NPN Switching Transistor

The MMBT4401M3T5G device is a spin-off of our popular SOT-23 three-leaded device. It is designed for general purpose switching applications and is housed in the SOT-723 surface mount package. This device is ideal for low-power surface mount applications where board space is at a premium.

Features

- Reduces Board Space
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

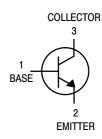
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector - Emitter Voltage	V_{CEO}	40	Vdc
Collector - Base Voltage	V_{CBO}	60	Vdc
Emitter – Base Voltage	V _{EBO}	6.0	Vdc
Collector Current - Continuous	Ic	600	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board (Note 1) T _A = 25°C Derate above 25°C	P _D	265 2.1	mW mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	470	°C/W
Total Device Dissipation Alumina Substrate, (Note 2) T _A = 25°C Derate above 25°C	P _D	640 5.1	mW mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	195	°C/W
Junction and Storage Temperature	T _J , T _{stg}	-55 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


1

- 1. FR-5 = $1.0 \times 0.75 \times 0.062$ in.
- 2. Alumina = $0.4 \times 0.3 \times 0.024$ in. 99.5% alumina.

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

SOT-723 CASE 631AA STYLE 1

AF

Specific Device CodeDate Code

ORDERING INFORMATION

Device	Package	Shipping [†]
MMBT4401M3T5G	SOT-723 (Pb-Free)	8000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit	
OFF CHARACTERISTICS		•				
Collector – Emitter Breakdown Voltage (Note 3) (I _C = 1.0 mAdc, I _B = 0)		V _{(BR)CEO}	40	-	Vdc	
Collector - Base Breakdown Voltage	$(I_C = 0.1 \text{ mAdc}, I_E = 0)$	V _{(BR)CBO}	60	-	Vdc	
Emitter – Base Breakdown Voltage	$(I_E = 0.1 \text{ mAdc}, I_C = 0)$	V _{(BR)EBO}	6.0	-	Vdc	
Base Cutoff Current	(V _{CE} = 35 Vdc, V _{EB} = 0.4 Vdc)	I _{BEV}	-	0.1	μAdc	
Collector Cutoff Current (V _{CE} = 35 Vdc, V _{EB} = 0.4 Vdc)		I _{CEX}	-	0.1	μAdc	
ON CHARACTERISTICS (Note 3)		•	•	•		
DC Current Gain $ \begin{array}{c} (I_{C}=0.1 \text{ mAdc}, V_{CE}=1.0 \text{ Vdc}) \\ (I_{C}=1.0 \text{ mAdc}, V_{CE}=1.0 \text{ Vdc}) \\ (I_{C}=10 \text{ mAdc}, V_{CE}=1.0 \text{ Vdc}) \\ (I_{C}=150 \text{ mAdc}, V_{CE}=1.0 \text{ Vdc}) \\ (I_{C}=500 \text{ mAdc}, V_{CE}=2.0 \text{ Vdc}) \end{array} $		h _{FE}	20 40 80 100 40	- - - 300 -	-	
Collector – Emitter Saturation Voltage $ \begin{pmatrix} I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc} \\ I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc} \end{pmatrix} $		V _{CE(sat)}	- -	0.4 0.75	Vdc	
Base – Emitter Saturation Voltage $ \begin{aligned} \text{(I}_{C} &= 150 \text{ mAdc, I}_{B} = 15 \text{ mAdc)} \\ \text{(I}_{C} &= 500 \text{ mAdc, I}_{B} = 50 \text{ mAdc)} \end{aligned} $		V _{BE(sat)}	0.75 -	0.95 1.2	Vdc	
SMALL-SIGNAL CHARACTERISTIC	es					
Current – Gain – Bandwidth Product (I _C = 20 mAdc, V _{CE} = 10 Vdc, f = 100 MHz)		f _T	250	-	MHz	
Collector–Base Capacitance ($V_{CB} = 5.0 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz}$)		C _{cb}	-	6.5	pF	
Emitter–Base Capacitance $(V_{EB} = 0.5 \text{ Vdc}, I_C = 0, f = 1.0 \text{ MHz})$		C _{eb}	-	30	pF	
Input Impedance (I _C = 1.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz)		h _{ie}	1.0	15	kΩ	
Voltage Feedback Ratio $(I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz})$		h _{re}	0.1	8.0	X 10 ⁻⁴	
Small – Signal Current Gain ($I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz}$)		h _{fe}	40	500	-	
Output Admittance ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)		h _{oe}	1.0	30	μmhos	
SWITCHING CHARACTERISTICS						
Delay Time	(V _{CC} = 30 Vdc, V _{EB} = 2.0 Vdc,	t _d	-	15	ne	
Rise Time	I _C = 150 mAdc, I _{B1} = 15 mAdc)	t _r	-	20	ns	
Storage Time	$(V_{CC} = 30 \text{ Vdc}, I_C = 150 \text{ mAdc},$	t _s		225	ns	
Fall Time	$I_{B1} = I_{B2} = 15 \text{ mAdc}$	t _f	_	30		

^{3.} Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%.

SWITCHING TIME EQUIVALENT TEST CIRCUITS

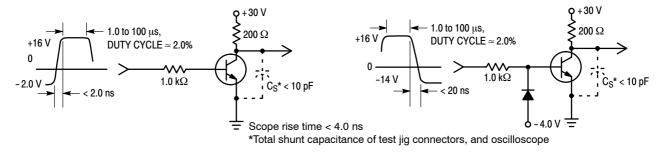


Figure 1. Turn-On Time

Figure 2. Turn-Off Time

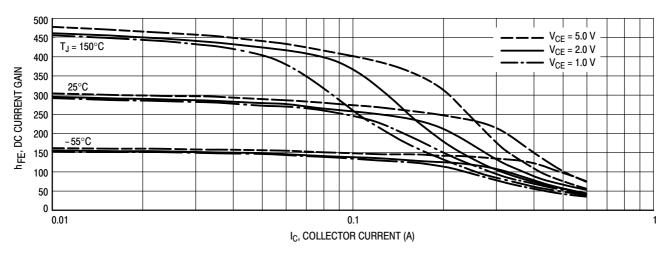


Figure 3. DC Current Gain

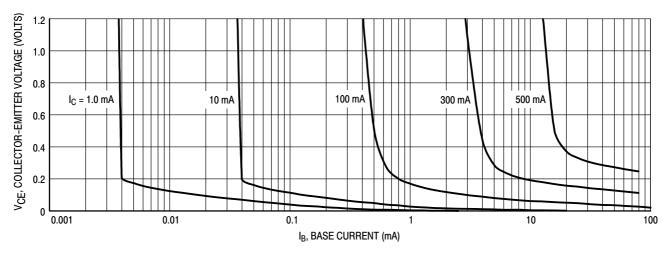


Figure 4. Collector Saturation Region

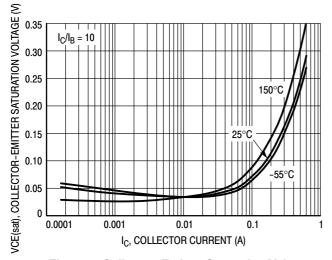


Figure 5. Collector-Emitter Saturation Voltage vs. Collector Current

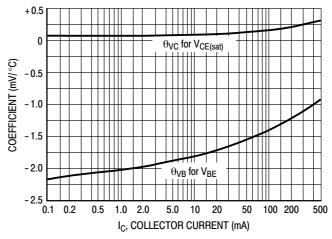


Figure 6. Temperature Coefficients

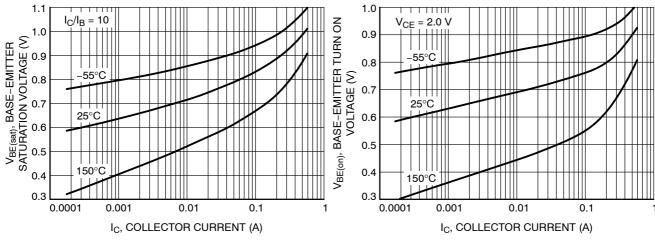


Figure 7. Base-Emitter Saturation Voltage vs.
Collector Current

Figure 8. Base-Emitter Turn On Voltage vs.
Collector Current

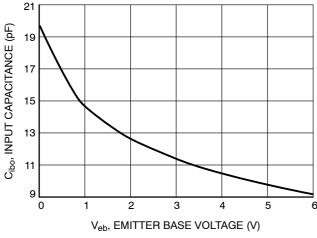


Figure 9. Input Capacitance vs. Emitter Base Voltage

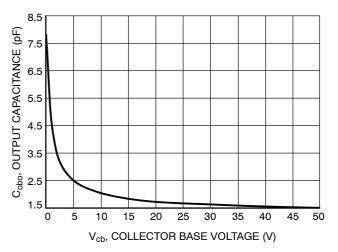


Figure 10. Output Capacitance vs. Collector Base Voltage

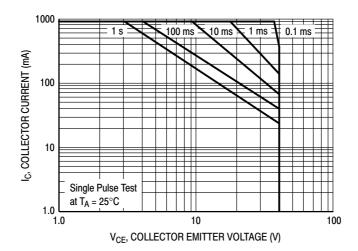
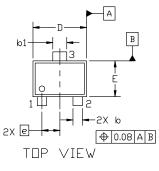
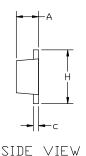


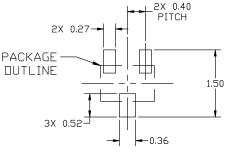
Figure 11. Safe Operating Area




SOT-723 1.20x0.80x0.50, 0.40P CASE 631AA ISSUE E


DATE 24 JAN 2024

NOTES:


- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2018.
- 2. CONTROLLING DIMENSION: MILLIMETERS.
- 3, MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH, MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

MILLIMETERS DIM MIN. $N\square M$. MAX. 0.45 0.50 0.55 Α 0.15 0.21 0.27 b 0.25 0.31 0.37 b1 0.07 0.12 0.17 \subset D 1.25 1.15 1.20 Ε 0.75 0.80 0.85 0.40 BSC е Н 1.20 1.15 1.25 0.29 REF L L2 0.15 0.20 0.25

RECOMMENDED MOUNTING FOOTPRINT

*For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

GENERIC MARKING DIAGRAM*

XX = Specific Device Code
M = Date Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1: STYLE 2: STYLE 3: STYLE 4: STYLE 5: PIN 1. GATE 2. SOURCE PIN 1. BASE PIN 1. ANODE PIN 1. ANODE PIN 1. CATHODE 2 FMITTER N/C
 CATHODE 2 CATHODE 2. ANODE 3. COLLECTOR 3. CATHODE 3. ANODE 3. DRAIN

DESCRIPTION:	SOT-723 1.20x0.80x0.50, 0.40P		PAGE 1 OF 1
DOCUMENT NUMBER:	98AON12989D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	

onsemi and ONSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales