MMVL2101T1

Preferred Device

Silicon Tuning Diode

These devices are designed in the popular Plastic Surface Mount Package for high volume requirements of FM Radio and TV tuning and AFC, general frequency control and tuning applications. They provide solid–state reliability in replacement of mechanical tuning methods.

Features

- High Q
- Controlled and Uniform Tuning Ratio
- Standard Capacitance Tolerance 10%
- Complete Typical Design Curves
- Pb–Free Package is Available

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Continuous Reverse Voltage	V _R	30	Vdc
Peak Forward Current	١ _F	200	mAdc

THERMAL CHARACTERISTICS

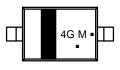
Characteristic	Symbol	Max	Unit
Total Device Dissipation FR–5 Board, T _A = 25°C (Note 1) Derate above 25°C	P _D	200 1.57	mW mW/°C
Thermal Resistance, Junction-to-Ambient	R_{\thetaJA}	635	°C/W
Junction and Storage Temperature	T _J , T _{stg}	150	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. FR-4 Minimum Pad

ON Semiconductor®

http://onsemi.com


30 VOLTS VOLTAGE VARIABLE CAPACITANCE DIODE

1 0 2 CATHODE ANODE

SOD-323 CASE 477 STYLE 1

MARKING DIAGRAM

4G = Device Code

- M = Date Code*
- = Pb–Free Package

(Note: Microdot may be in either location) *Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

[Device	Package	Shipping [†]
	MMVL2101T1	SOD-323	3000 / Tape & Reel
	MMVL2101T1G	SOD-323 (Pb-Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Preferred devices are recommended choices for future use and best overall value.

MMVL2101T1

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Reverse Breakdown Voltage (I _R = 10 μAdc)	V _{(BR)R}	30	-	-	Vdc
Reverse Voltage Leakage Current ($V_R = 25 \text{ Vdc}, T_A = 25^{\circ}\text{C}$)	I _R	-	-	0.1	μAdc
Diode Capacitance Temperature Coefficient ($V_R = 4.0 \text{ Vdc}, f = 1.0 \text{ MHz}$)	TC _C	-	280	-	ppm/°C

	C _T , Diode Capacitance V _R = 4.0 Vdc, f = 1.0 MHz pF		Q, Figure of Merit V _R = 4.0 Vdc, f = 50 MHz	TR, Tuning Ratio C ₂ /C ₃₀ f = 1.0 MHz		io	
Device	Min	Nom	Max	Тур	Min	Тур	Max
MMVL2101T1	6.1	6.8	7.5	450	2.5	2.7	3.2

PARAMETER TEST METHODS

1. C_T, DIODE CAPACITANCE

 $(C_T = C_C + C_J)$. C_T is measured at 1.0 MHz using a capacitance bridge (Boonton Electronics Model 75A or equivalent).

2. TR, TUNING RATIO

TR is the ratio of C_{T} measured at 2.0 Vdc divided by C_{T} measured at 30 Vdc.

3. Q, FIGURE OF MERIT

Q is calculated by taking the G and C readings of an admittance bridge at the specified frequency and substituting in the following equations:

$$Q = \frac{2\pi fC}{G}$$

(Boonton Electronics Model 33AS8 or equivalent). Use Lead Length $\approx 1/16$ ".

4. TC_C, DIODE CAPACITANCE TEMPERATURE COEFFICIENT

 TC_C is guaranteed by comparing C_T at $V_R=4.0$ Vdc, f=1.0 MHz, $T_A=-65^\circ C$ with C_T at $V_R=4.0$ Vdc, f=1.0 MHz, $T_A=+85^\circ C$ in the following equation, which defines TC_C :

$$\mathsf{TC}_{\mathsf{C}} = \left| \frac{\mathsf{C}_{\mathsf{T}}(+\ 85^{\circ}\mathsf{C}) - \mathsf{C}_{\mathsf{T}}(-65^{\circ}\mathsf{C})}{85 + 65} \right| \cdot \frac{10^{6}}{\mathsf{C}_{\mathsf{T}}(25^{\circ}\mathsf{C})}$$

Accuracy limited by measurement of C_T to ± 0.1 pF.

MMVL2101T1

TYPICAL DEVICE CHARACTERISTICS

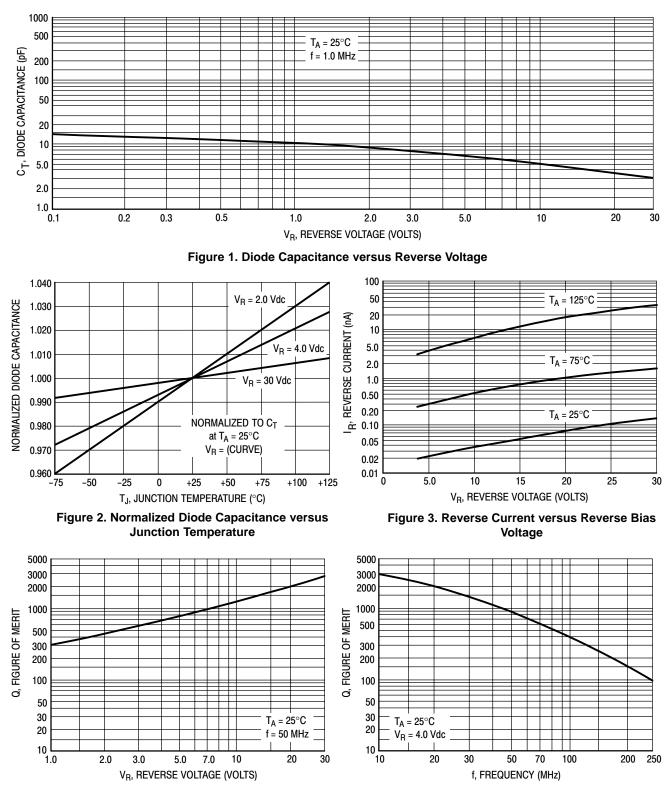
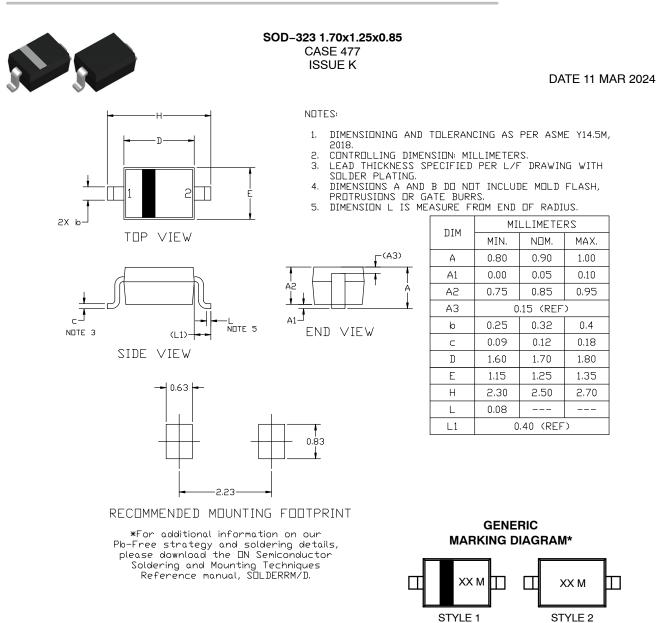



Figure 4. Figure of Merit versus Reverse Voltage

Figure 5. Figure of Merit versus Frequency

MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

XX = Specific Device Code M = Date Code

DUSEU

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLE 2: NO POLARITY STYLE 1: PIN 1. CATHODE (POLARITY BAND) 2. ANODE

DOCUMENT NUMBER:	98ASB17533C	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOD-323 1.70x1.25x0.85		PAGE 1 OF 1		
onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves					

the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>