{IN} = V_{IH} \text{ or } V_{OH}$	$I_{OL} = 4 \text{ mA}$	1.65		0.08	0.24		0.24	
	-114 -111 -1 -011	$I_{OL} = 8 \text{ mA}$	2.3		0.20	0.3		0.3	
		$I_{OL} = 12 \text{ mA}$	2.7		0.22	0.4		0.4	
		$I_{OL} = 16 \text{ mA}$	3.0		0.28	0.4		0.4	
		$I_{OL} = 24 \text{ mA}$	3.0		0.38	0.55		0.55	
		$I_{OL} = 32 \text{ mA}$	4.5		0.42	0.55		0.55	
I _{IN}	Input Leakage Current	V _{IN} = 5.5 V or GND	1.65 to 5.5			±0.1		±1.0	μΑ
I _{CC}	Quiescent Supply Current	V _{IN} = 5.5 V or GND	5.5			1		10	μΑ
I _{OFF}	Power Off Leakage Current	V _{IN} = 5.5 V or V _{OUT} = 5.5 V	0			1		10	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS $t_R = t_F = 3.0 \text{ ns}$

			V _{CC}		T _A = 25°C	;	-55°C ≤ T	₄ ≤ 125°C	
Symbol	Parameter	Condition	(V)	Min	Тур	Max	Min	Max	Units
t _{PLH}	Propagation Delay	elay $R_L = 1 \text{ M}\Omega$, $C_L = 15 \text{ pF}$ 1.65 6.3 12	12.7	ns					
t _{PHL}	(Figure 3 and 4)	$R_L = 1 \text{ M}\Omega, C_L = 15 \text{ pF}$	1.8		6.2	10		10.5	
		$R_L = 1 \text{ M}\Omega, C_L = 15 \text{ pF}$	2.5 ± 0.2		3.4	7.0		7.5	
		$R_L = 1 \text{ M}\Omega, C_L = 15 \text{ pF}$	3.3 ± 0.3		2.6	4.7		5.0	
		$R_L = 500 \ \Omega, C_L = 50 \ pF$			3.3	5.2		5.5	
		$R_L = 1 \text{ M}\Omega, C_L = 15 \text{ pF}$	5.0 ± 0.5		2.2	4.1		4.4	
		$R_L = 500 \Omega, C_L = 50 pF$			2.7	4.5		4.8	

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Units
C _{IN}	Input Capacitance	$V_{CC} = 5.5 \text{ V}, V_I = 0 \text{ V or } V_{CC}$	>4.0	pF
C _{PD}	Power Dissipation Capacitance	10 MHz, V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	25	pF
	(Note 5)	10 MHz, V_{CC} = 5.5 V, V_{I} = 0 V or V_{CC}	30	

^{5.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}. C_{PD} is used to determine the no–load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}.

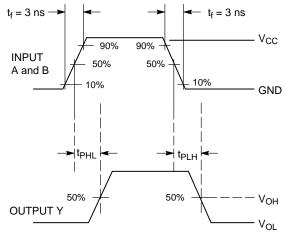
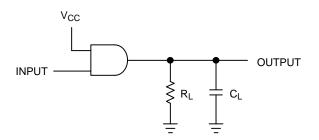



Figure 3. Switching Waveform

A 1–MHz square input wave is recommended for propagation delay tests.

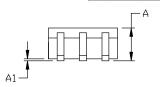
Figure 4. Test Circuit

DEVICE ORDERING INFORMATION

Device Order Number	Package Type	Tape and Reel Size [†]
NL17SZ08EDFT2G	SC-88A/SC-70-5/SOT-353 (Pb-Free)	3000 / Tape & Reel

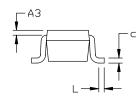
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

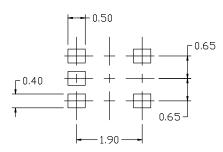
SC-88A (SC-70-5/SOT-353) CASE 419A-02 ISSUE M


DATE 11 APR 2023

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. 419A-01 DBSDLETE, NEW STANDARD 419A-02
- 4. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH,
 PROTRUSIONS, OR GATE BURRS.MOLD FLASH, PROTRUSIONS,
 OR GATE BURRS SHALL NOT EXCEED 0.1016MM PER SIDE.


DIM	MILLIMETERS				
INITU	MIN.	N□M.	MAX.		
А	0.80	0.95	1.10		
A1			0.10		
A3	0,20 REF				
b	0.10	0.20	0.30		
C	0.10		0.25		
D	1.80 2.00		2,20		
Е	E 2.00 2.1		2.20		
E1	1.15	1.25	1.35		
е	0.65 BSC				
L	0.10	.10 0.15 0.3			



5X b

◆ 0.2 M B M

RECOMMENDED MOUNTING FOOTPRINT

For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

GENERIC MARKING DIAGRAM*

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

XXX = Specific Device Code

M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

STYLE 1:
PIN 1. BASE
EMITTER
3. BASE
COLLECTOR
COLLECTOR

STYLE 2:
PIN 1. ANODE
2. EMITTER
3. BASE
4. COLLECTOR
5. CATHODE

STYLE 3: PIN 1. ANODE 1 2. IV/C 3. ANODE 2 4. CATHODE 2 5. CATHODE 1 STYLE 4:
PIN 1. SOURCE 1
2. DRAIN 1/2
3. SOURCE 1
4. GATE 1
5. GATE 2

STYLE 5:
PIN 1. CATHODE
2. COMMON ANODE
3. CATHODE 2
4. CATHODE 3
5. CATHODE 4

STYLE 6: PIN 1. EMITTER 2 2. BASE 2 3. EMITTER 1 4. COLLECTOR STYLE 7:
PIN 1. BASE
2. EMITTER
3. BASE
4. COLLECTOR
5. COLLECTOR

STYLE 8: PIN 1. CATHODE 2. COLLECTOR 3. N/C 4. BASE 5. EMITTER STYLE 9: PIN 1. ANODE 2. CATHODE 3. ANODE 4. ANODE 5. ANODE Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

DOCUMENT NUMBER:

98ASB42984B

Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

DESCRIPTION: SC-88A (SC-70-5/SOT-353)

PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

5. COLLECTOR 2/BASE 1

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales