MJE15034 (NPN), MJE15035 (PNP) ## **Complementary Silicon Plastic Power Transistors** #### TO-220, NPN & PNP Devices Complementary silicon plastic power transistors are designed for use as high-frequency drivers in audio amplifiers. #### **Features** - High Current Gain Bandwidth Product - TO-220 Compact Package - Epoxy meets UL 94 V-0 @ 0.125 in - These Devices are Pb-Free and are RoHS Compliant* #### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |---|-----------------------------------|--------------|-----------| | Collector-Emitter Voltage | V _{CEO} | 350 | Vdc | | Collector-Base Voltage | V _{CB} | 350 | Vdc | | Emitter-Base Voltage | V _{EB} | 5.0 | Vdc | | Collector Current – Continuous | I _C | 4.0 | Adc | | Collector Current – Peak | I _{CM} | 8.0 | Adc | | Base Current | Ι _Β | 1.0 | Adc | | Total Power Dissipation @ T _C = 25°C Derate above 25°C | P _D | 50
0.40 | W
W/°C | | Total Power Dissipation @ T _A = 25°C Derate above 25°C | P _D | 2.0
0.016 | W
W/°C | | Operating and Storage Junction
Temperature Range | T _J , T _{stg} | -65 to +150 | °C | | ESD – Human Body Model | HBM | 3B | V | | ESD – Machine Model | MM | С | V | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. #### THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |---|-----------------|------|------| | Thermal Resistance, Junction-to-Case | $R_{\theta JC}$ | 2.5 | °C/W | | Thermal Resistance, Junction-to-Ambient | $R_{\theta JA}$ | 62.5 | °C/W | #### ON Semiconductor® www.onsemi.com # 4.0 AMPERES POWER TRANSISTORS COMPLEMENTARY SILICON 350 VOLTS, 50 WATTS #### **COMPLEMENTARY** #### MARKING DIAGRAM TO-220 CASE 221A STYLE 1 MJE1503x = Device Code x = 4 or 5 = Location Code = Year WW = Work Week G = Pb-Free Package #### **ORDERING INFORMATION** | Device | Package | Shipping | |-----------|---------------------|-----------------| | MJE15034G | TO-220
(Pb-Free) | 50 Units / Rail | | MJE15035G | TO-220
(Pb-Free) | 50 Units / Rail | ^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### MJE15034 (NPN), MJE15035 (PNP) #### **ELECTRICAL CHARACTERISTICS** (T_C = 25°C unless otherwise noted) | Characteristic | | Symbol | Min | Max | Unit | |---|--|-----------------------|------------------------|-------------|------| | OFF CHARACTERISTICS | | | | | | | Collector–Emitter Sustaining Voltage (Note 1) | $(I_C = 10 \text{ mAdc}, I_B = 0)$ | V _{CEO(sus)} | 350 | _ | Vdc | | Collector Cutoff Current | $(V_{CB} = 350 \text{ Vdc}, I_{E} = 0)$ | I _{CBO} | - | 10 | μAdc | | Emitter Cutoff Current | $(V_{BE} = 5.0 \text{ Vdc}, I_{C} = 0)$ | I _{EBO} | - | 10 | μAdc | | ON CHARACTERISTICS (Note 1) | | | | | | | DC Current Gain | $ \begin{aligned} &(I_C = 0.1 \text{ Adc, } V_{CE} = 5.0 \text{ Vdc}) \\ &(I_C = 0.5 \text{ Adc, } V_{CE} = 5.0 \text{ Vdc}) \\ &(I_C = 1.0 \text{ Adc, } V_{CE} = 5.0 \text{ Vdc}) \\ &(I_C = 2.0 \text{ Adc, } V_{CE} = 5.0 \text{ Vdc}) \end{aligned} $ | h _{FE} | 100
100
50
10 | -
-
- | - | | Collector–Emitter Saturation Voltage | $(I_C = 1.0 \text{ Adc}, I_B = 0.1 \text{ Adc})$ | V _{CE(sat)} | - | 0.5 | Vdc | | Base-Emitter On Voltage | $(I_C = 1.0 \text{ Adc}, V_{CE} = 5.0 \text{ Vdc})$ | V _{BE(on)} | - | 1.0 | Vdc | | DYNAMIC CHARACTERISTICS | | | | | | | Current Gain – Bandwidth Product (Note 2)
(I _C = 500 mAdc, V _{CE} = 10 Vdc, f _{test} = 1.0 MHz) | | f⊤ | 30 | _ | MHz | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. - 1. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%. - 2. $f_T = |h_{fe}| \cdot f_{test}$. Figure 1. Power Derating Figure 2. Active Region Safe Operating Area Figure 3. Thermal Response #### MJE15034 (NPN), MJE15035 (PNP) Figure 4. DC Current Gain, V_{CE} = 5.0 V NPN MJE15034 Figure 5. DC Current Gain, V_{CE} = 5.0 V PNP MJE15035 Figure 6. DC Current Gain, V_{CE} = 20 V NPN MJE15034 Figure 7. DC Current Gain, V_{CE} = 20 V PNP MJE15035 Figure 8. V_{CE(sat)} NPN MJE15034 Figure 9. V_{CE(sat)} PNP MJE15035 #### MJE15034 (NPN), MJE15035 (PNP) Figure 14. Typical Current Gain Bandwidth Product NPN MJE15034 Figure 15. Typical Current Gain Bandwidth Product PNP MJE15035 onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales