MMBT4401WT1G

Switching Transistor

NPN Silicon

Features

- Moisture Sensitivity Level: 1
- ESD Rating: Human Body Model; 4 kV , Machine Model; 400 V
- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	40	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	60	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	6.0	Vdc
Collector Current - Continuous	I_{C}	600	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	150	mW
Thermal Resistance, Junction-to-Ambient	$\mathrm{R}_{\theta \mathrm{JA}}$	833	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction and Storage Temperature	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\mathrm{stg}}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

EMITTER
SC-70 (SOT-323)
CASE 419
STYLE 3

MARKING DIAGRAM

(Note: Microdot may be in either location)
*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping †
MMBT4401WT1G	SC-70 (Pb-Free)	 Reel
NSVMMBT4401WT1G	SC-70 (Pb-Free)	 Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage (Note 1) ($\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0$)	$\mathrm{V}_{\text {(BR) }}$ CEO	40	-	Vdc
Collector-Base Breakdown Voltage ($\mathrm{I}_{\mathrm{C}}=0.1 \mathrm{mAdc}, \mathrm{I}_{\mathrm{E}}=0$)	$\mathrm{V}_{\text {(BR) }}$ CBO	60	-	Vdc
Emitter-Base Breakdown Voltage ($\mathrm{I}_{\mathrm{E}}=0.1 \mathrm{mAdc}, \mathrm{I}_{\mathrm{C}}=0$)	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	6.0	-	Vdc
Base Cutoff Current ($\mathrm{V}_{\mathrm{CE}}=35 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EB}}=0.4 \mathrm{Vdc}$)	$\mathrm{I}_{\mathrm{BEV}}$	-	0.1	$\mu \mathrm{Adc}$

ON CHARACTERISTICS (Note 1)

DC Current Gain $\begin{aligned} & \left(\mathrm{I}_{\mathrm{C}}=0.1 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=150 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=500 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=2.0 \mathrm{Vdc}\right) \end{aligned}$	$\mathrm{h}_{\text {FE }}$	$\begin{gathered} 20 \\ 40 \\ 80 \\ 100 \\ 40 \end{gathered}$	$\begin{gathered} - \\ - \\ - \\ 300 \end{gathered}$	-
$\begin{aligned} & \text { Collector-Emitter Saturation Voltage } \\ & \left(I_{C}=150 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=15 \mathrm{mAdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=500 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=50 \mathrm{mAdc}\right) \end{aligned}$	$\mathrm{V}_{\text {CE(sat) }}$	-	$\begin{gathered} 0.4 \\ 0.75 \end{gathered}$	Vdc
Base-Emitter Saturation Voltage ($\mathrm{I}_{\mathrm{C}}=150 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=15 \mathrm{mAdc}$) $\left(I_{C}=500 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=50 \mathrm{mAdc}\right)$	$\mathrm{V}_{\text {BE(sat) }}$	0.75	$\begin{gathered} 0.95 \\ 1.2 \end{gathered}$	Vdc
Collector Cutoff Current ($\left.\mathrm{V}_{\mathrm{CE}}=35 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EB}}=0.4 \mathrm{Vdc}\right)$	$I_{\text {CEX }}$	-	0.1	$\mu \mathrm{Adc}$

SMALL-SIGNAL CHARACTERISTICS

Current-Gain - Bandwidth Product ($\mathrm{l}_{\mathrm{C}}=20 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=100 \mathrm{MHz}$)	f^{+}	250	-	MHz
Collector-Base Capacitance ($\mathrm{V}_{\mathrm{CB}}=5.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}$)	C_{cb}	-	6.5	pF
Emitter-Base Capacitance ($\mathrm{V}_{\mathrm{EB}}=0.5 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0, \mathrm{f}=1.0 \mathrm{MHz}$)	$\mathrm{C}_{\text {eb }}$	-	30	pF
Input Impedance ($\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{kHz}$)	h_{ie}	1.0	15	k Ω
Voltage Feedback Ratio ($\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{kHz}$)	$\mathrm{hre}_{\text {re }}$	0.1	8.0	X 10^{-4}
Small-Signal Current Gain ($\mathrm{l}_{\mathrm{C}}=1.0 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{kHz}$)	$\mathrm{hfe}_{\text {fe }}$	40	500	-
Output Admittance ($\mathrm{l}_{\mathrm{C}}=1.0 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{kHz}$)	h_{oe}	1.0	30	$\mu \mathrm{mhos}$

SWITCHING CHARACTERISTICS

Delay Time	$\begin{gathered} \left(\mathrm{V}_{\mathrm{CC}}=30 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{EB}}=2.0 \mathrm{Vdc},\right. \\ \left.\mathrm{I}_{\mathrm{C}}=150 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B} 1}=15 \mathrm{mAdc}\right) \end{gathered}$	t_{d}	-	15	ns
Rise Time		t_{r}	-	20	
Storage Time	$\begin{aligned} \left(\mathrm{V}_{\mathrm{CC}}\right. & =30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=150 \mathrm{mAdc}, \\ \mathrm{I}_{\mathrm{B} 1} & \left.=\mathrm{I}_{\mathrm{B} 2}=15 \mathrm{mAdc}\right) \end{aligned}$	$\mathrm{t}_{\text {s }}$	-	225	ns
Fall Time		t_{f}	-	30	

1. Pulse Test: Pulse Width $\leq 300 \mu \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$.

SWITCHING TIME EQUIVALENT TEST CIRCUITS

Figure 1. Turn-On Time
Figure 2. Turn-Off Time

MMBT4401WT1G

TRANSIENT CHARACTERISTICS

Figure 3. Capacitances

Figure 5. Turn-On Time

Figure 7. Storage Time

Figure 4. Charge Data

Figure 6. Rise and Fall Times

Figure 8. Fall Time

MMBT4401WT1G

SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE
$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; Bandwidth $=1.0 \mathrm{~Hz}$

Figure 9. Frequency Effects

Figure 10. Source Resistance Effects

h PARAMETERS
 $V_{C E}=10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

This group of graphs illustrates the relationship between h_{fe} and other " h " parameters for this series of transistors. To obtain these curves, a high-gain and a low-gain unit were selected from the MMBT4401WT1 lines, and the same units were used to develop the correspondingly numbered curves on each graph.

Figure 11. Current Gain

Figure 13. Voltage Feedback Ratio

Figure 12. Input Impedance

Figure 14. Output Admittance

MMBT4401WT1G

STATIC CHARACTERISTICS

Figure 15. DC Current Gain vs. Collector Current

$\mathrm{I}_{\mathrm{B}}, \mathrm{BASE}$ CURRENT (mA)
Figure 17. Saturation Region

Figure 19. Base Emitter Saturation Voltage vs. Collector Current

Figure 16. DC Current Gain vs. Collector Current

I_{c}, COLLECTOR CURRENT (mA)
Figure 18. Collector Emitter Saturation Voltage vs. Collector Current

I_{C}, COLLECTOR CURRENT (mA)
Figure 20. Base Emitter Turn-ON Voltage vs. Collector Current

MMBT4401WT1G

Figure 21. Temperature Coefficients

Figure 22. Safe Operating Area

SCALE 4:1

SC-70 (SOT-323)
 CASE 419
 ISSUE R

NDTES:

1. DIMENSIINING AND TGLERANCING PER ASME Y14.5M, 1982.
2. CONTRULLING DIMENSIDN: INCH

DIM	MILLIMETERS			INCHES		
	MIN.	NUM.	MAX.	MIN.	NUM.	MAX.
A	0.80	0.90	1.00	0.032	0.035	0.040
A1	0.00	0.05	0.10	0.000	0.002	0.004
A2	0.70 REF			0.028 BSC		
b	0.30	0.35	0.40	0.012	0.014	0.016
C	0.10	0.18	0.25	0.004	0.007	0.010
D	1.80	2.00	2.20	0.071	0.080	0.087
E	1.15	1.24	1.35	0.045	0.049	0.053
e	1.20	1.30	1.40	0.047	0.051	0.055
e1	0.65 BSC			0.026 BSC		
L	0.20	0.38	0.56	0.008	0.015	0.022
H_{E}	2.00	2.10	2.40	0.079	0.083	0.095

GENERIC
MARKING DIAGRAM

XX = Specific Device Code
M = Date Code

- \quad Pb-Free Package

* For additional information on our Pb -Free strategy and soldering details, please download Techniques Reference Manual

SULDERING FIDTPRINT
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " r ", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1:		
	STYLE 2:	STYLE 3:
	PIN 1. ANODE	PIN 1. BASE
	2. N.C.	2. EMITTER
	3. CATHODE	3. COLLECTOR
STYLE 6:	STYLE 7:	STYLE 8:
PIN 1. EMITTER	PIN 1. BASE	PIN 1. GATE
2. BASE	2. EMITTER	2. SOURCE
3. COLLECTOR	3. COLLECTOR	3. DRAIN

STYLE 4:	STYLE 5:
PIN 1. CATHODE	PIN 1. ANODE
2. CATHODE	2. ANODE
3. ANODE	3. CATHODE
STYLE 9:	
PIN 1. ANODE	STYLE 10:
2. CATHODE	PIN 1. CATHODE
3. CATHODE-ANODE	2. ANODE

STYLE 11:
PIN 1. CATHODE 2. CATHODE 3. CATHODE

| DOCUMENT NUMBER: | 98ASB42819B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-70 (SOT-323) | PAGE 1 OF $\mathbf{1}$ |

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:
Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support
For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

