Complementary Plastic Power Transistors

NPN/PNP Silicon DPAK For Surface **Mount Applications**

MJD200 (NPN), MJD210 (PNP)

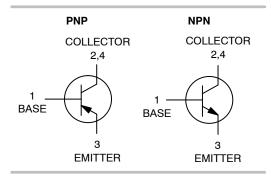
Designed for low voltage, low-power, high-gain audio amplifier applications.

Features

- High DC Current Gain
- Lead Formed for Surface Mount Applications in Plastic Sleeves (No Suffix)
- Low Collector-Emitter Saturation Voltage
- High Current-Gain Bandwidth Product
- Annular Construction for Low Leakage
- Epoxy Meets UL 94 V-0 @ 0.125 in
- NJV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS

Rating	Symbol	Max	Unit
Collector-Base Voltage	V_{CB}	40	Vdc
Collector-Emitter Voltage	V _{CEO}	25	Vdc
Emitter-Base Voltage	V_{EB}	8.0	Vdc
Collector Current - Continuous	I _C	5.0	Adc
Collector Current - Peak	I _{CM}	10	Adc
Base Current	Ι _Β	1.0	Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	P _D	12.5 0.1	W W/°C
Total Power Dissipation (Note 1) @ T _A = 25°C Derate above 25°C	P _D	1.4 0.011	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	°C
ESD - Human Body Model	HBM	3B	V
ESD - Machine Model	MM	С	V


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ON Semiconductor®

www.onsemi.com

SILICON **POWER TRANSISTORS 5 AMPERES 25 VOLTS, 12.5 WATTS**

MARKING DIAGRAM

= Assembly Location

= Year

ww = Work Week

x = 1 or 0

= Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

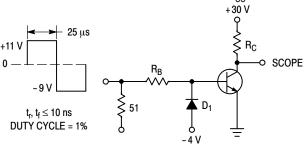
THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	10	°C/W
Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{\theta JA}$	89.3	°C/W

1

^{1.} These ratings are applicable when surface mounted on the minimum pad sizes recommended.

^{2.} These ratings are applicable when surface mounted on the minimum pad sizes recommended.


ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector–Emitter Sustaining Voltage (Note 3) (I _C = 10 mAdc, I _B = 0)	V _{CEO(sus)}	25	-	Vdc
Collector Cutoff Current $(V_{CB} = 40 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 40 \text{ Vdc}, I_E = 0, T_J = 125^{\circ}\text{C})$	I _{CBO}	_ _ _	100 100	nAdc μAdc
Emitter Cutoff Current (V _{BE} = 8 Vdc, I _C = 0)	I _{EBO}	-	100	nAdc
ON CHARACTERISTICS				
C Current Gain (Note 3), $ \begin{array}{l} (I_C=500 \text{ mAdc, } V_{CE}=1 \text{ Vdc)} \\ (I_C=2 \text{ Adc, } V_{CE}=1 \text{ Vdc)} \\ (I_C=5 \text{ Adc, } V_{CE}=2 \text{ Vdc)} \end{array} $	h _{FE}	70 45 10	- 180 -	-
	V _{CE(sat)}	- - -	0.3 0.75 1.8	Vdc
Base-Emitter Saturation Voltage (Note 3) (I _C = 5 Adc, I _B = 1 Adc)	V _{BE(sat)}	-	2.5	Vdc
Base–Emitter On Voltage (Note 3) (I _C = 2 Adc, V _{CE} = 1 Vdc)	V _{BE(on)}	-	1.6	Vdc
DYNAMIC CHARACTERISTICS				
Current-Gain - Bandwidth Product (Note 4) (I _C = 100 mAdc, V _{CE} = 10 Vdc, f _{test} = 10 MHz)	f _T	65	-	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 0.1 MHz) MJD200 MJD210, NJVMJD210T4G	C _{ob}	- -	80 120	pF

^{3.} Pulse Test: Pulse Width = 300 μ s, Duty Cycle \approx 2%. 4. f_T = $|h_{fe}| \bullet f_{test}$.

 R_{B} and R_{C} VARIED TO OBTAIN DESIRED CURRENT LEVELS

D₁ MUST BE FAST RECOVERY TYPE, e.g.: 1N5825 USED ABOVE $I_B \approx 100 \text{ mA}$ MSD6100 USED BELOW $I_B \approx 100 \ \text{mA}$

FOR PNP TEST CIRCUIT, REVERSE ALL POLARITIES

Figure 2. Switching Time Test Circuit

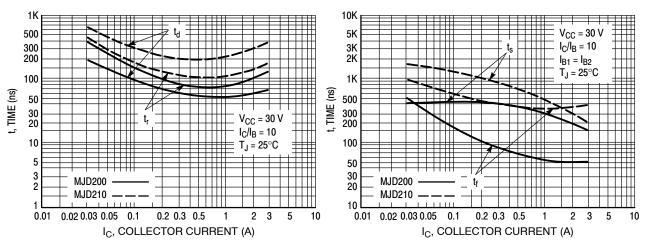


Figure 3. Turn-On Time

Figure 4. Turn-Off Time

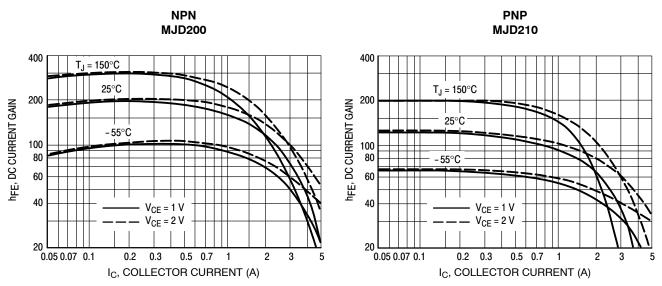


Figure 5. DC Current Gain

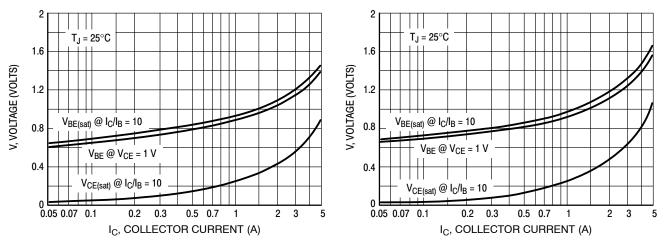
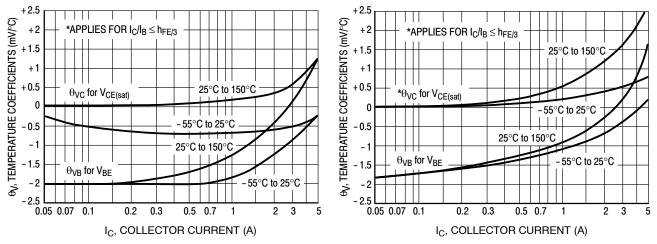



Figure 6. "On" Voltage

Figure 7. Temperature Coefficients

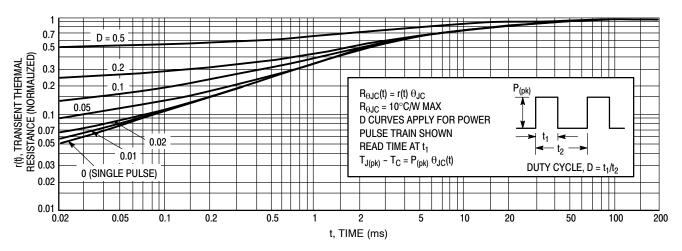


Figure 8. Thermal Response

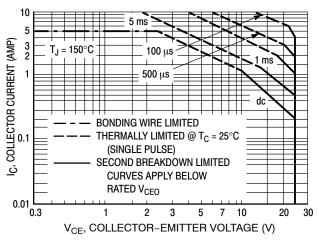


Figure 9. Active Region Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C – V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 9 is based on $T_{J(pk)} = 150^{\circ}C$; T_C is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \le 150^{\circ}C$. $T_{J(pk)}$ may be calculated from the data in Figure 8. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

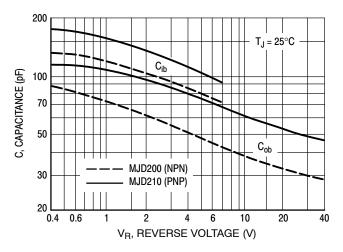
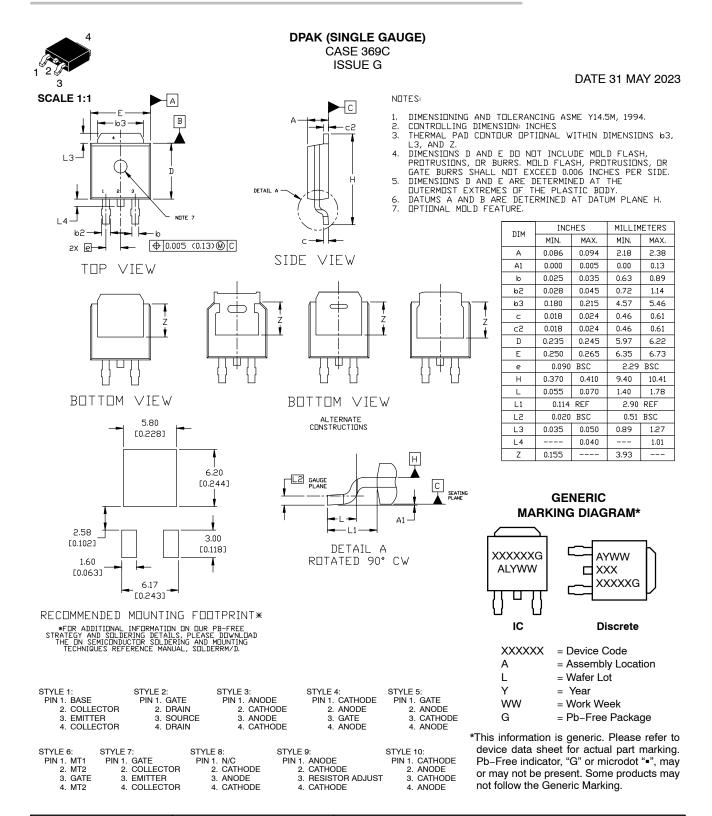


Figure 10. Capacitance

ORDERING INFORMATION


Device	Package Type	Shipping [†]
MJD200G	DPAK (Pb-Free)	75 Units / Rail
MJD200RLG	DPAK (Pb-Free)	1,800 / Tape & Reel
MJD200T4G	DPAK (Pb-Free)	2,500 / Tape & Reel
MJD210G	DPAK (Pb-Free)	75 Units / Rail
MJD210RLG	DPAK (Pb-Free)	1,800 / Tape & Reel
MJD210T4G	DPAK (Pb-Free)	2,500 / Tape & Reel
NJVMJD210T4G*	DPAK (Pb-Free)	2,500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NJV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP

Capable

DOCUMENT NUMBER:	98AON10527D	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales