High Voltage Transistor

PNP Silicon

Features

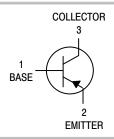
- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector – Emitter Voltage	V _{CEO}	-150	Vdc
Collector - Base Voltage	V _{CBO}	-160	Vdc
Emitter – Base Voltage	V _{EBO}	-5.0	Vdc
Collector Current – Continuous	I _C	-500	mAdc

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board (Note 2) TA = 25°C	P _D	400	mW
Derate Above 25°C		3.2	mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	312	°C/W
Junction and Storage Temperature	T _J , T _{stg}	-55 to +150	°C

- 1. FR-5 @ 100 mm 2 , 0.5 oz. copper traces, still air.
- 2. FR-5 = $1.0 \times 0.75 \times 0.062$ in.

ON Semiconductor®

www.onsemi.com

SC-70 (SOT-323) CASE 419 STYLE 3

MARKING DIAGRAM

4W = Specific Device Code

M = Date Code* ■ Pb–Free Package

(Note: Microdot may be in either location)

*Date Code orientation and/or overbar may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
MMBT5401WT1G,	SC-70	3000 / Tape &
NSVMMBT5401WT1G	(Pb-Free)	Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector – Emitter Breakdown Voltage (I _C = -1.0 mAdc, I _B = 0)	V _{(BR)CEO}	-150	_	Vdc
Collector – Base Breakdown Voltage (I _C = –100 μAdc, I _E = 0)	V _{(BR)CBO}	-160	_	Vdc
Emitter – Base Breakdown Voltage ($I_E = -10 \mu Adc$, $I_C = 0$)	V _{(BR)EBO}	-5.0	_	Vdc
Collector–Base Cutoff Current $(V_{CB} = -120 \text{ Vdc}, I_E = 0)$ $(V_{CB} = -120 \text{ Vdc}, I_E = 0, T_A = 100^{\circ}\text{C})$	I _{CBO}	- -	-50 -50	nAdc μAdc
ON CHARACTERISTICS				
DC Current Gain $ \begin{aligned} &(I_C = -1.0 \text{ mAdc}, V_{CE} = -5.0 \text{ Vdc}) \\ &(I_C = -10 \text{ mAdc}, V_{CE} = -5.0 \text{ Vdc}) \\ &(I_C = -50 \text{ mAdc}, V_{CE} = -5.0 \text{ Vdc}) \end{aligned} $	h _{FE}	50 60 50	- 240 -	-
Collector – Emitter Saturation Voltage $ \begin{aligned} &(I_C = -10 \text{ mAdc}, I_B = -1.0 \text{ mAdc}) \\ &(I_C = -50 \text{ mAdc}, I_B = -5.0 \text{ mAdc}) \end{aligned} $	V _{CE(sat)}	- -	-0.2 -0.5	Vdc
Base – Emitter Saturation Voltage ($I_C = -10 \text{ mAdc}$, $I_B = -1.0 \text{ mAdc}$) ($I_C = -50 \text{ mAdc}$, $I_B = -5.0 \text{ mAdc}$)	V _{BE(sat)}	- -	-1.0 -1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current – Gain — Bandwidth Product $(I_C = -10 \text{ mAdc}, V_{CE} = -10 \text{ Vdc}, f = 100 \text{ MHz})$	f _T	100	300	MHz
Output Capacitance (V _{CB} = -10 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}		6.0	pF
Small Signal Current Gain (I _C = -1.0 mAdc, V _{CE} = -10 Vdc, f = 1.0 kHz)	h _{fe}	40	200	-
Noise Figure (I _C = $-200~\mu$ Adc, V _{CE} = $-5.0~\text{Vdc}$, R _S = $10~\Omega$, f = $1.0~\text{kHz}$)	NF	-	8.0	dB

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

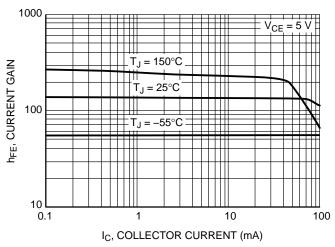


Figure 1. DC Current Gain

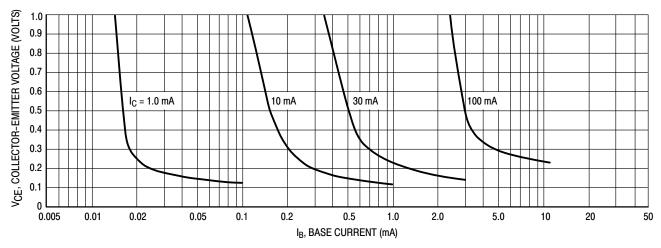


Figure 2. Collector Saturation Region

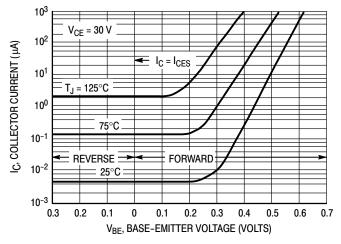


Figure 3. Collector Cut-Off Region

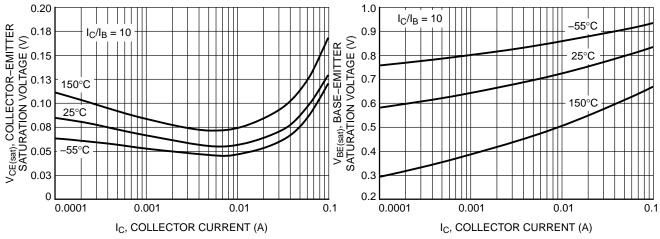


Figure 4. Collector Emitter Saturation Voltage vs. Collector Current

Figure 5. Base Emitter Saturation Voltage vs. Collector Current

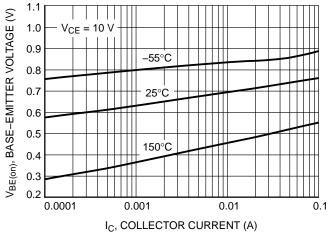
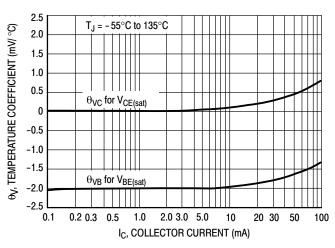



Figure 6. Base Emitter Voltage vs. Collector Current

Figure 7. Temperature Coefficients

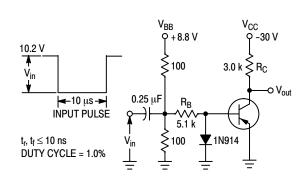


Figure 8. Switching Time Test Circuit

Values Shown are for I_C @ 10 mA

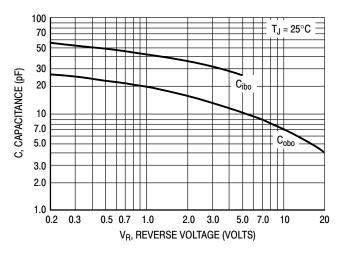
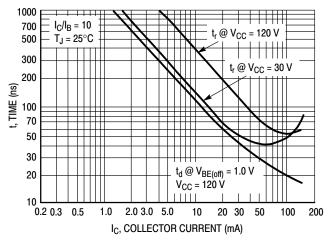



Figure 9. Capacitances

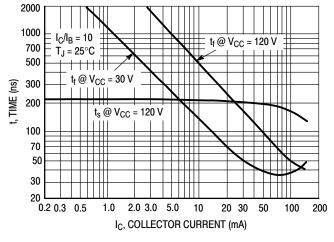
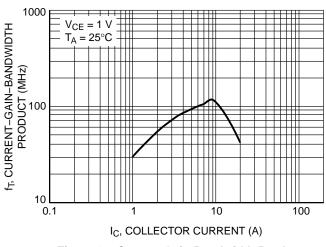



Figure 10. Turn-On Time

Figure 11. Turn-Off Time

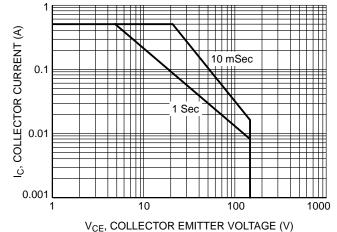
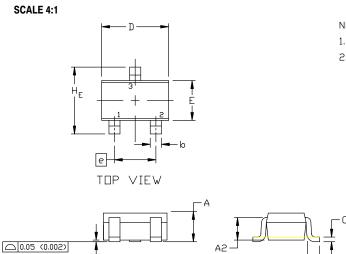
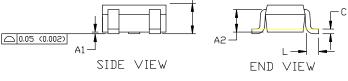


Figure 12. Current Gain Bandwidth Product

Figure 13. Safe Operating Area


SC-70 (SOT-323) **CASE 419** ISSUE R


DATE 11 OCT 2022

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH

	MILLIMETERS			INCHES			
	MILLIMETERS				INCHES		
DIM	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.	
Α	0.80	0.90	1.00	0.032	0.035	0.040	
A1	0.00	0.05	0.10	0.000	0.002	0.004	
A2		0.70 REF			0.028 BSC		
b	0.30	0.35	0.40	0.012	0.014	0.016	
С	0.10	0.18	0.25	0.004	0.007	0.010	
D	1.80	2.00	2.20	0.071	0.080	0.087	
E	1.15	1.24	1.35	0.045	0.049	0.053	
е	1.20	1.30	1.40	0.047	0.051	0.055	
e1	0.65 BSC				0.026 BS	C	
L	0.20	0.38	0.56	0.008	0.015	0.022	
HE	2.00	2.10	2.40	0.079	0.083	0.095	

GENERIC MARKING DIAGRAM

= Specific Device Code XX

Μ = Date Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

0.65 [0.025]
1.90 [0.075]
0.90 [0.035]
0.70 [0.028]

For additional information on our Pb-Free strategy and soldering details, please download the IN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

SOLDERING FOOTPRINT

STYLE 1: CANCELLED	STYLE 2: PIN 1. ANODE 2. N.C. 3. CATHODE	STYLE 3: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. CATHODE	
STYLE 6:	STYLE 7:	STYLE 8:	STYLE 9:	STYLE 10:	STYLE 11:
PIN 1. EMITTER	PIN 1. BASE	PIN 1. GATE	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. CATHODE
2. BASE	2. EMITTER	2. SOURCE	2. CATHODE	2. ANODE	CATHODE
COLLECTOR	COLLECTOR	3. DRAIN	CATHODE-ANODE	3. ANODE-CATHODE	CATHODE

DOCUMENT NUMBER:	98ASB42819B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SC-70 (SOT-323)		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights or the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales