ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

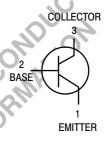
General Purpose Transistor

High-Performance Silicon-Gate CMOS

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector - Emitter Voltage	V _{CEO}	-40	Vdc
Collector - Base Voltage	V _{CBO}	-40	Vdc
Emitter - Base Voltage	V _{EBO}	-5.0	Vdc
Collector Current — Continuous	I _C	-200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	ç

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction to Case	$R_{ heta JC}$	83.3	°C/W

ON Semiconductor®

http://onsemi.com

TO-92 (TO-226AA) CASE 29-04 STYLE 1

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit	
OFF CHARACTERISTICS					
Collector – Emitter Breakdown Voltage ⁽¹⁾ (I _C = -1.0 mAdc, I _B = 0)	V _{(BR)CEO}	-40	_	Vdc	
Collector – Base Breakdown Voltage ($I_C = -10 \mu Adc, I_E = 0$)	V _{(BR)CBO}	-40	_	Vdc	
Emitter – Base Breakdown Voltage ($I_E = -10 \mu Adc$, $I_C = 0$)	V _{(BR)EBO}	-5.0	_	Vdc	
Collector Cutoff Current (V _{CE} = -30 Vdc, V _{EB(off)} = -3.0 Vdc)	I _{CEX}		-50	nAdc	
Base Cutoff Current (V _{CE} = -30 Vdc, V _{EB(off)} = -3.0 Vdc)	I _{BL}	_	-50	nAdc	

1

^{1.} Pulse Test: Pulse Width = 300 μ s; Duty Cycle = 2.0%.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted) (Continued)

Characteristic	Symbol	Min	Max	Unit
ON CHARACTERISTICS ⁽¹⁾	1			l .
DC Current Gain $ \begin{aligned} &(I_C = -0.1 \text{ mAdc, } V_{CE} = -1.0 \text{ Vdc}) \\ &(I_C = -1.0 \text{ mAdc, } V_{CE} = -1.0 \text{ Vdc}) \\ &(I_C = -10 \text{ mAdc, } V_{CE} = -1.0 \text{ Vdc}) \\ &(I_C = -50 \text{ mAdc, } V_{CE} = -1.0 \text{ Vdc}) \\ &(I_C = -100 \text{ mAdc, } V_{CE} = -1.0 \text{ Vdc}) \end{aligned} $	h _{FE}	60 80 100 60 30	 300 	_
Collector – Emitter Saturation Voltage ($I_C = -10 \text{ mAdc}$, $I_B = -1.0 \text{ mAdc}$) ($I_C = -50 \text{ mAdc}$, $I_B = -5.0 \text{ mAdc}$)	V _{CE(sat)}	_ _	-0.25 -0.4	Vdc
Base – Emitter Saturation Voltage ($I_C = -10$ mAdc, $I_B = -1.0$ mAdc) ($I_C = -50$ mAdc, $I_B = -5.0$ mAdc)	V _{BE(sat)}	-0.65 —	-0.85 -0.95	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current – Gain — Bandwidth Product ($I_C = -10 \text{ mAdc}$, $V_{CE} = -20 \text{ V}$, $f = 100 \text{ MHz}$)	f _T	250	,OF	MHz
Output Capacitance (V _{CB} = -5.0 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}	7,0	4.5	pF
Input Capacitance (V _{EB} = -0.5 Vdc, I _C = 0, f = 1.0 MHz)	C _{ibo}	10,0	10	pF
Input Impedance (I _C = -1.0 mAdc, V _{CE} = -10 Vdc, f = 1.0 kHz)	h _{ie}	2.0	12	kΩ
Voltage Feedback Ratio (I _C = -1.0 mAdc, V _{CE} = -10 Vdc, f = 1.0 kHz)	h _{re}	1.0	10	X 10 ⁻⁴
Small-Signal Current Gain (I _C = -1.0 mAdc, V _{CE} = -10 Vdc, f = 1.0 kHz)	h _{fe}	100	400	_
Output Admittance ($I_C = -1.0 \text{ mAdc}$, $V_{CE} = -10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)	h _{oe}	3.0	60	μmhos
Noise Figure (I _C = -100 μ Adc, V _{CE} = -5.0 Vdc, R _S = 1.0 k Ω , f = 1.0 kHz)	NF	_	4.0	dB
SWITCHING CHARACTERISTICS		•	•	
Delay Time $(V_{CC} = -3.0 \text{ Vdc}, V_{BE(off)} = +0.5 \text{ Vdc},$	t _d	_	35	ns
Rise Time $I_C = -10 \text{ mAdc}, I_{B1} = 1.0 \text{ mAdc}$	t _r	_	50	ns
Storage Time $(V_{CC} = -3.0 \text{ Vdc}, I_{C} = -10 \text{ mAdc},$	t _s		600	ns
Fall Time $I_{B1} = I_{B2} = -1.0 \text{ mAdc}$	t _f		90	ns

^{1.} Pulse Test: Pulse Width = 300 μ s; Duty Cycle = 2.0%.

TYPICAL NOISE CHARACTERISTICS

 $(V_{CE} = -5.0 \text{ Vdc}, T_A = 25^{\circ}\text{C})$

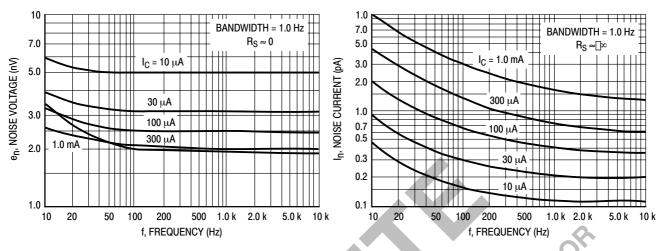


Figure 1. Noise Voltage

Figure 2. Noise Current

Figure 4. Narrow Band, 1.0 kHz

NOISE FIGURE CONTOURS

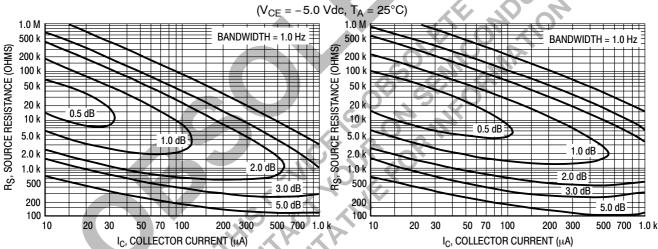


Figure 3. Narrow Band, 100 Hz

Noise Figure is Defined as: $NF = 20 \log_{10} \left[\frac{e_n^2 + 4 \text{KTR}_S + I_n^2 \text{R}_S^2}{4 \text{KTR}_S} \right]^{1/2}$ $e_n = \text{Noise Voltage of the Transistor referred to the input. (Figure 3)}$ $I_n = \text{Noise Current of the Transistor referred to the input. (Figure 4)}$ $K = \text{Boltzman's Constant } (1.38 \times 10^{-23} \text{ j/°K})$ $T = \text{Temperature of the Source Resistance } (^{\circ}K)$ $R_S = \text{Source Resistance (Ohms)}$

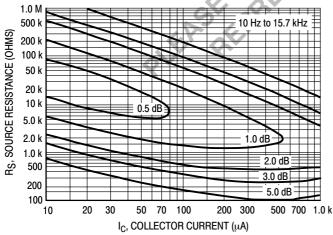


Figure 5. Wideband

TYPICAL STATIC CHARACTERISTICS

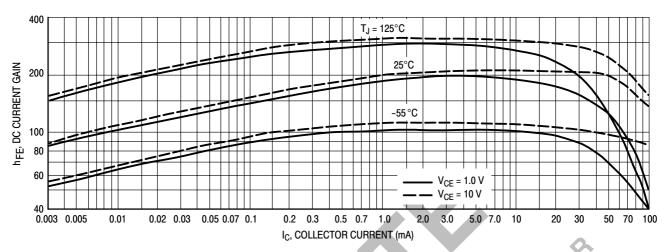


Figure 6. DC Current Gain

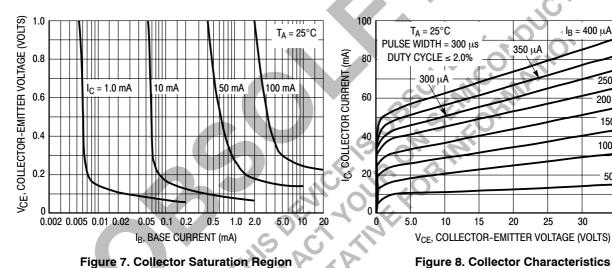


Figure 7. Collector Saturation Region

 $T_J = 25^{\circ}C$

 $V_{BE(sat)} @ I_C/I_B = 10$

 $V_{CE(sat)} @ I_C/I_B = 10$

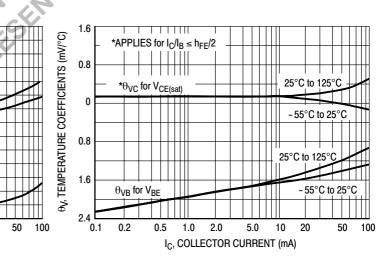
0.2

V_{BE(on)} @ V_{CE} = 1.0 V

1.2

1.0

0.8


0.6

0.4

0.2

0.1

V, VOLTAGE (VOLTS)

IC, COLLECTOR CURRENT (mA) Figure 9. "On" Voltages

2.0

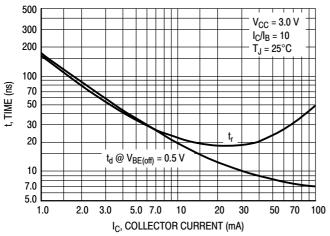
Figure 10. Temperature Coefficients

 $I_B = 400 \mu A$

250 μΑ

200 μΑ 150 μΑ $100 \mu A$

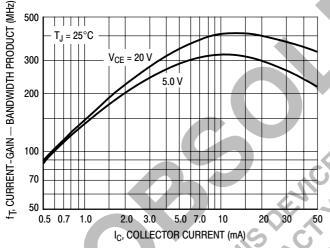
50 μΑ


35

40

350 μΑ

20


TYPICAL DYNAMIC CHARACTERISTICS

1000 $V_{CC} = -3.0 \text{ V}$ $I_C/I_B = 10$ 700 500 $I_{B1} = I_{B2}$ 300 $T_J = 25^{\circ}C$ 200 t, TIME (ns) 100 70 50 30 20 10 -2.0 -3.0 -5.0 -7.0 -10 - 20 -30 -50 -70 -100 I_C, COLLECTOR CURRENT (mA)

Figure 11. Turn-On Time

Figure 12. Turn-Off Time

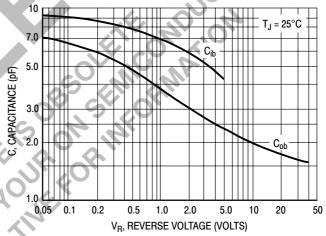
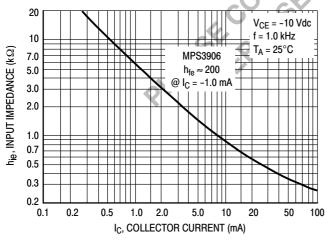



Figure 13. Current-Gain — Bandwidth Product

Figure 14. Capacitance

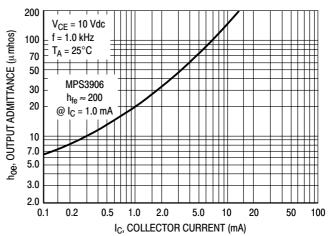


Figure 15. Input Impedance

Figure 16. Output Admittance

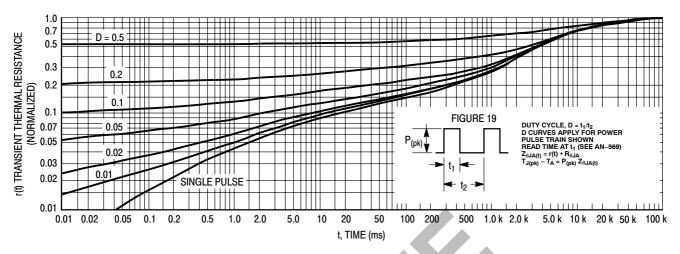
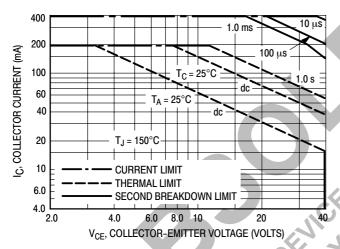



Figure 17. Thermal Response

The safe operating area curves indicate I_C-V_{CE} limits of the transistor that must be observed for reliable operation. Collector load lines for specific circuits must fall below the limits indicated by the applicable curve.

The data of Figure 18 is based upon $T_{J(pk)}=150^{\circ}C$; T_{C} or T_{A} is variable depending upon conditions. Pulse curves are valid for duty cycles to 10% provided $T_{J(pk)} \le 150^{\circ}C$. $T_{J(pk)}$ may be calculated from the data in Figure 17. At high case or ambient temperatures, thermal limitations will reduce the power than can be handled to values less than the limitations imposed by second breakdown.

Figure 18. Active-Region Safe Operating Area

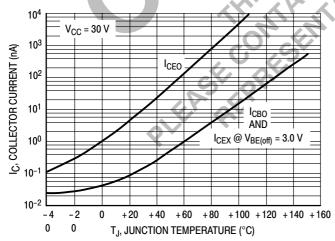


Figure 19. Typical Collector Leakage Current

DESIGN NOTE: USE OF THERMAL RESPONSE DATA

A train of periodical power pulses can be represented by the model as shown in Figure 19. Using the model and the device thermal response the normalized effective transient thermal resistance of Figure 17 was calculated for various duty cycles.

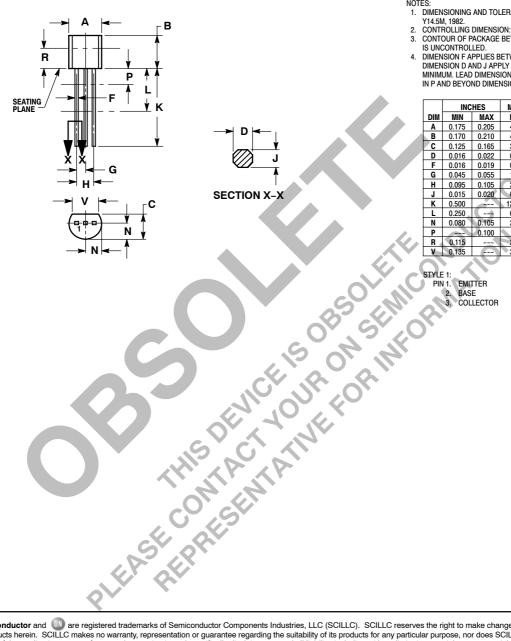
To find $Z_{\theta JA(t)},$ multiply the value obtained from Figure 17 by the steady state value $R_{\theta JA}.$

Example:

Dissipating 2.0 watts peak under the following conditions:

$$t_1 = 1.0 \text{ ms}, t_2 = 5.0 \text{ ms} (D = 0.2)$$

Using Figure 17 at a pulse width of 1.0 ms and D = 0.2, the reading of r(t) is 0.22.


The peak rise in junction temperature is therefore

$$\Delta T = r(t) \times P_{(pk)} \times R_{\theta JA} = 0.22 \times 2.0 \times 200 = 88^{\circ}C.$$

For more information, see AN-569.

PACKAGE DIMENSIONS

CASE 029-04 (TO-226AA) **ISSUE AD**

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14 5M 1982
- CONTROLLING DIMENSION: INCH.
 CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
- IS DIMENSION F APPLIES BETWEEN P AND L.
 DIMENSION D AND J APPLY BETWEEN L AND K.
 MINIMUM. LEAD DIMENSION IS UNCONTROLLED.
 IN P AND BEYOND DIMENSION K MINIMUM.

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.175	0.205	4.45	5.20	
В	0.170	0.210	4.32	5.33	
С	0.125	0.165	3.18	4.19	
D	0.016	0.022	0.41	0.55	
F	0.016	0.019	0.41	0.48	
G	0.045	0.055	1.15	1.39	
Н	0.095	0.105	2.42	2.66	
J	0.015	0.020	0.39	0.50	
K	0.500		12.70		
L	0.250	(4	6.35		
N	0.080	0.105	2.04	2.66	
P	-	0.100		2.54	
R	0.115		2.93		
V	0.135		3.43		

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered readerlands of semiconductor Components industries, Ite (SCILLC) . Solitude services are inject to make triangles without further holice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative