Single 2-Input AND Gate

NL17SG08

The NL17SG08 MiniGate ${ }^{T M}$ is an advanced high-speed CMOS 2-input AND gate in ultra-small footprint.

The NL17SG08 input and output structures provide protection when voltages up to 3.6 V are applied.

Features

- Designed for 0.9 V to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- 2.5 ns (Typ) at $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
- Inputs/Outputs Over-Voltage Tolerant up to 3.6 V
- I Iff Supports Partial Power Down Protection
- Available in SC-88A, SOT-953 and UDFN Packages
- -Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen-Free/BFR-Free and RoHS-Compliant

Figure 1. SOT-953
(Top Thru View)

Figure 2. SC-88A
(Top View)

MARKING DIAGRAMS

UDFN6
1.45×1.0 CASE 517AQ

XX = Specific Device Code
M = Date Code*

- = Pb-Free Package
(Note: Microdot may be in either location)
*Date Code orientation and/or position may vary depending upon manufacturing location.

PIN ASSIGNMENT			
PIN	SOT-953	SC-88A	UDFN6
1	A	B	B
2	GND	A	A
3	B	GND	GND
4	Y	Y	Y
5	$\mathrm{~V}_{\mathrm{CC}}$	V_{CC}	NC
6	-	-	V_{CC}

FUNCTION TABLE

Inputs		Output
A	B	Y
L	L	L
L	H	L
H	L	L
H	H	H

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

Figure 4. Logic Symbol

NL17SG08

Table 1. MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage	-0.5 to +4.3	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage	-0.5 to +4.3	V
$\mathrm{V}_{\text {OUT }}$	DC Output Voltage Active-Mode (High or Low State) Tri-State Mode (Note 1) Power-Down Mode ($\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)	$\begin{gathered} \hline-0.5 \text { to } \mathrm{V}_{\mathrm{CC}}+0.5 \\ -0.5 \text { to }+4.3 \\ -0.5 \text { to }+4.3 \end{gathered}$	V
$\mathrm{IIK}^{\text {I }}$	DC Input Diode Current $\quad \mathrm{V}_{\mathrm{IN}}<$ GND	-20	mA
IOK	DC Output Diode Current $\quad \mathrm{V}_{\text {OUT }}<$ GND	-20	mA
IOUT	DC Output Source/Sink Current	± 20	mA
I_{CC} or $\mathrm{I}_{\mathrm{GND}}$	DC Supply Current Per Supply Pin or Ground Pin	± 20	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Under Bias	+150	${ }^{\circ} \mathrm{C}$
θ_{JA}	$\begin{array}{lr}\text { Thermal Resistance (Note 2) } & \text { SC-88A } \\ \text { SOT-953 } \\ \text { UDFN6 }\end{array}$	$\begin{aligned} & 377 \\ & 254 \\ & 154 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
P_{D}	$\begin{array}{lr}\text { Power Dissipation in Still Air at } 85^{\circ} \mathrm{C} & \text { SC-88A } \\ & \text { SOT-953 } \\ \\ \text { UDFN6 }\end{array}$	$\begin{aligned} & 332 \\ & 491 \\ & 812 \end{aligned}$	mW
MSL	Moisture Sensitivity	Level 1	
F_{R}	Flammability Rating Oxygen Index: 28 to 34	UL 94 V -0 @ 0.125 in	
$\mathrm{V}_{\text {ESD }}$	ESD Withstand Voltage (Note 3) $\begin{array}{r}\text { Human Body Model } \\ \text { Charged Device Model }\end{array}$	$\begin{aligned} & 2000 \\ & 1000 \end{aligned}$	V
ILATCHUP	Latchup Performance (Note 4)	± 100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Applicable to devices with outputs that may be tri-stated.
2. Measured with minimum pad spacing on an FR4 board, using 10 mm - by - 1inch, 2 ounce copper trace no air flow per JESD51-7.
3. HBM tested to EIA / JESD22-A114-A. CDM tested to JESD22-C101-A. JEDEC recommends that ESD qualification to EIA/JESD22-A115A (Machine Model) be discontinued.
4. Tested to EIA/JESD78 Class II.

Table 2. RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
$\mathrm{V}_{\text {CC }}$	Positive DC Supply Voltage		0.9	3.6	V
$\mathrm{V}_{\text {IN }}$	Digital Input Voltage		0	3.6	V
$\mathrm{V}_{\text {OUT }}$	Output Voltage	Active Mode (High or Low State) Tri-State Mode (Note 1) Power Down Mode ($\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}} \\ 3.6 \\ 3.6 \end{gathered}$	V
T_{A}	Operating Free-Air Temperature		-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	Input Transition Rise or Fall Rate	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	0	10	nS / V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 3. DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
V_{IH}	High-Level Input Voltage		0.9	-	V_{CC}	-	-	-	V
			1.1 to 1.3	$0.7 \times \mathrm{V}_{\mathrm{CC}}$	-	-	$0.7 \times \mathrm{V}_{\mathrm{CC}}$	-	
			1.4 to 1.6	$0.65 \times \mathrm{V}_{\mathrm{CC}}$	-	-	$0.65 \times V_{\text {CC }}$	-	
			1.65 to 1.95	$0.65 \times \mathrm{V}_{\mathrm{CC}}$	-	-	$0.65 \times V_{\text {cC }}$	-	
			2.3 to 2.7	1.7	-	-	1.7	-	
			3.0 to 3.6	2.0	-	-	2.0	-	
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage		0.9	-	GND	-	-	-	V
			1.1 to 1.3	-	-	$0.3 \times \mathrm{V}_{\mathrm{CC}}$	-	$0.3 \times \mathrm{V}_{\mathrm{CC}}$	
			1.4 to 1.6	-	-	$0.35 \times V_{\text {CC }}$	-	$0.35 \times V_{C C}$	
			1.65 to 1.95	-	-	$0.35 \times \mathrm{V}_{\mathrm{CC}}$	-	$0.35 \times \mathrm{V}_{\mathrm{CC}}$	
			2.3 to 2.7	-	-	0.7	-	0.7	
			3.0 to 3.6	-	-	0.8	-	0.8	
V_{OH}	$\begin{array}{\|c\|} \hline \text { High-Level Output } \\ \text { Voltage } \end{array}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}							V
		$\mathrm{I}_{\mathrm{OH}}=-20 \mu \mathrm{~A}$	0.9	-	0.75	-	-	-	
		$\mathrm{I}_{\mathrm{OH}}=-0.3 \mathrm{~mA}$	1.1 to 1.3	$0.75 \times \mathrm{V}_{\text {cC }}$	-	-	$0.75 \times \mathrm{V}_{\mathrm{CC}}$	-	
		$\mathrm{I}_{\mathrm{OH}}=-1.7 \mathrm{~mA}$	1.4 to 1.6	$0.75 \times \mathrm{V}_{\mathrm{CC}}$	-	-	$0.75 \times \mathrm{V}_{\mathrm{CC}}$	-	
		$\mathrm{I}_{\mathrm{OH}}=-3.0 \mathrm{~mA}$	1.65 to 1.95	$\mathrm{V}_{\text {cC }}-0.45$	-	-	$\mathrm{V}_{\mathrm{CC}}-0.45$	-	
		$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.3 to 2.7	2.0	-	-	2.0	-	
		$\mathrm{I}_{\mathrm{OH}}=-8.0 \mathrm{~mA}$	3.0 to 3.6	2.48	-	-	2.48	-	
V OL	Low-Level Output Voltage	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}							V
		$\mathrm{I}_{\mathrm{OL}}=20 \mu \mathrm{~A}$	0.9	-	0.1	-	-	-	
		$\mathrm{l}_{\mathrm{OL}}=0.3 \mathrm{~mA}$	1.1 to 1.3	-	-	$0.25 \times \mathrm{V}_{\mathrm{CC}}$	-	$0.25 \times \mathrm{V}_{\mathrm{CC}}$	
		$\mathrm{I}_{\mathrm{OL}}=1.7 \mathrm{~mA}$	1.4 to 1.6	-	-	$0.25 \times \mathrm{V}_{\mathrm{CC}}$	-	$0.25 \times \mathrm{V}_{\mathrm{CC}}$	
		$\mathrm{l}_{\mathrm{OL}}=3.0 \mathrm{~mA}$	1.65 to 1.95	-	-	0.45	-	0.45	
		$\mathrm{l}_{\mathrm{OL}}=4.0 \mathrm{~mA}$	2.3 to 2.7	-	-	0.4	-	0.4	
		$\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$	2.7 to 3.6	-	-	0.4	-	0.4	
I_{IN}	Input Leakage Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to 3.6 V	0.9 to 3.6	-	-	± 0.1	-	± 1.0	$\mu \mathrm{A}$
IOFF	Power Off Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {IN }}=0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} ; \\ & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$	0	-	-	1.0	-	10.0	$\mu \mathrm{A}$
${ }^{\text {cc }}$	Quiescent Supply Current Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND	0.9 to 3.6	-	-	1.0	-	10.0	$\mu \mathrm{A}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Table 4. AC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		Unit
				Min	Typ	Max	Min	Max	
$t_{\text {PLH }}$, $t_{\text {PHL }}$	Propagation Delay, (A or B) to Y (Figures 5 and 6)	$\begin{aligned} \mathrm{C}_{\mathrm{L}} & =10 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =1 \mathrm{M} \Omega \end{aligned}$	0.9	-	46.5	-	-	-	ns
			1.1 to 1.3	-	14.1	26.7	-	31.7	
			1.4 to 1.6	-	5.9	9.6	-	11.3	
			1.65 to 1.95	-	4.5	7.0	-	7.5	
			2.3 to 2.7	-	2.9	4.4	-	4.9	
			3.0 to 3.6	-	2.2	3.5	-	4.1	
		$\begin{aligned} \mathrm{C}_{\mathrm{L}} & =15 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =1 \mathrm{M} \Omega \end{aligned}$	0.9	-	47.9	-	-	-	ns
			1.1 to 1.3	-	14.4	27.3	-	32.4	
			1.4 to 1.6	-	6.5	9.5	-	12.6	
			1.65 to 1.95	-	5.0	7.7	-	8.0	
			2.3 to 2.7	-	3.2	4.9	-	5.6	
			3.0 to 3.6	-	2.5	3.8	-	4.4	
		$\begin{gathered} \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{gathered}$	0.9	-	52.5	-	-	-	ns
			1.1 to 1.3	-	15.3	29.3	-	34.7	
			1.4 to 1.6	-	8.9	11.8	-	14.9	
			1.65 to 1.95	-	6.9	10.3	-	10.8	
			2.3 to 2.7	-	4.4	6.4	-	6.8	
			3.0 to 3.6	-	3.5	4.9	-	5.4	

Table 5. CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Test Condition	Typical $\left(\mathbf{T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathbf{C}\right)$	Unit
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	3.0	pF
C_{PD}	Power Dissipation Capacitance (Note 5)	$\mathrm{f}=10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=0.9 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ or V_{CC}	4.0	pF

5. $\mathrm{C}_{P D}$ is defined as the value of the internal equivalent capacitance which is calculated from the dynamic operating current consumption without load. Average operating current can be obtained by the equation $\mathrm{I}_{\mathrm{CC}(\mathrm{OPR})}=\mathrm{C}_{\mathrm{PD}} \cdot \mathrm{V}_{\mathrm{CC}} \cdot \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}} . \mathrm{C}_{\mathrm{PD}}$ is used to determine the no-load dynamic power consumption: $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \cdot \mathrm{V}_{\mathrm{CC}}{ }^{2} \cdot \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}} \cdot \mathrm{V}_{\mathrm{CC}}$.

C_{L} includes probe and jig capacitance
R_{T} is $Z_{\text {OUT }}$ of pulse generator (typically 50 W) $\mathrm{f}=1 \mathrm{MHz}$

Figure 5. Test Circuit

Figure 6. Switching Waveforms

$\mathbf{V}_{\mathbf{C c}}, \mathbf{V}$	$\mathbf{V}_{\mathbf{m i}}, \mathbf{V}$	$\mathbf{V}_{\mathbf{m o}}, \mathbf{V}$	$\mathbf{V}_{\mathbf{Y}}, \mathbf{V}$
0.9	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	0.1
1.1 to 1.3	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	0.1
1.4 to 1.6	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	0.1
1.65 to 1.95	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	0.15
2.3 to 2.7	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	0.15
3.0 to 3.6	1.5	1.5	0.3

ORDERING INFORMATION

Device	Marking	Pin 1 Orientation (See below)	Package	Shipping †
NL17SG08DFT2G	AT	Q4	SC-88A	$3000 /$ Tape \& Reel
NL17SG08DFT2G-Q*	AT	Q4	SC-88A	$3000 /$ Tape \& Reel
NL17SG08P5T5G	Y	Q2	SOT-953	$8000 /$ Tape \& Reel
NL17SG08MU1TCG	L (Rotated $\left.180^{\circ} \mathrm{CW}\right)$	Q4	UDFN6 1.45×1.0	$3000 /$ Tape \& Reel
NL17SG08MU3TCG	L (Rotated $90^{\circ} \mathrm{CW}$)	Q4	UDFN6 1.0×1.0	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*-Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.

PIN 1 ORIENTATION IN TAPE AND REEL Direction of Feed

SC-88A (SC-70-5/SOT-353)

CASE 419A-02
ISSUE M
DATE 11 APR 2023

RECDMMENDED
MIUNTING FGUTPRINT

* For additional information on our Pb -Free strategy and soldering details, please download the aN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

NDTES:

1. DIMENSIDNING AND TQLERANCING PER ANSI Y14.5M, 1982.
2. CDNTRZLLING DIMENSIDN: MILLIMETERS
3. 419A-01 BBSOLETE, NEW STANDARD 419A-02
4. DIMENSIDNS D AND E1 D NDT INCLUDE MULD FLASH, PRDTRUSIUNS, $\square R$ GATE BURRS, MLLD FLASH, PRDTRUSIINS, GR GATE BURRS SHALL NDT EXCEED $0.1016 M M$ PER SIDE.

DIM	MILLIMETERS		
	MIN.	NIM.	MAX.
A	0.80	0.95	1.10
A1	---	---	0.10
A3	0.20 REF		
b	0.10	0.20	0.30
\subset	0.10	---	0.25
D	1.80	2.00	2.20
E	2.00	2.10	2.20
E1	1.15	1.25	1.35
e	0.65 BSC		
L	0.10	0.15	0.30

GENERIC MARKING

 DIAGRAM*
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " r ", may or may not be present. Some products may not follow the Generic Marking.

XXX = Specific Device Code
$\mathrm{M}=$ Date Code

- = Pb-Free Package
(Note: Microdot may be in either location)

PIN 1. BASE
2. EMITTER
. BASE
4. COLLECTOR
5. COLLECTOR

STYLE 6:
$\begin{array}{lc}\text { TYLE 6: } & \text { STYLE 7: } \\ \text { PIN 1. EMITTER } 2 & \text { PIN 1. BASE } \\ \text { 2. BASE } 2 & \text { 2. EMITTER } \\ \text { 3. EMITTER 1 } & \text { 3. BASE } \\ \text { 4. COLLECTOR } & \text { 4. COLLECTOR } \\ \text { 5. COLLECTOR 2/BASE } 1 & \text { 5. COLLECTOR }\end{array}$
STYLE 2 :
PIN 1. ANODE
2. EMITTER
3. BASE
4. COLLECTOR

STYLE 3:
STYLE 3:
PIN 1. ANODE 1
2. N / C
2. N/C
3. ANODE
4. CATHODE 2
5. CATHODE 1

STYLE 8

PIN 1. CATHODE

2. COLLECTOR
3. N / C
4. BASE
. EMITTER

STYLE 5:
STYLE 4:
2. DRAIN $1 / 2$

PIN 1. CATHODE
$\begin{array}{ll}\text { 2. DRAIN } 1 / 2 & \text { 2. COMMON ANODE } \\ \text { 3. SOURCE } 1 & \text { 3. }\end{array}$
3. SOURCE 1 3. CATHODE 2
4. GATE 1 4. CATHODE 3
5. GATE 2

STYLE 9:

PIN 1. ANODE
2. CATHODE
3. ANODE
4. ANODE
5. ANODE

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

DOCUMENT NUMBER:	98ASB42984B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

DESCRIPTION: \quad SC-88A (SC-70-5/SOT-353)
PAGE 1 OF 1

[^0]UDFN6, 1.45x1.0, 0.5P CASE 517AQ

ISSUE O
DATE 15 MAY 2008

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
CONTROLLING DIMENSION: MILLIMETERS
2. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM THE TERMINAL TIP.

DETAIL B OPTIONAL CONSTRUCTIONS

MOUNTING FOOTPRINT

DIMENSIONS: MILLIMETERS
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC

MARKING DIAGRAM*

X = Specific Device Code
M = Date Code
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, "G" or microdot " \quad ", may or may not be present.

| DOCUMENT NUMBER: | 98AON30313E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | UDFN6, 1.45x1.0, 0.5P | PAGE 1 OF 1 |

[^1]UDFN6, 1x1, 0.35P
CASE 517BX
ISSUE O
DATE 18 MAY 2011

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " $\mathrm{\nabla}$ ", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON56787E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	UDFN6, 1x1, 0.35P		PAGE 1 OF 1

[^2]
SOT-953 1.00x0.80x0.37, 0.35P
 CASE 527AE
 ISSUE F

DATE 17 JAN 2024

NDTES

1. DIMENSIUNING AND TZLERANCING PER ASME Y14.5M, 2018,
2. CZNTRDLLING DIMENSIDN: MILLIMETERS,
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS पF THE BASE MATERIAL
4. DIMENSIDNS D AND E DI NDT INCLUDE MDLD FLASH, PRITRUSIINS, IR GATE BURRS.

SIDE VIEW

RECDMMENDED MIUNTING FOUTPRINT
*For additional information on our Pb-Free strategy and soldering details, please download the ZN Semiconductor Soldering and Mounting Techniques Reference Manual, SaLDERRM/D.

MARKING DIAGRAM*

X = Specific Device Code
M = Month Code
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " P ", may or may not be present. Some products may not follow the Generic Marking.

MILLIMETERS				
DIM	MIN	NDM	MAX	
A	0.34	0.37	0.40	
b	0.10	0.15	0.20	
C	0.07	0.12	0.17	
D	0.95	1.00	1.05	
E	0.75	0.80	0.85	
e	0.35 BSC			
H	0.95	1.00	1.05	
L	0.125	0.175	0.225	
L2	0.05	0.10	0.15	
L3	0.075 (REF)			

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:
Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support
For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

[^0]: onsemi and OnSEMi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

[^1]: onsemi and OnSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

[^2]: onsemi and OnSemil are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

